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Let � be a random permutation of f1; 2 � ng, chosen according to a
uniform distribution among all possible n! permutations. Denote by T
the set of all ordered fourtuples (i; j; i0; j0) satisfying i < i0; j 6= j0 and
aij = ai0j0 . For each (i; j; i0; j0) 2 T , let Aiji0j0 denote the event that �(i) = j
and �(i0) = j0. The existence of a Latin transversal is equivalent to the
statement that with positive probability none of these events hold. Let us
de�ne a symmetric digraph, (i.e., a graph) G on the vertex set T by making
(i; j; i0; j 0) adjacent to (p; q; p0; q0) if and only if fi; i0g \ fp; p0g 6= ; or fj; j0g
\fq; q0g 6= ;. Thus, these two fourtuples are not adjacent i� the four cells
(i; j); (i0; j 0); (p; q) and (p0; q0) occupy four distinct rows and columns of A.
The maximum degree ofG is less than 4nk; indeed, for a given (i; j; i0; j0) 2 T
there are 4n choices of (p; q) with either p 2 fi; i0g or q 2 fj; j0g, and for
each of these choices of (p; q) there are less than k choices for (p0; q0) 6= (p; q)
with apq = ap0q0 . Since e � 4nk � 1

n(n�1) � 1, the desired result follows from
the above mentioned strengthening of the symmetric version of the Lov�asz
Local Lemma, if we can show that

Pr(Aiji0j0 j
^
S

Apqp0q0) � 1=n(n� 1)

for any (i; j; i0; j0) 2 T and any set S of members of T which are nonadjacent
in G to (i; j; i0; j0). By symmetry, we may assume that i = j = 1; i0 = j0 =
2 and that hence none of the p's nor q's are either 1 or 2. Let us call
a permutation � good if it satis�es

V
S Apqp0q0 , and let Sij denote the set

of all good permutations � satisfying �(1) = i and �(2) = j. We claim
that jS12j � jSij j for alll i 6= j. Indeed, suppose �rst that i; j > 2. For
each good � 2 S12 de�ne a permutation �� as follows. Suppose �(x) = i,
�(y) = j. Then de�ne ��(1) = i; ��(2) = j; ��(x) = 1; ��(y) = 2 and
��(t) = �(t) for all t 6= 1; 2; x; y. One can easily check that �� is good,
since the cells (1; i); (2; j); (x; 1); (y; 2) are not part of any (p; q; p0; q0) 2 S.
Thus �� 2 Sij , and since the mapping � ! �� is injective jS12j � jSijj, as
claimed. Similarly one can de�ne injective mappings showing that jS12j �
jSij j even when fi; jg \ f1; 2g 6= ;. It follows that Pr(A1122

VV
S Apqp0q0) �

Pr(A1i2j
VV

S Apqp0q0) for all i 6= j and hence that Pr(A1122j
VV

S Apqp0q0) �
1=n(n� 1). By symmetry, this implies (5.1) and completes the proof.2
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complete graph on S is red. Clearly Pr(AT ) = p3 and Pr(BS) = (1� p)(
k
2).

Construct a dependency digraph for the events AT and BS by joining two
vertices by edges (in both directions) i� the corresponding complete graphs
share an edge. Clearly, each AT -node of the dependency graph is adjacent
to 3(n � 3) < 3n AT 0-nodes and to at most

�n
k

�
BS0 -nodes. Similarly, each

BS -node is adjacent to
�k
2

�
(n � k) < k2n=2 AT nodes and to at most

�n
k

�
BS0 -nodes. It follows from the general case of the Lov�asz Local Lemma that
if we can �nd a 0 < p < 1 and two real numbers 0 � x < 1 and 0 � y < 1
such that

p3 � x(1� x)3n(1� y)(
n
k)

and
(1� p)(

k
2) � y(1� x)k

2n=2(1� y)(
n
k)

then R(k; 3) > n.
Our objective is to �nd the largest possible k = k(n) for which there

is such a choice of p; x and y. An elementary computation (if you have
a spare weekend!) shows that the best choice is when p = c1n

�1=2, k =
c2n

1=2 log n; x = c3=n
3=2 and y = c4

en
1=2 log2 n

. This gives that R(k; 3) >

c5k
2= log2 k. A similar argument gives that R(k; 4) > k5=2+o(1). In both

cases the amount of computation required is considerable. However, the hard
work does pay; the bound R(k; 3) > c5k

2= log2 k matches a lower bound of
Erd}os proved in 1961 by a highly complicated probabilistic argument. The
bound above for R(k; 4) is better than any bound for R(k; 4) known to be
proven without the Local Lemma.

4 Latin Transversals

Following the proof of the Lov�asz Local Lemma we noted that the mutual
independency assumption in this lemma can be replaced by the weaker as-
sumption that the conditional probability of each event, given the mutual
non-occurance of an arbitrary set of events, each nonadjacent to it in the
dependency digraph, is su�ciently small. In this section we describe an ap-
plication, from Erd}os-Spencer [1991], of this modi�ed version of the lemma.
Let A = (aij) be an n of n matrix with, say, integer entries. A permutation
� is called a Latin transversal (of A) if the entries ai�(i) (1 � i � n) are all
distinct.
Theorem 5.1. Suppose k � (n�1)=(4e) and suppose that no integer appears
in more than k entries of A. Then A has a Latin Transversal.
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probability space none of them holds. In fact, there are trivial examples of
countably many mutually independent events Ai, satisfying Pr(Ai) = 1=2
and

V
i�1Ai = ;. Thus the compactness argument is essential in the above

proof.

3 Lower bounds for Ramsey numbers

The deriviation of lower bounds for Ramsey numbers by Erd}os in 1947 was
one of the �rst applications of the probabilistic method. The Lov�asz Local
Lemma provides a simple way of improving these bounds. Let us obtain,
�rst, a lower bound for the diagonal Ramsey number R(k; k). Consider a
random 2-coloring of the edges of Kn. For each set S of k vertices of Kn, let
AS be the event that the complete graph on S is monochromatic. Clearly

Pr(AS) = 21�(
k
2). It is obvious that each event AS is mutually independent

of all the events AT , but those which satisfy jS \ T j � 2, since this is the
only case in which the corresponding complete graphs share an edge. We can

therefore apply Corollary 1.2 with p = 21�(
k
2) and d =

�k
2

�� n
k�2
�
to conclude;

Proposition 3.1. If e
��k

2

�� n
k�2
�
+ 1

�
� 21�(

k
2) < 1 then R(k; k) > n.

A short computation shows that this gives R(k; k) >
p
2
e (1 + o(1))k2k=2,

only a factor 2 improvement on the bound obtained by the straightforward
probabilistic method. Although this minor improvement is somewhat dis-
appointing it is certainly not surprising; the Local Lemma is most powerful
when the dependencies between events are rare, and this is not the case
here. Indeed, there is a total number of K =

�n
k

�
events considered, and

the maximum outdegree d in the dependency digraph is roughly
�k
2

�� n
k�2
�
.

For large k and much larger n (which is the case of interest for us) we have
d > K1�O(1=k), i.e., quite a lot of dependencies. On the other hand, if we
consider small sets S, e.g., sets of size 3, we observe that out of the total
K =

�n
3

�
of them each shares an edge with only 3(n � 3) � K1=3. This

suggests that the Lov�asz Local Lemma may be much more signi�cant in
improving the o�-diagonal Ramsey numbers R(k; l), especially if one of the
parameters, say l, is small. Let us consider, for example, following Spencer
(1977), the Ramsey number R(k; 3). Here, of course, we have to apply the
nonsymmetric form of the Lov�asz Local Lemma. Let us 2-color the edges of
Kn randomly and independently, where each edge is colored blue with prob-
ability p. For each set of 3 vertices T , let AT be the event that the triangle on
T is blue. Similarly, for each set of k vertices S, let BS be the event that the
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hypergraph is has Property B. The next result we consider, which appeared
in the original paper of Erd}os and Lov�asz, deals with k-colorings of the real
numbers. For a k-coloring c : R ! f1; 2 . . .kg of the real numbers by the k
colors 1; 2 . . .k, and for a subset T � R, we say that T is multicolored (with
respect to c) if c(T ) = f1; 2 . . .kg, i.e., if T contains elements of all colors.
Theorem 2.2. Let m and k be two positive integers satisfying

e (m(m� 1) + 1)k

�
1�

1

k

�m
� 1

Then, for any set S of m real numbers there is a k-coloring so that each
translation x+ S (for x 2 R) is multicolored.

Notice that the condition holds whenever m > (3 + o(1))k log k. There
is no known proof of existence of any m = m(k) with this property without
using the local lemma.

We �rst �x a �nite subset X � R and show the existence of a k-coloring
so that each translation x + S (for x 2 X) is multicolored. This is an easy
consequence of the Lov�asz Local Lemma. Indeed, put Y =

S
x2X(x+S) and

let c : Y ! f1; 2 . . .kg be a random k-coloring of Y obtained by choosing, for
each y 2 Y , randomly and independently, c(y) 2 f1; 2 . . . ; kg according to a
uniform distribution on f1; 2 . . .kg. For each x 2 X , let Ax be the event that

x+S is not multicolored (with respect to c). Clearly Pr(Ax) � k
�
1� 1

k

�m
.

Moreover, each event Ax is mutually independent of all the other events Ax0

but those for which (x+ S)\ (x0 + S) 6= ;. As there are at most m(m� 1)
such events the desired result follows from Corollary 1.2.

We can now prove the existence of a coloring of the set of all reals with the
desired properties, by a standard compactness argument. Since the discrete
space with k points is (trivially) compact, Tychanov's Theorem (which is
equivalent to the axiom of choice) implies that an arbitrary product of such
spaces is compact. In particular, the space of all functions from the reals to
f1; 2 . . .kg, with the usual product topology, is compact. In this space for
every �xed x 2 R, the set Cx of all colorings c, such that x+S is multicolored
is closed. (In fact, it is both open and closed, since a basis to the open sets
is the set of all colorings whose values are prescribed in a �nite number of
places). As we proved above, the intersection of any �nite number of sets
Cx is nonempty. It thus follows, by compactness, that the intersection of all
sets Cx is nonempty. Any coloring in this intersection has the properties in
the conclusion of Theorem 2.2.2

Note that it is impossible, in general, to apply the Lov�asz Local Lemma
to an in�nite number of events and conclude that in some point of the
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If d = 0 the result is trivial. Otherwise, by the assumption there is
a dependency digraph D = (V;E) for the events A1 . . .An in which for
each i jfj : (i; j) 2 Egj � d. The result now follows from Lemma 1.1 by
taking xi = 1=(d+ 1)(< 1) for all i and using the fact that for any d � 2,�
1� 1

d+1

�d
> 1=e.2

It is worth noting that as shown by Shearer in 1985,the constant \e" is
the best possible constant in inequality (1.5). Note also that the proof of
Lemma 1.1 indicates that the conclusion remains true even when we replace
the two assumptions that each Ai is mutually independent of fAj : (i; j) 62
E) and that Pr(Ai) � xi

Q
(ij)2E(1 � xj) by the weaker assumption that

for each i and each S2 � f1 . . .ng � fj : (i; j) 2 Eg, Pr
�
xij
V
j2S2 Aj

�
�

xi
Q

(i;j)2E(1� xj). This turns out to be useful in certain applications.
In the next few sections we present various applications of the Lov�asz

Local Lemma for obtaining combinatorial results. There is no known proof
of any of these results, which does not use the this Lemma.

2 Property B and multicolored sets of real num-

bers

A hypergraph H = (V;E) is said to have property B if there is a coloring
of V by two colors so that no edge f 2 E is monochromatic.
Theorem 2.1. Let H = (V;E) be a hypergraph in which every edge has at
least k elements, and suppose that each edge of H intersects at most d other
edges. If e(d+ 1) � 2k�1 then H has property B.

Color each vertex v of H , randomly and independently, either blue or
red (with equal probability). For each edge f 2 E, let Af be the event that
f is monochromatic. Clearly Pr(Af) = 2=2jf j � 1=2k�1. Moreover, each
event Af is clearly mutually independent of all the other events Af 0 for all
edges f 0 that do not intersect f . The result now follows from Corollary 1.2.
2

A special case of Theorem 2.1 is that for any k � 9, any k-uniform k-
regular hypergraph H has property B. Indeed, since any edge f of such an
H contains k vertices, each of which is incident with k edges (including f), it
follows that f intersects at most d = k(k�1) other edges. The desired result
follows, since e(k(k� 1) + 1) < 2k�1 for each k � 9. This special case has a
di�erent proof (see [Alon-Bregman (1988)]), which works for each k � 8. It
is plausible to conjecture that in fact for each k � 4 each k-uniform k-regular
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prove it for S. Put

S1 = fj 2 S; (i; j)2 Eg; S2 = S � S1

Then

Pr

0
@Aij

^
j2S

Aj

1
A =

Pr
�
Ai ^ (

V
j2S1 Aj)j

V
l2S2 Al

�
Pr
�V

j2S1 Aj j
V
l2S2 Al

�
To bound the numerator observe that since Ai is mutually independent of
the events fAl : l 2 S2g

Pr

0
@Ai ^ (

^
j2S1

Aj)j
^
l2S2

Al

1
A � Pr

0
@Aij

^
l2S2

Al

1
A = Pr(Ai) � xi

Y
(i;j)2E

(1�xj)

The denominator, on the other hand, can be bounded by the induction
hypothesis. Indeed, suppose S1 = fj1; j2 . . . jrg. If r = 0 then the denomi-
nator is 1, and (1.1) follows. Otherwise, setting B = ^l2S2Al,

Pr
�
Aj1 ^Aj2 . . .Ajr jB

�
= (1� Pr (Aj1 jB)) �

�
�
1� Pr

�
Aj2 jAj1 ^ B

��
� � �
�
1� Pr

�
Ajr jAj1 ^ . . .^Ajr�1

^ B
��

� (1� xj1) � � �(1� xjr) �
Y

(i;j)2E
(1� xj)

Substituting we conclude that Pr
�
Aij

V
j2S Aj

�
� xi, completing the

proof of the induction.
The assertion of Lemma 1.1 now follows easily, as

Pr

 
n̂

i=1

Ai

!
= (1�Pr(A1))�(1�Pr(A2jA1))�. . .�(1�Pr(Anj

n�1̂

i=1

Ai) �
nY
i=1

(1�xi)

completing the proof. 2
Corollary 1.2 (Lov�asz Local Lemma; Symmetric Case): Let A1; A2 . . .An

be events in an arbitrary probability space. Suppose that each event Ai is
mutually independent of a set of all the other events Aj but at most d, and
that Pr(Ai) � p for all 1 � i � n. If

ep(d+ 1) � 1

then Pr
�Vn

i=1Ai

�
> 0.
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Lecture 9: The Lov�asz Local Lemma

1 The Lemma

In a typical probabilistic proof of a combinatorial result, one usually has
to show that the probability of a certain event is positive. However, many
of these proofs actually give more and show that the probability of the
event considered is not only positive but is large. In fact, most probabilistic
proofs deal with events that hold with high probability, i.e., a probability
that tends to 1 as the dimensions of the problem grow. On the other hand,
there is a trivial case in which one can show that a certain event holds
with positive, though very small, probability. Indeed, if we have n mutually
independent events and each of them holds with probability at least p > 0,
then the probability that all events hold simultaneously is at least pn, which
is positive, although it may be exponentially small in n.

It is natural to expect that the case of mutual independence can be
generalized to that of rare dependencies, and provide a more general way of
proving that certain events hold with positive, though small, proability. Such
a generalization is, indeed, possible, and is stated in the following lemma,
known as the Lov�asz Local Lemma. This simple lemma, �rst proved in
[Erd}os-Lov�asz (1975)] is an extremely powerful tool, as it supplies a way for
dealing with rare events.
Lemma 1.1 (The Local Lemma; General Case):

Let A1; A2 . . .An be events in an arbitrary probability space. A directed
graphD = (V;E) on the set of vertices V = f1; 2 . . .ng is called a dependency
digraph for the events A1 . . .An if for each i, 1 � i � n, the event Ai is
mutually independent of all the events fAj : (i; j) 62 Eg. Suppose that D =
(V;E) is a dependency digraph for the above events and suppose there are
real numbers x1 . . .xn such that 0 � xi < 1 and Pr(Ai) � xi

Q
(i;j)2E(1�xj)

for all 1 � i � n. Then Pr
�Vn

i=1Aj

�
�

nQ
i=1

(1 � xi). In particular, with

positive probability no event Ai holds.
We �rst prove, by induction on s, that for any S � f1 . . .ng, jSj = s < n

and any i 62 S

Pr

0
@Aij

^
j2S

Aj

1
A � xi

This is certainly true for s = 0. Assuming it holds for all s0 < s, we


