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such potential H' there a.s. remain ©(n?~%¢), hence at least one, z with
cly(v) = H.

Now, in general, consider the (r+1)-st move. We set b = a,41, a = a, for
notational convenience and recall @ = K + b where K is an upper bound on
cp(z1, ..., 241). Points 21,...,2, € G1, 11,..., ¥y, € G have been selected
with

co(@y, . yey) Zela(yry ..o yr)

Spoiler picks, say, .41 € G1. We distinguish two cases. We say Spoiler has
moved Inside if

Tr41 € Cl](($1, ceey xr)

Otherwise we say Spoiler has moved Outside.
Suppose Spoiler moves Inside. Then

Clb($1, sy Tpy $T+1) g Cl](_|_b($1, te $T) = Cla(xlv te xr)

The isomorphism from ¢l (z1,...,2,) to cla(y1,...,y,) sends z,41 to some
Yr+1 Which Duplicator selects.

Suppose Spoiler moves Outside. Set H = ¢ly(1,..., 2, 2,41). Let Hy
be the union of all rigid extensions of any size of xq,...,2, in H. If ,41 €
Hy then, as |H| < K, 2,41 € clg(@1,...,2,) and Spoiler moved Inside.
Hence 2,41 ¢ Hg. Since |H| < K < a, Hg lies inside cly(z1,...,2,). The
isomorphism between ¢l (21, ...,2,)and clo(y1, ..., y,) maps Hg into a copy
of itself in the graph G.

For any copy of Hg in G2, let N(Hg) denote the number of extensions of
Hy to . From Theorem 3.2 one can show that a.s all N(Hg) = O(n?=¢),
with v = v(Ho, H), e = e(Hp,H) and v — ae > 0. For a given Hy each
Yr+1 is in only a bounded number of copies of H since all copies of H
lie in ¢ly(y1,-- -5 Yr,Yrt1). Hence there are O(n"~%¢) vertices y,41 so that
cy(y1s- -y Yr, Yrp1) contains H. Arguing as with the first move there a.s. are
O(n"~%%), hence at least one, y,41 with c¢lp(y1, ..., Y, Yr41) = H. Duplicator
selects such a y,41.
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close @ may be approximated by rationals of denominator at most ¢. This
is often the case. If, for example, % + 5_}_1 < a< % + % then a.s. there
will be two points 21,22 € G(n,n~%) having s common neighbors so that

lclhi(z1,22)| = s+ 2.

Now we define the aq, ..., a; of the lookahead strategy by reverse induc-
tion. We set a; = 0. If at the end of the game Duplicator can assure that
the O-types of z1, ..., 2 and 41, ...,y are the same then they have the same

induced subgraphs and he has won. Suppose, inductively, that b = a,41 has
been defined. Let, applying the Lemma, K be a.s. an upper bound on all
clp(z1, ..., 241). We then define ¢ = a, by a = K + b.

Now we need show that a.s. this strategy works. Let Gy ~ G(n,n™%),
Gy ~ G(m,m~%) and suppose Duplicator tries to play the (aq,...,a;) looka-
head strategy on EH R(Gq,Ga,t).

Set @ = ay and consider the first move. Spoiler will select, say, y = y; €
(/3. Duplicator then must play z = 21 € G with ¢l () = cl,(y). Can he
always do so - that is, do a.s. 1 and G have the same values of ¢l (z)?
The size of ¢l (2) is a.s. bounded so it suffices to show for any potential
H that either there almost surely is an & with ¢l,(2) =2 H or there almost
surely is no z with ¢l (z) = H.

Let H have v vertices and e edges. Suppose H has a subgraph H’'
(possibly H itself) with v’ vertices, ¢’ edges and v' — ae’ < 0. The expected
number of copies of H' in G is

O(n"p") = O(n" =) = o(1)

so a.s. (41 contains no copy of H’, hence no copy of H, hence no x with
cly(x) =2 H. If this does not occur then (since, critically, a is irrational) all
v/ — ae’ > 0 so the expected number of copies of all such H’ approaches
infinity. From Theorem 1.4.5 a.s. G4 has ©(nV~%¢) copies of H. For z
in appropriate position in such a copy of H we cannot deduce cl,(z) =2 H
but only that ¢l,(x) contains H as a subgraph. (Essentially,  may have
additional extension properties.) For each such z as ¢l (2) is bounded,
cly(z) contains only a bounded number of copies of H. Hence there are
O(n"~°) different x € Gy so that ¢l,(«) contains H as a subgraph.

Let H' be a possible value for ¢l,(z) that contains H as a subgraph. Let
H' have v’ vertices and ¢’ edges. As (x, H') is rigid, (H, H') is dense and so

(v —v)—a(e —e)<0

There are O(n¥' ~2¢") different & with ¢l,(z) containing H' but since v'—ae’ <
v — ae this is o(n?~%¢). Subtracting off such z for all the boundedly many
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Example. Taking a ~ .51 (but irrational, of course), ¢ly(z1,22) consists of
x1, 22 and all y adjacent to both of them. ¢l3(x1, 22) has those points and all
Y1, Y2, Y3 which together with z; form a K4 (note that this gives an (R, H)
with v = 3,e = 6) and a finite number of other possibilities.

We can already describe the nature of Duplicator’s strategy. At the
end of the r-th move, with zq,...,2, and y,...,y, having been selected
from the two graphs, Duplicator will assure that these sets have the same
a, — type. We shall call this the (a1,...,a;) lookahead strategy. Here a,
must depend only on ¢, the total number of moves in the game and a. We
shall set a; = 0 so that at the end of the game, if Duplicator can stick to the
(ai,...,a;) lookahead strategy then he has won. If, however, Spoiler picks,
say, x, so that there is no corresponding y. with zy,...,2, and y1,..., ¥,
having the same a,-type then the strategy fails and we say that Spoiler wins.
The values a, give the “lookahead” that Duplicator uses but before defining
them we need some preliminary results.

Lemma 4.6 Let a, r,t > 0 be fixed. Then there exists K = K(«,r,t)so that
in G(n,n™%) as.
lel(zq,...,z,)| < K

for all ¥1,...,2, € G.

Proof. Set K = r+t(L—1). If X ={zy,...,2,} has t-closure with more
than K points then there will be L sets Y1,..., Y’ disjoint from X, all
|Y7| < t so that each (X, X U YY) forms a rigid extension and with each
Y7 having at least one point not in Y' U...Y7’~!. Begin with X and add
the Y7 in order. Adding Y7 will add, say, v; vertices and e; edges. Since
(X, XUY7) was rigid, ( XUY'U...UY/7L XUY'U...UY7)is dense and
so v; —eja < 0. As v; < there are only a finite number of possible values
of v; — e;a and so there is an € = €(a, r,t) so that all v; — e;a < —e. Pick
L (and therefore K') so that r — Le < 0. The existence of a ¢-closure of size
greater than K would imply the existence in G(n,n™%) of one of a finite
number of graphs that would have some r + v1 + ... 4 vy, vertices and at
least eq + ...+ er, edges. But the probability of G containing such a graph
is bounded by

nrt —I—...—I—va61+...+eL — prtu +..4+vp—a(er+...4er)
nr—l—(vl—ael)—l—...—l—(vL—aeL) < nT—LE

=o(1)

80 a.s. no such t-closures exist. O
Remark. The value of K given by the above proof depends strongly on how
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the disjunction over all distinct wq,...,%q,v1,..., 0 € G with a + b < s.
There are less than s?n® such choices as we can choose a,b and then the
vertices. Thus

Pr[E] < s*n(1 — )"~ ¢

But

lim s*n®(1 —€)"* =0

and so F holds almost never. Thus —F, which is precisely the statement
that G/(n,p) has the full level s extension property, holds almost always. O

But now we have proven Theorem 4.1. For any p € (0,1) and any
fixed s as m,n — oo with probability approaching one both G(n,p) and
H(m,p) will have the full level s extension property and so Duplicator will
win EH R[G(n,p), H(m,p),s].

Why can’t Duplicator use this strategy when p = n7%?7 We illustrate
the difficulty with a simple example. Let .5 < a < 1 and let Spoiler and
Duplicator play a three move game on G, H. Spoiler thinks of a point
z € (G but doesn’t tell Duplicator about it. Instead he picks a1,29 € G,
both adjacent to z. Duplicator simply picks 71,y2 € H, either adjacent or
not adjacent dependent on whether zq; ~ x5. But now wily Spoiler picks
3 = z. H ~ H(m,m™®) does not have the full level 2 extension property.
In particular, most pairs yy,%2 do not have a common neighbor. Unless
Duplicator was lucky, or shrewd, he then cannot find y3 ~ 1,92 and so
he loses. This example does not say that Duplicator will lose with perfect
play - indeed, we will show that he almost always wins with perfect play -
it only indicates that the strategy used need be more complex. Now let us
fix @ € (0,1), a irrational.

Now recall our notion of rooted graphs (R, H) but this time from the
perspective of a particular p = n=%. We say (R, H ) is denseif v—ea < 0 and
sparse if v — ea > 0. The irrationality of o assures us that all (R, H) are in
one of these categories. We call (R, H) rigid if for all S with R C S C V(H),
(S, H)is dense.

For any r, ¢ there is a finite list (up to isomorphism) of rigid rooted graphs
(R, H) containing r roots and with v(R, H) < t. In any graph G we define
the t-closure ¢ly(#1,...,2,) to be the union of all y,...,y, with (crucially)
v <t which form an (R, H) extension where (R, I ) is rigid. If there are no
such sets we define the default value ¢ly(z4,...,2,) = {21,...,2,}. We say
two sets x1,...,2, and 2, ...,z have the same ¢-type if their ¢-closures are
isomorphic. (To be precise, these are ordered r-tuples and the isomorphism
must send x; into a7.)
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since when the Zero-one Law is not satisfied lim,_.., Pr[G(n,p(n)) E A]
might not exist. If there is a subsequence n; on which the limit is ¢ € (0, 1) we
may use the same argument. Otherwise there will be two subsequences n;, m;
on which the limit is zero and one respectively. Then letting n,m — oo
through n;, m; respectively, Spoiler will win E'H R[G, H,t] with probability
approaching one. O

Theorem 4.4 provides a bridge from Logic to Random Graphs. To prove
that p = p(n) satisfies the Zero-One Law we now no longer need to know
anything about Logic - we just have to find a good strategy for the Dupli-
cator.

We say that a graph G has the full level s extension property if for every
distinct wuq,...,uq,v1,...,05 € G with a + b < s there is an z € V() with
{z,w;} € E(G),1 < i< aand {z,v;} € V(G),1 < j <b. Suppose that
G, H both have the full level s — 1 extension property. Then Duplicator
wins FHR[G, H,s] by the following simple strategy. On the i-th round,
with z1,..., 221,41, ..., yi—1 already selected, and Spoiler picking, say, z;,
Duplicator simply picks y; having the same adjacencies to the y;,j < ¢ as
x; has to the z;,; < i. The full extension property says that such a y; will
surely exist.

Theorem 4.5 For any fixed p, 0 < p < 1, and any s, G(n,p) almost always
has the full level s extension property.

Proof. For every distinct wq,...,uq,v1,..., 0,2 € G with a + b < s let
Eos...ovawn,..vp,0 D€ the event that {z,u;} € E(G), 1 < i< aand {z,v;} ¢
V(G),1<j<b. Then

PI[EM7~~~7ua7v17~~~7vb7l’] = pa(l - p)b

Now define

Eu1 goonyUq UL 4oV /\xEul,...,ua,vl,...,vb,x

the conjunction over x # uqy,...,uq, v1,...,vp. But these events are mutu-
ally independent over x since they involve different edges. Thus

a byn—a—>b
PT[AGUEM7~~~7ua7U17~~~7vb71’] = [1 - D (1 - p) ]

Set € = min(p, 1 — p)® so that

Pr[AxEm7~~~7ua7v17~~~7vb790] < (1 - G)H_S
The key here is that € is a fixed (dependent on p, s) positive number. Set

b= VEul,...,ua,vl,...,vb
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has t rounds. Each round has two parts. First the Spoiler selects either a
vertex ¢ € V(G) or a vertex y € V(). He chooses which graph to select
the vertex from. Then the Duplicator must select a vertex in the other
graph. At the end of the ¢ rounds ¢ vertices have been selected from each
graph. Let z1,...,2; be the vertices selected from V(G) and yq,...,y; be
the vertices selected from V(H ) where ;,y; are the vertices selected in the
t-th round. Then Duplicator wins if and only if the induced graphs on the
selected vertices are order-isomorphic: i.e.,if forall 1 <7< j <t

{zi,2;} € E(G) «— {yi,y;} € E(H)

As there are no hidden moves and no draws one of the players must have a
winning strategy and we will say that that player wins K H R[G, H,1].
Lemma 4.3 For every First Order A there is a t = {(A) so that if G, H are
any graphs with G |= A and H |= = A then Spoiler wins K H R[G, H,1].

A detailed proof would require a formal analysis of the First Order lan-
guage so we give only an example. Let A be the property V,3,[z ~ y] of not
containing an isolated point and set ¢ = 2. Spoiler begins by selecting an
isolated point y; € V(H ) which he can doas H |= = A. Duplicator must pick
1 € V(G). As G |= A, zq is not isolated so Spoiler may pick 2, € V(G)
with 27 ~ 25 and now Duplicator cannot pick a “duplicating” ys.

Theorem 4.4 A function p = p(n) satisfies the Zero-One Law if and only if
for every ¢, letting G(n,p(n)), H(m,p(m)) be independently chosen random
graphs on disjoint vertex sets

lim  Pr[ Duplicator wins K H R[G(n,p(n)), H(m,p(m)),t]] =1

M, — 00

Remark. For any given choice of G, H somebody must win EFH R[G, H,1].
(That is, there is no random play, the play is perfect.) Given this probability
distribution over (G, H) there will be a probability that £ H R[G, H,t] will
be a win for Duplicator, and this must approach one.

Proof. We prove only the “if” part. Suppose p = p(n) did not satisfy the
Zero-One Law. Let A satisfy

lim Pr[G(n,p(n)) = Al =c
with 0 < ¢ < 1. Let t = t(A) be as given by the Lemma. With limiting prob-
ability 2¢(1—c¢) > 0 exactly one of G(n, p(n)), H(n, p(n)) would satisfy A and
thus Spoiler would win, contradicting the assumption. This is not a full proof
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and having radius at most two
B[y =2)A=(y ~2) — [z~ y Ay ~ 2]

For any property A and any n,p we consider the probability that the
random graph G/(n, p) satisfies A, denoted

Pr(G(n, p) = A]

Our objects in this section will be the theorem of Glebskii et.al. [1969] and

independently Fagin[1976]

Theorem 4.1 For any fixed p, 0 < p < 1 and any First Order A
lim Pr[G(n,p)E A]=0o0r1

and that of Shelah and Spencer[1988]

Theorem 4.2 For any irrational a, 0 < a < 1, setting p = p(n) = n

—

Jim Pr[G(n,p) = Al=0or1
Both proofs are only outlined.

We shall say that a function p = p(n) satisfies the Zero-One Law if the
above equality holds for every First Order A.

The Glebskii/Fagin Theorem has a natural interpretation when p = .5 as
then G(n,p) gives equal weight to every (labelled) graph. It then says that
any First Order property A holds for either almost all graphs or for almost
no graphs. The Shelah/Spencer Theorem may be interpreted in terms of
threshold functions. For example, p = n~2/3 is a threshold function for
containment of a K. That is, when p < n=2/3, G/(n,p) almost surely does
not contain a K, whereas when p > n=2/3 it almost surely does contain a
K,. In between, say at p = n=2/?, the probability is between 0 and 1, in
this case 1 — e~'/?*, The (admittedly rough) notion is that at a threshold
function the Zero-One Law will not hold and so to say that p(n) satisfies
the Zero-One Law is to say that p(n) is not a threshold function - that it is
a boring place in the evolution of the random graph, at least through the
spectacles of the First Order language. In stark terms: What happens in
the evolution of G(n,p) at p = n~"/7? The answer: Nothing!

Our approach to Zero-One Laws will be through a variant of the Ehren-
feucht Game, which we now define. Let GG, H be two vertex disjoint graphs
and ¢ a positive integer. We define a perfect information game, denoted
FEHR|G, H,t], with two players, denoted Spoiler and Duplicator. The game
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family of extensions. Thus with probability 1 — o(n™!) there is a maximal
disjoint family of extensions F with |s—pu| < eu. As F consists of extensions

Pi[N(z) < (1 —)u] = o(n™h)

To complete the upper bound we need show that N(z) will not be much
larger than |F|. Here we use only that p = n=2/3t°(1), There is o(n~1)
probability that G(n,p) has an edge {x, 2’} lying in ten triangles. There is
a o(n™1) that G(n, p) has a vertex  with u;, v;, w;, 1 <4 < 7 all distinct and
all 2, u;,v; and z, v;, w; triangles. When these do not occur N(z) < |F|+ 70
for any maximal disjoint family of extensions |F| and so for any € > ¢

Pr[N(z) > (1 4+ )u] < o(n™!) + Pr[some |F| > (1 + €)u] = o(n™')

With some additional work one can find K so that the conclusions of
the theorem hold for any p = p(n) with ¢ > Klogn. The general result
is stated in terms of rooted graphs. For a given rooted graph (R, H) let
N(z1,...,2,) denote the number of (y1,...,y,) giving an (R, H ) extension.
Set = (",")p°, the expected value of N in G(n, p).

Theorem 3.2. Let (R, H) be strictly balanced. Then for all ¢ > 0 there

exists K so that if p = p(n) is such that gy > K logn then almost surely
|N($17"'7$T) _lu| < €p

for all zq,...,x,.
In particular if g > logn then almost surely all N(zq,...,2,) ~ p.

4 Zero-One Laws

In this section we restrict our attention to graph theoretic properties express-
ible in the First Order theory of graphs. The language of this theory consists
of variables (z,y, z,...), which always represent vertices of a graph, equality
and adjacency (z = y,z ~ y), the usual Boolean connectives (A,,...) and
universal and existential quanfication (V,,3,). Sentences must be finite. As
examples, one can express the property of containing a triangle

Jedy iz ~yAr ~ 2z Ay ~ 2]

having no isolated point

Vydylz ~ y]
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3 All Vertices in nearly the same number of Tri-
angles

Returning to the example of §1, let N(z) denote the number of triangles
containing vertex x. Set u = (ngl)pS as before.

Theorem 3.1. For every € > 0 there exists K so that if p = p(n) is such that
1= Klogn then almost surely

(I—u<N(z)<(1+p

for all vertices .
We shall actually show that for a given vertex x

Pr[|N(z) — u| > eu] = o(n™")

If the distribution of N(z) were Poisson with mean p then this would follow
by Large Deviation results and indeed our approach will show that N(z) is
closely approximated by the Poisson distribution.

We call F' a maximal disjoint family of extensions if F' consists of pairs
{2, y;} such that all , z;, y; are triangles in G/(n, p), the x;, y; are all distinct,
and there is no {z',y'} with z,2’,y" a triangle and ', %y’ both distinct from
all the z;, y;. Let Z(5) denote the number of maximal disjoint families of size
s. Lets restrict 0 < s < log? n (a technical convenience) and bound E[Z()].
There are ~ (”;1)5/5! choices for F. Each has probability (p®)® that all
x;,y; do indeed give extensions. We further need that the n — 1 — 2s ~ n
other vertices contain no extension. The calculation of §1 may be carried
out here to show that this probability is ~ e™#. All together

Ei70) K o—u
70 < (14 o(1)) e
But now the right hand side is asymptotically the Poisson distribution so
that we can choose K so that

> +E[ZP] = o(n™!) (+)

where 3% is over s < log?n with |s — pu| > eu.

When s > log? n we ignore the condition that F' be maximal so that
E[ZW] < p*/s! = o(n~1?), say. Thus (%) holds with S_* over all s with
|s — p| > €. Thus with probability 1 — o(n™1) all maximal disjoint families
of extensions F' have |s — p| < eu. But there must be some maximal disjoint
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2 Rooted Graphs

The above result was only a special case of a general result of Spencer[1990]
which we now state. By a rooted graph is meant a pair (R, H) consisting
of a graph H = (V(H), E(H)) and a specified proper subset R C V(H) of
vertices called the roots. For convenience let the vertices of H be labelled
ayy..oypy by, .. by with R = {ay,...,a,}. In a graph G we say that ver-
tices y1,...,y, make an (R, H)-extension of vertices x;...,, if all these
vertices are distinct; y;,y; are adjacent in G whenever b;,b; are adjacent in
H; and z;,y; are adjacent in &G whenever a;,b; are adjacent in H. So G
ON Ty.euy@yy Y1y, Yy gives a copy of H which may have additional edges
— except that edges between the 2’s are not examined. We let Eat(R, H)
be the property the for all z1,...,2, there exist y1,...,¥, giving an (R, H)
extension. For example, when H is a triangle and R one vertex Ezt(R, H)
is the statement that every vertex lies in a triangle. When H is a path of
length ¢ and R the endpoints Ezt(R, H) is the statement that every pair
of vertices lie on a path of length ¢t. When R = () Fat(), H) is the already
examined statement that there exists a copy of H. As in that situation we
have a notion of balanced and strictly balanced. We say (R, H) has type
(v,e) where v is the number of nonroot vertices and e is the number of
edges of I, not counting edges with both vertices in R. For every 5 with
R C S CV(H) let (vs,es) be the type of (R, H|s). We call (R, H) bal-
anced if eg/vg < e/v for all such S and we call (R, H) strictly balanced if
es/vs < e/v for all proper S C V(H). We call (R, H) nontrivial if every
root is adjacent to at least one nonroot.

Theorem 2.1. Let (R, H) be a nontrivial strictly balanced rooted graph
with type (v,e) and r = |R|. Let ¢; be the number of graph automorphism
o:V(H)— V(H) with o(z) = « for all roots 2. Let ¢z be the number of
bijections ¢ : R — R which are extendable to some graph automorphism
A V(H)— V(H). Let > 0 be arbitrary and fixed. Let p = p(n) satisfy

nvpe ( n’/’ )
=1In
C1 Cob

lim Pr[G(n,p) | Ext(R, H)|=¢e"

n—oo

Then

While the counting of automorphisms leads to some technical complex-
ities the proof is essentially that of the “every vertex in a triangle” case.
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the number of vertices  not lying in a triangle. Then from Linearity of
FExpectation
EX]= > E[X. —c
zeV(G)
We need show that the Poisson Paradigm applies to X. To do this we show
that all moments of X are the same as for the Poisson distribution. Fix r.
Then
EIXO/rl] =80 =N "Pr[Coy A Ay,

the sum over all sets of vertices {xy,...,2,}. All r-sets look alike so

n’/’

E[X®/p1) = (’;) PrCoy A A G ]~ 2o PrlCy A A ]

where 24, ..., 2, are some particular vertices. But
Coy N . NCy, = AByoyz,

the conjunction over 1 < ¢ < r and all y,z. We apply Janson’s Inequality
to this conjunction. Again € = p> = o(1). The number of {z;,y,z} is
r(";") = O(n), the overcount coming from those triangles containing two (or
three) of the z;. (Here it is crucial that r is fixed.) Thus

> PrlBuy.] =p° (7‘ (n ; 1) - O(n)) = rp + O(n~1+o)

As before A is p® times the number of pairs z;yz ~ x;y'2'. There are
O(rn?) = O(n?®) terms with i = j and O(r?*n?) = O(n?) terms with ¢ # j so
again A = o(1). Therefore

PriCpy Ao ANCy ]~ e ™

and . .
ELx0)p 0 BT

7! 7!

Hence X has limiting Poisson distribution, in particular Pr[X = 0] — e™*.
|
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Lecture 5: Counting Extensions and Zero-One
Laws

The threshold behavior for the existence of a copy of H in G(n,p) is well
understood. Now we turn to what, in a logical sense, is the next level which
we call extension statements. We want G/(n,p) to have the property that
every x1,...,&, belong to a copy of H. For example (r = 1), every vertex
lies in a triangle. We find the fine threshold behavior for this property and
further show - continuing this example - that for p a bit larger almost surely
every vertex lies in about the same number of triangles.

1 Every Vertex in a Triangle

Let A be the property that every vertex lies in a triangle.
Theorem 1.1. Let ¢ > 0 be fixed and let p = p(n), p = p(n) satisfy

n—1\ 4
(", )=

P
n
Then

Tim_ Pr{G(n.p) |- A] = ¢~
Proof. First fix # € V(). For each unordered y,z € V(G)—{x} let By, be
the event that {z,y, z} is a triangle of G. Let C, be the event AB,,. and X,
the corresponding indicator random variable. We use Janson’s Inequality
to bound E[X,] = Pr[C,]. Here p = o(1) so ¢ = o(1). 3 Pr[Bgy.] = p as
defined above. Dependency zyz ~ zuv occurs if and only if the sets overlap
(other than in z). Hence

A= Z Pr[Byy: A Bryzr] = O(n”)p® = o(1)

y7Z7ZI

since p = n=2/3+°(1) | Thuys

E[X;] ~e ™ =

C
n

X= > X,

zeV(G)

Now define



