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such potential H 0 there a.s. remain �(nv��e), hence at least one, x with
cla(x) �= H .

Now, in general, consider the (r+1)-st move. We set b = ar+1, a = ar for
notational convenience and recall a = K + b where K is an upper bound on
clb(z1; . . . ; zr+1). Points x1; . . . ; xr 2 G1, y1; . . . ; yr 2 G2 have been selected
with

cla(x1; . . . ; xr) �= cla(y1; . . . ; yr)

Spoiler picks, say, xr+1 2 G1. We distinguish two cases. We say Spoiler has
moved Inside if

xr+1 2 clK(x1; . . . ; xr)

Otherwise we say Spoiler has moved Outside.
Suppose Spoiler moves Inside. Then

clb(x1; . . . ; xr; xr+1) � clK+b(x1; . . . ; xr) = cla(x1; . . . ; xr)

The isomorphism from cla(x1; . . . ; xr) to cla(y1; . . . ; yr) sends xr+1 to some
yr+1 which Duplicator selects.

Suppose Spoiler moves Outside. Set H = clb(x1; . . . ; xr; xr+1). Let H0

be the union of all rigid extensions of any size of x1; . . . ; xr in H . If xr+1 2
H0 then, as jH j � K, xr+1 2 clK(x1; . . . ; xr) and Spoiler moved Inside.
Hence xr+1 62 H0. Since jH j � K � a, H0 lies inside cla(x1; . . . ; xr). The
isomorphism between cla(x1; . . . ; xr) and cla(y1; . . . ; yr) mapsH0 into a copy
of itself in the graph G2.

For any copy of H0 in G2, let N(H0) denote the number of extensions of
H0 to H . From Theorem 3.2 one can show that a.s all N(H0) = �(nv��e),
with v = v(H0; H), e = e(H0; H) and v � �e > 0. For a given H0 each
yr+1 is in only a bounded number of copies of H since all copies of H
lie in clb(y1; . . . ; yr; yr+1). Hence there are �(nv��e) vertices yr+1 so that
clb(y1; . . . ; yr; yr+1) containsH . Arguing as with the �rst move there a.s. are
�(nv��e), hence at least one, yr+1 with clb(y1; . . . ; yr; yr+1) �= H . Duplicator
selects such a yr+1.
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close � may be approximated by rationals of denominator at most t. This
is often the case. If, for example, 1

2 +
1

s+1 < � < 1
2 +

1
s then a.s. there

will be two points x1; x2 2 G(n; n��) having s common neighbors so that
jcl1(x1; x2)j = s+ 2.

Now we de�ne the a1; . . . ; at of the lookahead strategy by reverse induc-
tion. We set at = 0. If at the end of the game Duplicator can assure that
the 0-types of x1; . . . ; xt and y1; . . . ; yt are the same then they have the same
induced subgraphs and he has won. Suppose, inductively, that b = ar+1 has
been de�ned. Let, applying the Lemma, K be a.s. an upper bound on all
clb(z1; . . . ; zr+1). We then de�ne a = ar by a = K + b.

Now we need show that a.s. this strategy works. Let G1 � G(n; n��),
G2 � G(m;m��) and suppose Duplicator tries to play the (a1; . . . ; at) looka-
head strategy on EHR(G1; G2; t).

Set a = a1 and consider the �rst move. Spoiler will select, say, y = y1 2
G2. Duplicator then must play x = x1 2 G1 with cla(x) �= cla(y). Can he
always do so - that is, do a.s. G1 and G2 have the same values of cla(x)?
The size of cla(x) is a.s. bounded so it su�ces to show for any potential
H that either there almost surely is an x with cla(x) �= H or there almost
surely is no x with cla(x) �= H .

Let H have v vertices and e edges. Suppose H has a subgraph H 0

(possibly H itself) with v0 vertices, e0 edges and v0� �e0 < 0. The expected
number of copies of H 0 in G1 is

�(nv
0

pe
0

) = �(nv
0
��e0

) = o(1)

so a.s. G1 contains no copy of H 0, hence no copy of H , hence no x with
cla(x) �= H . If this does not occur then (since, critically, � is irrational) all
v0 � �e0 > 0 so the expected number of copies of all such H 0 approaches
in�nity. From Theorem 1.4.5 a.s. G1 has �(nv��e) copies of H . For x
in appropriate position in such a copy of H we cannot deduce cla(x) �= H
but only that cla(x) contains H as a subgraph. (Essentially, x may have
additional extension properties.) For each such x as cla(x) is bounded,
cla(x) contains only a bounded number of copies of H . Hence there are
�(nv��e) di�erent x 2 G1 so that cla(x) contains H as a subgraph.

Let H 0 be a possible value for cla(x) that contains H as a subgraph. Let
H 0 have v0 vertices and e0 edges. As (x;H 0) is rigid, (H;H 0) is dense and so

(v0 � v)� �(e0 � e) < 0

There are �(nv
0
��e0

) di�erent x with cla(x) containingH
0 but since v0��e0 <

v � �e this is o(nv��e). Subtracting o� such x for all the boundedly many
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Example. Taking � � :51 (but irrational, of course), cl1(x1; x2) consists of
x1; x2 and all y adjacent to both of them. cl3(x1; x2) has those points and all
y1; y2; y3 which together with x1 form a K4 (note that this gives an (R;H)
with v = 3; e = 6) and a �nite number of other possibilities.

We can already describe the nature of Duplicator's strategy. At the
end of the r-th move, with x1; . . . ; xr and y1; . . . ; yr having been selected
from the two graphs, Duplicator will assure that these sets have the same
ar � type. We shall call this the (a1; . . . ; at) lookahead strategy. Here ar
must depend only on t, the total number of moves in the game and �. We
shall set at = 0 so that at the end of the game, if Duplicator can stick to the
(a1; . . . ; at) lookahead strategy then he has won. If, however, Spoiler picks,
say, xr so that there is no corresponding yr with x1; . . . ; xr and y1; . . . ; yr
having the same ar-type then the strategy fails and we say that Spoiler wins.
The values ar give the \lookahead" that Duplicator uses but before de�ning
them we need some preliminary results.
Lemma 4.6 Let �, r; t > 0 be �xed. Then there exists K = K(�; r; t) so that
in G(n; n��) a.s.

jclt(x1; . . . ; xr)j � K

for all x1; . . . ; xr 2 G.
Proof. Set K = r + t(L � 1). If X = fx1; . . . ; xrg has t-closure with more
than K points then there will be L sets Y 1; . . . ; Y L disjoint from X , all
jY j j � t so that each (X;X [ Y j) forms a rigid extension and with each
Y j having at least one point not in Y 1 [ . . .Y j�1. Begin with X and add
the Y j in order. Adding Y j will add, say, vj vertices and ej edges. Since
(X;X [ Y j) was rigid, (X [ Y 1 [ . . .[ Y j�1; X [ Y 1 [ . . .[ Y j) is dense and
so vj � ej� < 0. As vj � t there are only a �nite number of possible values
of vj � ej� and so there is an � = �(�; r; t) so that all vj � ej� � ��. Pick
L (and therefore K) so that r� L� < 0. The existence of a t-closure of size
greater than K would imply the existence in G(n; n��) of one of a �nite
number of graphs that would have some r + v1 + . . . + vL vertices and at
least e1 + . . . + eL edges. But the probability of G containing such a graph
is bounded by

nr+v1+...+vLpe1+...+eL = nr+v1+...+vL��(e1+...+eL)

nr+(v1��e1)+...+(vL��eL) � nr�L�

= o(1)

so a.s. no such t-closures exist. 2
Remark. The value of K given by the above proof depends strongly on how



Zero-One Laws 35

the disjunction over all distinct u1; . . . ; ua; v1; . . . ; vb 2 G with a + b � s.
There are less than s2ns such choices as we can choose a; b and then the
vertices. Thus

Pr[E] � s2ns(1� �)n�s

But
lim
n!1

s2ns(1� �)n�s = 0

and so E holds almost never. Thus :E, which is precisely the statement
that G(n; p) has the full level s extension property, holds almost always. 2

But now we have proven Theorem 4.1. For any p 2 (0; 1) and any
�xed s as m;n ! 1 with probability approaching one both G(n; p) and
H(m; p) will have the full level s extension property and so Duplicator will
win EHR[G(n; p);H(m;p); s].

Why can't Duplicator use this strategy when p = n��? We illustrate
the di�culty with a simple example. Let :5 < � < 1 and let Spoiler and
Duplicator play a three move game on G;H . Spoiler thinks of a point
z 2 G but doesn't tell Duplicator about it. Instead he picks x1; x2 2 G,
both adjacent to z. Duplicator simply picks y1; y2 2 H , either adjacent or
not adjacent dependent on whether x1 � x2. But now wily Spoiler picks
x3 = z. H � H(m;m��) does not have the full level 2 extension property.
In particular, most pairs y1; y2 do not have a common neighbor. Unless
Duplicator was lucky, or shrewd, he then cannot �nd y3 � y1; y2 and so
he loses. This example does not say that Duplicator will lose with perfect
play - indeed, we will show that he almost always wins with perfect play -
it only indicates that the strategy used need be more complex. Now let us
�x � 2 (0; 1), � irrational.

Now recall our notion of rooted graphs (R;H) but this time from the
perspective of a particular p = n��. We say (R;H) is dense if v�e� < 0 and
sparse if v � e� > 0. The irrationality of � assures us that all (R;H) are in
one of these categories. We call (R;H) rigid if for all S with R � S � V (H),
(S;H) is dense.

For any r; t there is a �nite list (up to isomorphism) of rigid rooted graphs
(R;H) containing r roots and with v(R;H) � t. In any graph G we de�ne
the t-closure clt(x1; . . . ; xr) to be the union of all y1; . . . ; yv with (crucially)
v � t which form an (R;H) extension where (R;H) is rigid. If there are no
such sets we de�ne the default value clt(x1; . . . ; xr) = fx1; . . . ; xrg. We say
two sets x1; . . . ; xr and x01; . . . ; x

0

r have the same t-type if their t-closures are
isomorphic. (To be precise, these are ordered r-tuples and the isomorphism
must send xi into x0i.)
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since when the Zero-one Law is not satis�ed limn!1 Pr[G(n; p(n)) j= A]
might not exist. If there is a subsequence ni on which the limit is c 2 (0; 1) we
may use the same argument. Otherwise there will be two subsequences ni; mi

on which the limit is zero and one respectively. Then letting n;m ! 1
through ni; mi respectively, Spoiler will win EHR[G;H; t] with probability
approaching one. 2

Theorem 4.4 provides a bridge from Logic to Random Graphs. To prove
that p = p(n) satis�es the Zero-One Law we now no longer need to know
anything about Logic - we just have to �nd a good strategy for the Dupli-
cator.

We say that a graph G has the full level s extension property if for every
distinct u1; . . . ; ua; v1; . . . ; vb 2 G with a+ b � s there is an x 2 V (G) with
fx; uig 2 E(G), 1 � i � a and fx; vjg 62 V (G), 1 � j � b. Suppose that
G;H both have the full level s � 1 extension property. Then Duplicator
wins EHR[G;H; s] by the following simple strategy. On the i-th round,
with x1; . . . ; xi�1; y1; . . . ; yi�1 already selected, and Spoiler picking, say, xi,
Duplicator simply picks yi having the same adjacencies to the yj ; j < i as
xi has to the xj ; j < i. The full extension property says that such a yi will
surely exist.
Theorem 4.5 For any �xed p, 0 < p < 1, and any s, G(n; p) almost always
has the full level s extension property.
Proof. For every distinct u1; . . . ; ua; v1; . . . ; vb; x 2 G with a + b � s let
Eu1;...;ua;v1;...;vb;x be the event that fx; uig 2 E(G), 1 � i � a and fx; vjg 62
V (G), 1 � j � b. Then

Pr[Eu1;...;ua;v1;...;vb;x] = pa(1� p)b

Now de�ne
Eu1;...;ua;v1;...;vb = ^xEu1;...;ua;v1;...;vb;x

the conjunction over x 6= u1; . . . ; ua; v1; . . . ; vb. But these events are mutu-
ally independent over x since they involve di�erent edges. Thus

Pr[^xEu1 ;...;ua;v1;...;vb;x] = [1� pa(1� p)b]n�a�b

Set � = min(p; 1� p)s so that

Pr[^xEu1;...;ua;v1;...;vb;x] � (1� �)n�s

The key here is that � is a �xed (dependent on p; s) positive number. Set

E = _Eu1;...;ua;v1;...;vb
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has t rounds. Each round has two parts. First the Spoiler selects either a
vertex x 2 V (G) or a vertex y 2 V (H). He chooses which graph to select
the vertex from. Then the Duplicator must select a vertex in the other
graph. At the end of the t rounds t vertices have been selected from each
graph. Let x1; . . . ; xt be the vertices selected from V (G) and y1; . . . ; yt be
the vertices selected from V (H) where xi; yi are the vertices selected in the
i-th round. Then Duplicator wins if and only if the induced graphs on the
selected vertices are order-isomorphic: i.e., if for all 1 � i < j � t

fxi; xjg 2 E(G) ! fyi; yjg 2 E(H)

As there are no hidden moves and no draws one of the players must have a
winning strategy and we will say that that player wins EHR[G;H; t].
Lemma 4.3 For every First Order A there is a t = t(A) so that if G;H are
any graphs with G j= A and H j= :A then Spoiler wins EHR[G;H; t].

A detailed proof would require a formal analysis of the First Order lan-
guage so we give only an example. Let A be the property 8x9y [x � y] of not
containing an isolated point and set t = 2. Spoiler begins by selecting an
isolated point y1 2 V (H) which he can do as H j= :A. Duplicator must pick
x1 2 V (G). As G j= A, x1 is not isolated so Spoiler may pick x2 2 V (G)
with x1 � x2 and now Duplicator cannot pick a \duplicating" y2.
Theorem 4.4 A function p = p(n) satis�es the Zero-One Law if and only if
for every t, letting G(n; p(n)); H(m;p(m)) be independently chosen random
graphs on disjoint vertex sets

lim
m;n!1

Pr[ Duplicator winsEHR[G(n; p(n));H(m;p(m)); t]] = 1

Remark. For any given choice of G;H somebody must win EHR[G;H; t].
(That is, there is no random play, the play is perfect.) Given this probability
distribution over (G;H) there will be a probability that EHR[G;H; t] will
be a win for Duplicator, and this must approach one.
Proof. We prove only the \if" part. Suppose p = p(n) did not satisfy the
Zero-One Law. Let A satisfy

lim
n!1

Pr[G(n; p(n)) j= A] = c

with 0 < c < 1. Let t = t(A) be as given by the Lemma. With limiting prob-
ability 2c(1�c) > 0 exactly one of G(n; p(n)); H(n; p(n))would satisfy A and
thus Spoiler would win, contradicting the assumption. This is not a full proof
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and having radius at most two

9x8y [:(y = x) ^ :(y � x) �! 9z [z � y ^ y � x]]

For any property A and any n; p we consider the probability that the
random graph G(n; p) satis�es A, denoted

Pr[G(n; p) j= A]

Our objects in this section will be the theorem of Glebskii et.al. [1969] and
independently Fagin[1976]
Theorem 4.1 For any �xed p, 0 < p < 1 and any First Order A

lim
n!1

Pr[G(n; p) j= A] = 0 or 1

and that of Shelah and Spencer[1988]
Theorem 4.2 For any irrational �, 0 < � < 1, setting p = p(n) = n��

lim
n!1

Pr[G(n; p) j= A] = 0 or 1

Both proofs are only outlined.
We shall say that a function p = p(n) satis�es the Zero-One Law if the

above equality holds for every First Order A.
The Glebskii/Fagin Theorem has a natural interpretation when p = :5 as

then G(n; p) gives equal weight to every (labelled) graph. It then says that
any First Order property A holds for either almost all graphs or for almost
no graphs. The Shelah/Spencer Theorem may be interpreted in terms of
threshold functions. For example, p = n�2=3 is a threshold function for
containment of a K4. That is, when p� n�2=3, G(n; p) almost surely does
not contain a K4 whereas when p � n�2=3 it almost surely does contain a
K4. In between, say at p = n�2=3, the probability is between 0 and 1, in
this case 1 � e�1=24. The (admittedly rough) notion is that at a threshold
function the Zero-One Law will not hold and so to say that p(n) satis�es
the Zero-One Law is to say that p(n) is not a threshold function - that it is
a boring place in the evolution of the random graph, at least through the
spectacles of the First Order language. In stark terms: What happens in
the evolution of G(n; p) at p = n��=7? The answer: Nothing!

Our approach to Zero-One Laws will be through a variant of the Ehren-
feucht Game, which we now de�ne. Let G;H be two vertex disjoint graphs
and t a positive integer. We de�ne a perfect information game, denoted
EHR[G;H; t], with two players, denoted Spoiler and Duplicator. The game
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family of extensions. Thus with probability 1 � o(n�1) there is a maximal
disjoint family of extensions F with js��j < ��. As F consists of extensions

Pr[N(x) < (1� �)�] = o(n�1)

To complete the upper bound we need show that N(x) will not be much
larger than jF j. Here we use only that p = n�2=3+o(1). There is o(n�1)
probability that G(n; p) has an edge fx; x0g lying in ten triangles. There is
a o(n�1) that G(n; p) has a vertex x with ui; vi; wi; 1 � i � 7 all distinct and
all x; ui; vi and x; vi; wi triangles. When these do not occur N(x) � jF j+70
for any maximal disjoint family of extensions jF j and so for any �0 > �

Pr[N(x) > (1 + �0)�] < o(n�1) + Pr[some jF j > (1 + �)�] = o(n�1)

With some additional work one can �nd K so that the conclusions of
the theorem hold for any p = p(n) with � > K logn. The general result
is stated in terms of rooted graphs. For a given rooted graph (R;H) let
N(x1; . . . ; xr) denote the number of (y1; . . . ; yv) giving an (R;H) extension.
Set � =

�n�r
v

�
pe, the expected value of N in G(n; p).

Theorem 3.2. Let (R;H) be strictly balanced. Then for all � > 0 there
exists K so that if p = p(n) is such that � > K logn then almost surely

jN(x1; . . . ; xr)� �j < ��

for all x1; . . . ; xr.
In particular if �� logn then almost surely all N(x1; . . . ; xr) � �.

4 Zero-One Laws

In this section we restrict our attention to graph theoretic properties express-
ible in the First Order theory of graphs. The language of this theory consists
of variables (x; y; z; . . .), which always represent vertices of a graph, equality
and adjacency (x = y; x � y), the usual Boolean connectives (^;:; . . .) and
universal and existential quan�cation (8x; 9y). Sentences must be �nite. As
examples, one can express the property of containing a triangle

9x9y9z [x � y ^ x � z ^ y � z]

having no isolated point
8x9y [x � y]
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3 All Vertices in nearly the same number of Tri-

angles

Returning to the example of x1, let N(x) denote the number of triangles
containing vertex x. Set � =

�n�1
2

�
p3 as before.

Theorem 3.1. For every � > 0 there exists K so that if p = p(n) is such that
� = K logn then almost surely

(1� �)� < N(x) < (1 + �)�

for all vertices x.
We shall actually show that for a given vertex x

Pr[jN(x)� �j > ��] = o(n�1)

If the distribution of N(x) were Poisson with mean � then this would follow
by Large Deviation results and indeed our approach will show that N(x) is
closely approximated by the Poisson distribution.

We call F a maximal disjoint family of extensions if F consists of pairs
fxi; yig such that all x; xi; yi are triangles in G(n; p), the xi; yi are all distinct,
and there is no fx0; y0g with x; x0; y0 a triangle and x0; y0 both distinct from
all the xi; yi. Let Z

(s) denote the number of maximal disjoint families of size
s. Lets restrict 0 � s � log2 n (a technical convenience) and bound E[Z(s)].
There are �

�n�1
2

�s
=s! choices for F . Each has probability (p3)s that all

xi; yi do indeed give extensions. We further need that the n � 1 � 2s � n

other vertices contain no extension. The calculation of x1 may be carried
out here to show that this probability is � e��. All together

E[Z(s)] � (1 + o(1))
�s

s!
e��

But now the right hand side is asymptotically the Poisson distribution so
that we can choose K so thatX

�E[Z(s)] = o(n�1) (�)

where
P
� is over s < log2 n with js� �j > ��.

When s > log2 n we ignore the condition that F be maximal so that
E[Z(s)] < �s=s! = o(n�10), say. Thus (�) holds with

P
� over all s with

js� �j > ��. Thus with probability 1� o(n�1) all maximal disjoint families
of extensions F have js��j < ��. But there must be some maximal disjoint
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2 Rooted Graphs

The above result was only a special case of a general result of Spencer[1990]
which we now state. By a rooted graph is meant a pair (R;H) consisting
of a graph H = (V (H); E(H)) and a speci�ed proper subset R � V (H) of
vertices called the roots. For convenience let the vertices of H be labelled
a1; . . . ; ar; b1; . . . ; bv with R = fa1; . . . ; arg. In a graph G we say that ver-
tices y1; . . . ; yv make an (R;H)-extension of vertices x1 . . . ; xr if all these
vertices are distinct; yi; yj are adjacent in G whenever bi; bj are adjacent in
H ; and xi; yj are adjacent in G whenever ai; bj are adjacent in H . So G
on x1; . . . ; xr; y1; . . . ; yv gives a copy of H which may have additional edges
{ except that edges between the x's are not examined. We let Ext(R;H)
be the property the for all x1; . . . ; xr there exist y1; . . . ; yv giving an (R;H)
extension. For example, when H is a triangle and R one vertex Ext(R;H)
is the statement that every vertex lies in a triangle. When H is a path of
length t and R the endpoints Ext(R;H) is the statement that every pair
of vertices lie on a path of length t. When R = ; Ext(;; H) is the already
examined statement that there exists a copy of H . As in that situation we
have a notion of balanced and strictly balanced. We say (R;H) has type
(v; e) where v is the number of nonroot vertices and e is the number of
edges of H , not counting edges with both vertices in R. For every S with
R � S � V (H) let (vS ; eS) be the type of (R;H jS). We call (R;H) bal-
anced if eS=vS � e=v for all such S and we call (R;H) strictly balanced if
eS=vS < e=v for all proper S � V (H). We call (R;H) nontrivial if every
root is adjacent to at least one nonroot.
Theorem 2.1. Let (R;H) be a nontrivial strictly balanced rooted graph
with type (v; e) and r = jRj. Let c1 be the number of graph automorphism
� : V (H) ! V (H) with �(x) = x for all roots x. Let c2 be the number of
bijections � : R ! R which are extendable to some graph automorphism
� : V (H)! V (H). Let � > 0 be arbitrary and �xed. Let p = p(n) satisfy

nvpe

c1
= ln

�
nr

c2�

�

Then
lim
n!1

Pr[G(n; p) j= Ext(R;H)] = e��

While the counting of automorphisms leads to some technical complex-
ities the proof is essentially that of the \every vertex in a triangle" case.
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the number of vertices x not lying in a triangle. Then from Linearity of
Expectation

E[X ] =
X

x2V (G)

E[Xx]! c

We need show that the Poisson Paradigm applies to X . To do this we show
that all moments of X are the same as for the Poisson distribution. Fix r.
Then

E[X(r)=r!] = S(r) =
X

Pr[Cx1 ^ . . .^ Cxr ];

the sum over all sets of vertices fx1; . . . ; xrg. All r-sets look alike so

E[X(r)=r!] =

 
n

r

!
Pr[Cx1 ^ . . .^ Cxr ] �

nr

r!
Pr[Cx1 ^ . . .^ Cxr ]

where x1; . . . ; xr are some particular vertices. But

Cx1 ^ . . .^ Cxr = ^Bxiyz ;

the conjunction over 1 � i � r and all y; z. We apply Janson's Inequality
to this conjunction. Again � = p3 = o(1). The number of fxi; y; zg is
r
�n�1

2

�
�O(n), the overcount coming from those triangles containing two (or

three) of the xi. (Here it is crucial that r is �xed.) Thus

X
Pr[Bxiyz ] = p3

 
r

 
n � 1

2

!
�O(n)

!
= r� +O(n�1+o(1))

As before � is p5 times the number of pairs xiyz � xjy
0z0. There are

O(rn3) = O(n3) terms with i = j and O(r2n2) = O(n2) terms with i 6= j so
again � = o(1). Therefore

Pr[Cx1 ^ . . .^ Cxr ] � e�r�

and

E[X(r)=r!] �
(ne��)r

r!
=
cr

r!

Hence X has limiting Poisson distribution, in particular Pr[X = 0] ! e��.
2
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Lecture 5: Counting Extensions and Zero-One
Laws

The threshold behavior for the existence of a copy of H in G(n; p) is well
understood. Now we turn to what, in a logical sense, is the next level which
we call extension statements. We want G(n; p) to have the property that
every x1; . . . ; xr belong to a copy of H . For example (r = 1), every vertex
lies in a triangle. We �nd the �ne threshold behavior for this property and
further show - continuing this example - that for p a bit larger almost surely
every vertex lies in about the same number of triangles.

1 Every Vertex in a Triangle

Let A be the property that every vertex lies in a triangle.
Theorem 1.1. Let c > 0 be �xed and let p = p(n), � = �(n) satisfy 

n � 1

2

!
p3 = �

e�� =
c

n
Then

lim
n!1

Pr[G(n; p) j= A] = e�c

Proof. First �x x 2 V (G). For each unordered y; z 2 V (G)�fxg let Bxyz be
the event that fx; y; zg is a triangle of G. Let Cx be the event ^Bxyz and Xx

the corresponding indicator random variable. We use Janson's Inequality
to bound E[Xx] = Pr[Cx]. Here p = o(1) so � = o(1).

P
Pr[Bxyz ] = � as

de�ned above. Dependency xyz � xuv occurs if and only if the sets overlap
(other than in x). Hence

� =
X
y;z;z0

Pr[Bxyz ^ Bxyz0 ] = O(n3)p5 = o(1)

since p = n�2=3+o(1). Thus

E[Xx] � e�� =
c

n

Now de�ne
X =

X
x2V (G)

Xx;


