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Let X0; X1; . . . ; Xn = X be the martingale given by exposing one coordinate
of f0; 1gn at a time. The Lipschitz condition holds for X : If y; y0 di�er in
just one coordinate then X(y)�X(y0) � 1. Thus, with � = E[X ]

Pr[X < �� �
p
n] < e��

2=2 = �

Pr[X > �+ �
p
n] < e��

2=2 = �

But
Pr[X = 0] = jAj2�n � �

so � � �
p
n. Thus

Pr[X > 2�
p
n] < �

and
jB(A; 2�pn)j = 2n Pr[X � 2�

p
n] � 2n(1� �) 2

Actually, a much stronger result is known. Let B(s) denote the ball of
radius s about (0; . . . ; 0). The Isoperimetric Inequality proved by Harper in
1966 states that

jAj � jB(r)j ) jB(A; s)j � jB(r + s)j

One may actually use this inequality as a beginning to give an alternate
proof that �(G) � n=2 log2 n and to prove a number of the other results we
have shown using martingales.
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Deriving these asymptotic bounds from �rst principles is quite cumbersome.
As a second illustration let B be any normed space and let v1; . . . ; vn 2 B

with all jvij � 1. Let �1; . . . ; �n be independent with

Pr[�i = +1] = Pr[�i = �1] = 1

2

and set
X = j�1v1 + . . . + �nvnj

Theorem 5.2.
Pr[X �E[X ] > �

p
n] < e��

2=2

Pr[X � E[X ]< ��pn] < e��
2=2

Proof. Consider f�1;+1gn as the underlying probability space with all
(�1; . . . ; �n) equally likely. Then X is a random variable and we de�ne a
martingale X0; . . . ; Xn = X by exposing one �i at a time. The value of
�i can only change X by two so direct application of Theorem 4.1 gives
jXi+1 � Xij � 2. But let �; �0 be two n-tuples di�ering only in the i-th
coordinate.

Xi(�) =
1

2

�
Xi+1(�) +Xi+1(�

0)
�

so that

jXi(�)�Xi+1(�)j = 1

2

��Xi+1(�
0)�Xi+1(�)

�� � 1

Now apply Azuma's Inequality. 2
For a third illustration let � be the Hamming metric on f0; 1gn. For

A � f0; 1gn let B(A; s) denote the set of y 2 f0; 1gn so that �(x; y) � s for
some x 2 A. (A � B(A; s) as we may take x = y.)
Theorem 5.3. Let �; � > 0 satisfy e��

2=2 = �. Then

jAj � �2n ) jB(A; 2�pn)j � (1� �)2n

Proof. Consider f0; 1gn as the underlying probability space, all points
equally likely. For y 2 f0; 1gn set

X(y) = min
x2A

�(x; y)
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where wh0 is the conditional probability that g = h0 given that g = h on
Bi+1. For each h

0 2 H let H [h0] denote the family of h� which agree with h0

on all points except (possibly) Bi+1 �Bi. The H [h0] partition the family of
h� agreeing with h on Bi. Thus we may express

Xi(h) =
X
h02H

X
h�2H[h0]

[L(h�)qh� ]wh0

where qh� is the conditional probability that g agrees with h� on Bi+1 given
that it agrees with h on Bi. (This is because for h� 2 H [h0] wh0 is also the
conditional probability that g = h� given that g = h� on Bi+1.) Thus

jXi+1(h)�Xi(h)j =
���Ph02H wh0 [L(h

0)�Ph�2H[h0]L(h
�)qh� ]

���
�Ph02H wh0

P
h�2H[h0] jqh� [L(h0)� L(h�)]j

The Lipschitz condition gives jL(h0)� L(h�)j � 1 so

jXi+1(h)�Xi(h)j �
X
h02H

wh0
X

h�2H [h0]

qh� =
X
h02H

wh0 = 1 2

Now we can express Azuma's Inequality in a general form.
Theorem 4.2. Let L satisfy the Lipschitz condition relative to a gradation
of length m and let � = E[L(g)]. Then for all � > 0

Pr[L(g) > �+ �
p
m] < e��

2=2

Pr[L(g) < �� �
p
m] < e��

2=2

5 Three Illustrations

Let g be the random function from f1; . . . ; ng to itself, all nn possible func-
tion equally likely. Let L(g) be the number of values not hit, i.e., the number
of y for which g(x) = y has no solution. By Linearity of Expectation

E[L(g)] = n

�
1� 1

n

�n
� n

e

Set Bi = f1; . . . ; ig. L satis�es the Lipschitz condition relative to this grada-
tion since changing the value of g(i) can change L(g) by at most one. Thus
Theorem 5.1.

Pr[jL(g)� n

e
j > �

p
n] < 2e��

2=2
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and � was arbitrarily small. 2
Using the same technique similar results can be achieved for other values

of �. For any �xed � > 1
2 one �nds that �(G) is concentrated on some �xed

number of values.

4 A General Setting

The martingales useful in studying Random Graphs generally can be placed
in the following general setting which is essentially the one considered in
Maurey [1979] and in Milman and Schechtman [1986]. Let 
 = AB denote
the set of functions g : B ! A. (With B the set of pairs of vertices on n

vertices and A = f0; 1g we may identify g 2 AB with a graph on n vertices.)
We de�ne a measure by giving values pab and setting

Pr[g(b) = a] = pab

with the values g(b) assumed mutually independent. (In G(n; p) all p1b =
p; p0b = 1� p.) Now �x a gradation

; = B0 � B1 � . . . � Bm = B

Let L : AB ! R be a functional. (E.g., clique number.) We de�ne a
martingale X0; X1; . . . ; Xm by setting

Xi(h) = E[L(g)jg(b) = h(b) for all b 2 Bi]

X0 is a constant, the expected value of L of the random g. Xm is L itself.
The values Xi(g) approach L(g) as the values of g(b) are \exposed". We say
the functional L satis�es the Lipschitz condition relative to the gradation if
for all 0 � i < m

h; h0 di�er only on Bi+1 �Bi) jL(h0)� L(h)j � 1

Theorem 4.1. Let L satisfy the Lipschitz condition. Then the corresponding
martingale satis�es

jXi+1(h)�Xi(h)j � 1

for all 0 � i < m, h 2 AB.
Proof. Let H be the family of h0 which agree with h on Bi+1. Then

Xi+1(h) =
X
h02H

L(h0)wh0
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if T has t vertices it must have at least 3t
2 edges. The probability of this

occuring for some T with at most c
p
n vertices is bounded from above by

c
p
nX

t=4

 
n

t

! �t
2

�
3t
2

!
p3t=2

We bound  
n

t

!
� (

ne

t
)t and

 �t
2

�
3t
2

!
� (

te

3
)3t=2

so each term is at most"
ne

t

t3=2e3=2

33=2
n�3�=2

#t
�
h
c1n

1� 3�
2 t1=2

it � hc2n1� 3�
2 n1=4

it
=
�
c2n

���t
with � = 3�

2 � 5
4 > 0 and the sum is therefore o(1).

Proof of Theorem 3.3. Let � > 0 be arbitrarily small and let u = u(n; p; �)
be the least integer so that

Pr[�(G) � u] > �

Now de�ne Y (G) to be the minimal size of a set of vertices S for which G�S
may be u-colored. This Y satis�es the vertex Lipschitz condition since at
worst one could add a vertex to S. Apply the vertex exposure martingale
on G(n; p) to Y . Letting � = E[Y ]

Pr[Y � �� �
p
n� 1] < e��

2=2

Pr[Y � �+ �
p
n� 1] < e��

2=2

Let � satisfy e��
2=2 = � so that these tail events each have probability less

than �. We de�ned u so that with probability at least � G would be u-
colorable and hence Y = 0. That is, Pr[Y = 0] > �. The �rst inequality
therefore forces c � �

p
n� 1. Now employing the second inequality

Pr[Y � 2�
p
n � 1] � Pr[Y � � + �

p
n� 1] � �

With probability at least 1 � � there is a u-coloring of all but at most
c0
p
n vertices. By the Lemma almost always, and so with probability at

least 1� �, these points may be colored with 3 further colors, giving a u+3-
coloring of G. The minimality of u guarantees that with probability at least
1� � at least u colors are needed for G. Altogether

Pr[u � �(G) � u+ 3] � 1� 3�
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Delete from C one set from each such pair fA;Bg. This yields a set C� of
edge disjoint k-cliques of G and

E[Y ] � E[jC�j] � E[jCj]�E[W 0] = �q ��q2=2 = �2=2� � n2=2k4

where we choose q = �=� (noting that it is less than one!) to minimize the
quadratic. 2

We conjecture that Lemma 3.1 may be improved to E[Y ] > cn2=k2.
That is, with positive probability there is a family of k-cliques which are
edge disjoint and cover a positive proportion of the edges.
Theorem 3.2.

Pr[!(G) < k] < e
�(c+o(1)) n

2

ln8 n

with c a positive constant.
Proof. Let Y0; . . . ; Ym, m =

�n
2

�
, be the edge exposure martingale on

G(n; 1=2) with the function Y just de�ned. The function Y satis�es the
edge Lipschitz condition as adding a single edge can only add at most one
clique to a family of edge disjoint cliques. (Note that the Lipschitz condi-
tion would not be satis�ed for the number of k-cliques as a single edge might
yield many new cliques.) G has no k-clique if and only if Y = 0. Apply

Azuma's Inequality with m =
�n
2

� � n2=2 and E[Y ] � n2

2k4
(1 + o(1)). Then

Pr[!(G) < k] = Pr[Y = 0] � Pr[Y �E[Y ] � �E[Y ]]
� e�E[Y ]2=2(n2) � e�(c0+o(1))n2=k8

= e�(c+o(1))n2= ln8 n

as desired. 2
Here is another example where the martingale approach requires an in-

ventive choice of graphtheoretic function.
Theorem 3.3. Let p = n�� where � is �xed, � > 5

6 . Let G = G(n; p). Then
there exists u = u(n; p) so that almost always

u � �(G) � u+ 3

That is, �(G) is concentrated in four values.
We �rst require a technical lemma that had been well known.

Lemma 3.4. Let �; c be �xed � > 5
6 . Let p = n��. Then almost always

every c
p
n vertices of G = G(n; p) may be 3-colored.

Proof. If not, let T be a minimal set which is not 3-colorable. As T �fxg is
3-colorable, x must have internal degree at least 3 in T for all x 2 T . Thus
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Theorem 2.4 (Shamir, Spencer[1987]) Let n; p be arbitrary and let c =
E[�(G)] where G � G(n; p). Then

Pr[j�(G)� cj > �
p
n� 1] < 2e��

2=2

Proof. Consider the vertex exposure martingale X1; . . . ; Xn on G(n; p) with
f(G) = �(G). A single vertex can always be given a new color so the vertex
Lipschitz condition applies. Now apply Azuma's Inequality. 2

Letting �!1 arbitrarily slowly this result shows that the distribution
of �(G) is \tightly concentrated" around its mean. The proof gives no clue
as to where the mean is.

3 Chromatic Number

We have previously shown that �(G) � n=2 log2 n almost surely, where
G � G(n; 1=2). Here we give the original proof of B�ela Bollob�as using

martingales. We follow the earlier notations setting f(k) =
�n
k

�
2�(

k

2), k0 so

that f(k0�1) > 1 > f(k0), k = k0�4 so that k � 2 log2 n and f(k) > n3+o(1).
Our goal is to show

Pr[!(G) < k] = e�n
2+o(1)

;

where !(G) is the size of the maximum clique of G. We shall actually show
in Theorem 3.2 a more precise bound. The remainder of the argument is as
given earlier.

Let Y = Y (H) be the maximal size of a family of edge disjoint cliques
of size k in H . This ingenious and unusual choice of function is key to the
martingale proof.
Lemma 3.1. E[Y ] � n2

2k4
(1 + o(1))

Proof. Let K denote the family of k-cliques of G so that f(k) = � = E[jKj].
Let W denote the number of unordered pairs fA;Bg of k-cliques of G with
2 � jA \ Bj < k. Then E[W ] = �=2, with � as described earlier, � �
�2k4n�2. Let C be a random subfamily of K de�ned by setting, for each
A 2 K,

Pr[A 2 C] = q;

q to be determined. Let W 0 be the number of unordered pairs fA;Bg,
A;B 2 C with 2 � jA \ Bj < k. Then

E[W 0] = E[W ]q2 = �q2=2
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Note that X1(H) = E[f(G)] is constant as no edges have been exposed and
Xn(H) = f(H) as all edges have been exposed.

2 Large Deviations

Maurey [1979] applied a large deviation inequality for martingales to prove
an isoperimetric inequality for the symmetric group Sn. This inequality was
useful in the study of normed spaces; see Milman and Schechtman [1986] for
many related results. The applications of martingales in Graph Theory also
all involve the same underlying martingale results used by Maurey, which
are the following.
Theorem 2.1 (Azuma's Ineqality) Let 0 = X0; . . . ; Xm be a martingale with

jXi+1 �Xij � 1

for all 0 � i < m. Let � > 0 be arbitrary. Then

Pr[Xm > �
p
m] < e��

2=2

Corollary 2.2 Let c = X0; . . . ; Xm be a martingale with

jXi+1 �Xij � 1

for all 0 � i < m. Then

Pr[jXm � cj > �
p
m] < 2e��

2=2:

A graph theoretic function f is said to satisfy the edge Lipschitz condition
if whenever H and H 0 di�er in only one edge then jf(H)� f(H 0)j � 1. It
satis�es the vertex Lipschitz condition if whenever H and H 0 di�er at only
one vertex jf(H)� f(H 0)j � 1.
Theorem 2.3When f satis�es the edge Lipschitz condition the corresponding
edge exposure martingale satis�es jXi+1 � Xij � 1. When f satis�es the
vertex Lipschitz condition the corresponding vertex exposure martingale
satis�es jXi+1 �Xij � 1.

We prove these results in a more general context later. They have the
intuitive sense that if knowledge of a particular vertex or edge cannot change
f by more than one then exposing a vertex or edge should not change the
expectation of f by more than one. Now we give a simple application of
these results.
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The edge exposure martingale with n = m = 3; f the chromatic number,
and the edges exposed in the order \bottom,left,right". The values Xi(H)
are given by tracing from the central node to the leaf labelled H .

The �gure shows why this is a martingale. The conditional expectation
of f(H) knowing the �rst i � 1 edges is the weighted average of the con-
ditional expectations of f(H) where the i-th edge has been exposed. More
generally - in what is sometimes referred to as a Doob martingale process -
Xi may be the conditional expectation of f(H) after certain information is
revealed as long as the information known at time i includes the information
known at time i� 1.
The Vertex Exposure Martingale. Again let G(n; p) be the underlying prob-
ability space and f any graphtheoretic function. De�ne X1; . . . ; Xn by

Xi(H) = E[f(G)jfor x; y � i; fx; yg 2 G ! fx; yg 2 H ]

In words, to �nd Xi(H) we expose the �rst i vertices and all their inter-
nal edges and take the conditional expectation of f(G) with that partial
information. By ordering the edges appropriately the vertex exposure mar-
tingale may be considered a subsequence of the edge exposure martingale.
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Lecture 8: Martingales

1 De�nitions

A martingale is a sequence X0; . . . ; Xm of random variables so that for 0 �
i < m,

E[Xi+1jXi] = Xi

The Edge Exposure Martingale Let the random graph G(n; p) be the
underlying probability space. Label the potential edges fi; jg � [n] by
e1; . . . ; em, setting m =

�n
2

�
for convenience, in any speci�c manner. Let

f be any graphtheoretic function. We de�ne a martingale X0; . . . ; Xm by
giving the values Xi(H). Xm(H) is simply f(H). X0(H) is the expected
value of f(G) with G � G(n; p). Note that X0 is a constant. In general
(including the cases i = 0 and i = m)

Xi(H) = E[f(G)jej 2 G ! ej 2 H; 1 � j � i]

In words, to �nd Xi(H) we �rst expose the �rst i pairs e1; . . . ; ei and see
if they are in H . The remaining edges are not seen and considered to be
random. Xi(H) is then the conditional expectation of f(G) with this partial
information. When i = 0 nothing is exposed and X0 is a constant. When
i = m all is exposed and Xm is the function f . The martingale moves from
no information to full information in small steps.


