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Let Xg, X1,..., X, = X be the martingale given by exposing one coordinate
of {0,1}"™ at a time. The Lipschitz condition holds for X: If y, ¢’ differ in
just one coordinate then X (y)— X(y') < 1. Thus, with p = E[X]

Pr[X < u— AVn] < N2 = ¢

Pr[X > u+ AVn] < N2 = ¢
But
Pr[X =0]=|A]27" > ¢
so < Ay/n. Thus
Pr[X > 2\/n] < ¢

and

IB(A,20/n)| = 2" Pr[X < 20n] > 21 —¢) O

Actually, a much stronger result is known. Let B(s) denote the ball of
radius s about (0,...,0). The Isoperimetric Inequality proved by Harper in
1966 states that

[Al = [B(r)| = [B(A,s)] = |B(r + 5)|

One may actually use this inequality as a beginning to give an alternate
proof that x(G') ~ n/2log, n and to prove a number of the other results we
have shown using martingales.
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Deriving these asymptotic bounds from first principles is quite cumbersome.
As a second illustration let B be any normed space and let v1,...,v, € B
with all |v;| < 1. Let €q,...,¢, be independent with

1
Prle; = +1] = Prle; = —1] = 3
and set

X =|gvr+ ...+ €0,

Theorem 5.2. ,
Pr[X — E[X]> M) < e /2

Pr[X — E[X] < —Ay/n] < e ¥/?

Proof. Consider {—1,41}" as the underlying probability space with all
(€1,...,€,) equally likely. Then X is a random variable and we define a
martingale Xg,...,X,, = X by exposing one ¢; at a time. The value of
¢; can only change X by two so direct application of Theorem 4.1 gives
| X1 — X;| < 2. But let ¢,¢ be two n-tuples differing only in the i-th
coordinate.

Xi(e) = 5 [Xig1(€) + Xiqa(€)]

so that )
|Xi(€) = Xia(o)] = 5 [Xipa(€) = Xipa(9) < 1

Now apply Azuma’s Inequality. O

For a third illustration let p be the Hamming metric on {0,1}". For
A C{0,1}" let B(A,s) denote the set of y € {0,1}" so that p(z,y) < s for
some z € A. (A C B(A,s) as we may take z = y.)
Theorem 5.3. Let ¢, A > 0 satisfy e="/2 = ¢. Then

4] > 2" = | BA, 20| > (1 - 2"
Proof. Consider {0,1}" as the underlying probability space, all points
equally likely. For y € {0,1}" set

X(y) = minp(z,y)
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where wys is the conditional probability that ¢ = A’ given that ¢ = h on
Biy1. For each b/ € H let H[h'] denote the family of h* which agree with b’
on all points except (possibly) B;y1 — B;. The H[I'] partition the family of
h* agreeing with A on B;. Thus we may express

Z Z Qh* wWht

h'eH h*eH[h']

where gy« is the conditional probability that ¢ agrees with A* on B;4q given
that it agrees with h on B;. (This is because for h* € H[h'] wy is also the
conditional probability that ¢ = A* given that ¢ = h* on B;41.) Thus

| Xip1(h) — Xi(h)| = ‘Zh’eH Wy [L(W) = 3 peenpn L(h*)f]h*]‘
< wen Wht prenpp lan [L(A) — L(h7)]|

The Lipschitz condition gives |L(h') — L(h*)| < 1 so

[ Xit1(h) WIS DY ww Y, qe= ) wp=1 O

h'eH h*eH[h'] h'eH

Now we can express Azuma’s Inequality in a general form.
Theorem 4.2. Let L satisfy the Lipschitz condition relative to a gradation
of length m and let gy = E[L(g)]. Then for all A >0

Pi{L(g) > pu+ \m] < e/
Pr[L(g) < j1— Am] < e /2

5 Three Illustrations

Let g be the random function from {1,...,n} to itself, all n"* possible func-
tion equally likely. Let L(g) be the number of values not hit, i.e., the number
of y for which g(2) = y has no solution. By Linearity of Expectation

N n
ElL = 1l—=] ~ =
Ligl=n(1-3) ~"
Set B; = {1,...,i}. L satisfies the Lipschitz condition relative to this grada-
tion since changing the value of ¢(7) can change L(g) by at most one. Thus
Theorem 5.1. n
2
Pr[|L(g) — —| > AWn] < 2¢7/?
e
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and € was arbitrarily small. O

Using the same technique similar results can be achieved for other values
of a. For any fixed o >  one finds that x(() is concentrated on some fixed
number of values.

4 A General Setting

The martingales useful in studying Random Graphs generally can be placed
in the following general setting which is essentially the one considered in
Maurey [1979] and in Milman and Schechtman [1986]. Let © = A® denote
the set of functions ¢ : B — A. (With B the set of pairs of vertices on n
vertices and A = {0, 1} we may identify g € A® with a graph on n vertices.)
We define a measure by giving values p,; and setting

Prig(b) = a] = pap

with the values ¢(b) assumed mutually independent. (In G(n,p) all pyp =
p,por = 1 — p.) Now fix a gradation

@IBOCBlc...CBmIB

Let L : AP — R be a functional. (E.g., clique number.) We define a
martingale Xg, X1,..., X,; by setting

Xi(h) = E[L(g)lg(b) = h(b) for all b € B

Xy is a constant, the expected value of L of the random ¢. X,, is L itself.
The values X;(g) approach L(g) as the values of g(b) are “exposed”. We say
the functional I satisfies the Lipschitz condition relative to the gradation if
forall 0 <2< m

h,h' differ only on B;1; — B;= |L(h') — L(h)| < 1

Theorem 4.1. Let L satisfy the Lipschitz condition. Then the corresponding
martingale satisfies
[Xia(h) = Xi(h)| < 1
for all 0 < i < m, h e AP,
Proof. Let H be the family of A’ which agree with h on B;11. Then

Xi_|_1(h) = Z L(h/)wh/
h'eH
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if T has t vertices it must have at least % edges. The probability of this
occuring for some T with at most ¢y/n vertices is bounded from above by

5 ()

n nE. ¢ (;) e 3t/9
(s (§) s

so each term is at most

3/2,3/2 t . .
[Et ‘ n_BQ/Q] < [CWI_%tmr < [02"1_37"1/4]t = [ean™’

We bound

IN

t  33/2
with € = 22 — 2 > 0 and the sum is therefore o(1).

Proof of Theorem 3.3. Let € > 0 be arbitrarily small and let u = u(n, p,€)
be the least integer so that

Prix(G) < u] > ¢

Now define Y (') to be the minimal size of a set of vertices § for which G — .9
may be u-colored. This Y satisfies the vertex Lipschitz condition since at

worst one could add a vertex to 5. Apply the vertex exposure martingale
on G(n,p) to Y. Letting u = E[Y]

PrlY < p—An— 1] < e V72

PrlY < g4+ AWn— 1] < e ¥/?

Let A satisfy e=/2 = ¢ 50 that these tail events each have probability less
than e. We defined u so that with probability at least ¢ G would be u-
colorable and hence ¥ = 0. That is, Pr[Y = 0] > e. The first inequality
therefore forces ¢ < Ay/n — 1. Now employing the second inequality

PrlY > 2 \v/n — 1] <Pr[Y >p+AWn—-1]<e¢

With probability at least 1 — € there is a w-coloring of all but at most
c'\/n vertices. By the Lemma almost always, and so with probability at
least 1 — €, these points may be colored with 3 further colors, giving a u + 3-
coloring of G. The minimality of v guarantees that with probability at least
1 — € at least u colors are needed for GG. Altogether

Priu < x(G)<u+43]>1- 3¢
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Delete from C one set from each such pair {A, B}. This yields a set C* of
edge disjoint k-cliques of G and

E[Y] > E[ICY] > E[IC]] - E[W'] = pg — Ag*[2 = p? [2A ~ n? [2k?

where we choose ¢ = /A (noting that it is less than one!) to minimize the
quadratic. O

We conjecture that Lemma 3.1 may be improved to E[Y] > cn?/k%
That is, with positive probability there is a family of k-cliques which are
edge disjoint and cover a positive proportion of the edges.
Theorem 3.2.

n

Prlw(G) < k] < e (e s

with ¢ a positive constant.

Proof. Let Yy,...,Y,,, m = (g), be the edge exposure martingale on

G/(n,1/2) with the function Y just defined. The function Y satisfies the

edge Lipschitz condition as adding a single edge can only add at most one

clique to a family of edge disjoint cliques. (Note that the Lipschitz condi-

tion would not be satisfied for the number of k-cliques as a single edge might

yield many new cliques.) G has no k-clique if and only if ¥ = 0. Apply

Azuma’s Inequality with m = (}}) ~ n?/2 and E[Y] > %(1 + o(1)). Then
Priw(G) < k] =Pr[Y =0] < PrlY — E[Y] < —E[Y]]

e EVE/2(3) < (e Fo(1)n? kP

e~ (cto(1))n? /In® n

as desired. O

Here is another example where the martingale approach requires an in-
ventive choice of graphtheoretic function.
Theorem 3.3. Let p = n~% where « is fixed, a > %. Let G = G(n,p). Then
there exists w = u(n, p) so that almost always

u< x(G)<u+3

That is, x(G) is concentrated in four values.

We first require a technical lemma that had been well known.

Lemma 3.4. Let a,c be fixed a > %. Let p = n=™®. Then almost always

every c4/n vertices of G = G/(n, p) may be 3-colored.
Proof. If not, let 7" be a minimal set which is not 3-colorable. As T'— {x} is

3-colorable, x must have internal degree at least 3 in T for all z € T'. Thus



Martingales 59

Theorem 2.4 (Shamir, Spencer[1987]) Let n,p be arbitrary and let ¢ =
Elx(G)] where G ~ G(n, p). Then

Pr|x(G) —¢| > AWWn —1] < 2e= /2

Proof. Consider the vertex exposure martingale Xy,..., X,, on G(n,p) with
f(G) = x(G). A single vertex can always be given a new color so the vertex
Lipschitz condition applies. Now apply Azuma’s Inequality. O

Letting A — oo arbitrarily slowly this result shows that the distribution
of x(G) is “tightly concentrated” around its mean. The proof gives no clue
as to where the mean is.

3 Chromatic Number

We have previously shown that x(G) ~ n/2log,n almost surely, where
G ~ G(n,1/2). Here we give the original proof of Béla Bollobas using

martingales. We follow the earlier notations setting f(k) = (2)2_(5), ko so
that f(ko—1) > 1> f(ko), k = ko—4 so that k ~ 2log, n and f(k) > n3+o(1),
Our goal is to show
Priw(G) < k] = et

where w((G) is the size of the maximum clique of . We shall actually show
in Theorem 3.2 a more precise bound. The remainder of the argument is as
given earlier.

Let Y = Y(H) be the maximal size of a family of edge disjoint cliques
of size k in H. This ingenious and unusual choice of function is key to the

martingale proof.

Lemma 3.1. E[Y]> 25(1+ o(1))

Proof. Let K denote the family of k-cliques of G so that f(k) = p = E[|K]].
Let W denote the number of unordered pairs {A, B} of k-cliques of G with
2 < |ANn B| < k. Then E[W] = A/2, with A as described earlier, A ~
wrk*n=2%. Let C be a random subfamily of K defined by setting, for each
AeK,

Pr[A eC] =g,

q to be determined. Let W’ be the number of unordered pairs {A, B},
A, B €C with 2 <|AnN B| < k. Then

E[W'] = E[W]¢* = A¢®/2
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Note that X1(H ) = E[f(G)]is constant as no edges have been exposed and
X.(H)= f(H) as all edges have been exposed.

2 Large Deviations

Maurey [1979] applied a large deviation inequality for martingales to prove
an isoperimetric inequality for the symmetric group 5,. This inequality was
useful in the study of normed spaces; see Milman and Schechtman [1986] for
many related results. The applications of martingales in Graph Theory also
all involve the same underlying martingale results used by Maurey, which
are the following.

Theorem 2.1 (Azuma’s Ineqality) Let 0 = Xy, ..., X,, be a martingale with

| Xip1 — Xi| <1
for all 0 <7 < m. Let A > 0 be arbitrary. Then

Pr[X,, > A\Wm] < eV /2

Corollary 2.2 Let ¢ = Xo,..., X,;, be a martingale with
| Xip1 — Xi| <1
for all 0 <7 < m. Then
Pr[| X, — ¢ > A\WWm] < 2e~V/2,

A graph theoretic function f is said to satisfy the edge Lipschitz condition

if whenever H and H' differ in only one edge then |f(H)— f(H')] < 1. It
satisfies the vertex Lipschitz condition if whenever H and H' differ at only
one vertex |f(H)— f(H")| < 1.
Theorem 2.3 When f satisfies the edge Lipschitz condition the corresponding
edge exposure martingale satisfies |X;31 — X;| < 1. When f satisfies the
vertex Lipschitz condition the corresponding vertex exposure martingale
satisfies | X;11 — Xi| < 1.

We prove these results in a more general context later. They have the
intuitive sense that if knowledge of a particular vertex or edge cannot change
f by more than one then exposing a vertex or edge should not change the
expectation of f by more than one. Now we give a simple application of
these results.
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The edge exposure martingale with n = m = 3, f the chromatic number,
and the edges exposed in the order “bottom,left,right”. The values X;(H)
are given by tracing from the central node to the leaf labelled H.

The figure shows why this is a martingale. The conditional expectation
of f(H) knowing the first i — 1 edges is the weighted average of the con-
ditional expectations of f(H) where the i-th edge has been exposed. More
generally - in what is sometimes referred to as a Doob martingale process -
X; may be the conditional expectation of f(H) after certain information is
revealed as long as the information known at time ¢ includes the information
known at time ¢ — 1.

The Vertex Fxposure Martingale. Again let G/(n,p) be the underlying prob-
ability space and f any graphtheoretic function. Define Xy,..., X, by

Xi(H) = E[f(G)lfor 2,y < i, {2,y} € G — {a,y} € H]

In words, to find X;(H) we expose the first ¢ vertices and all their inter-
nal edges and take the conditional expectation of f(G) with that partial
information. By ordering the edges appropriately the vertex exposure mar-
tingale may be considered a subsequence of the edge exposure martingale.
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Lecture 8: Martingales

1 Definitions

A martingale is a sequence Xy, ..., X,, of random variables so that for 0 <
< m,
E[X1]X] = X

The Edge FExposure Martingale Let the random graph G(n,p) be the
underlying probability space. Label the potential edges {i,j} C [n] by
€1,y...,Em, setting m = (g) for convenience, in any specific manner. Let
f be any graphtheoretic function. We define a martingale Xg,..., X,, by
giving the values X;(H). X,,(H) is simply f(H). Xo(H) is the expected
value of f(G) with G ~ G(n,p). Note that Xy is a constant. In general
(including the cases i = 0 and ¢ = m)

Xi(H) = E[f(G)le; € G —¢j € H,1<j <]

In words, to find X;(H) we first expose the first 7 pairs e1,...,e; and see
if they are in H. The remaining edges are not seen and considered to be
random. X;(H )is then the conditional expectation of f(G') with this partial
information. When ¢« = 0 nothing is exposed and Xy is a constant. When
1 = m all is exposed and X, is the function f. The martingale moves from
no information to full information in small steps.



