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Rather than giving the full generality we assume p = n�� with 2
3 > � >

0. The result is:
Pr[G(n; p) j= A] = e�n

4�6�+o(1)

for 2
3 > � � 2

5 and

Pr[G(n; p) j= A] = e�n
2��+o(1)

for 2
5 � � > 0.
The upper bound follows from the inequality

Pr[G(n; p) j= A] � max
h
(1� p6)(

n

4); (1� p)(
n

2)
i

This is actually two inequalities. The �rst comes from the probability of G
not containing a K4 being at most the probability as if all the potential K4

were independent. The second is the same bound on the probability that G
doesn't contain a K2 - i.e., that G has no edges. Calculation shows that the
\turnover" point for the two inequalities occurs when p = n�2=5+o(1).

The upper bound follows from the Janson inequalities. For each four set
� of vertices B� is that that 4-set gives a K4 and we want Pr[^B�]. We
have � = �(n4p6) and � lnM � � and (as shown in Lecture 1) � = �(���)
with �� = �(n2p5+np3). With p = n�� and 2

3 > � > 2
5 we have �� = o(1)

so that
Pr[^B�] � e��(1+o(1)) = e�n

4�6�+o(1)

When 2
5 > � > 0 then �� = �(n2p5) (somewhat surprisingly the np3 never

is signi�cant in these calculations) and the extended Janson inequality gives

Pr[^B� � e��(�
2=�) = e��(�=�

�) = e�n
2��

The general result has been found by T. Luczak, A. Rucinski and S.
Janson. LetH be any �xed graph and let A be the property of not containing
a copy of H . For any subgraph H 0 of H the correlation inequality gives

Pr[G(n; p) j= A] � e�E[X
H0 ]

where XH 0 is the number of copies of H 0 in G. Now let p = n�� where
we restrict to those � for which p is past the threshold function for the
appearance of H . Then

Pr[G(n; p) j= A] = en
o(1)

min
H 0

e�E[X
H0 ]
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The reverse inequality was an open question for a full quarter century!
Set m = bn= ln2 nc. For any set S of m vertices the restriction GjS has the
distribution of G(m; 1=2). Let k = k(m) = k0(m)� 4 as above. Note

k � 2 log2m � 2 log2 n

Then
Pr[�[GjS ] < k] < e�m

2+o(1)

There are
�n
m

�
< 2n = 2m

1+o(1)
such sets S. Hence

Pr[�[GjS] < k for some m-set S] < 2m
1+o(1)

e�m
2+o(1)

= o(1)

That is, almost always every m vertices contain a k-element independent
set.

Now suppose G has this property. We pull out k-element independent
sets and give each a distinct color until there are less than m vertices left.
Then we give each point a distinct color. By this procedure

�(G) � dn�mk e+m � n
k +m

= n
2 log2 n

(1 + o(1)) + o( n
log2 n

)

= n
2 log2 n

(1 + o(1))

and this occurs for almost all G. 2

3 Some Very Low Probabilities

Let A be the property thatG does not containK4 and consider Pr[G(n; p) j=
A] as p varies. (Results with K4 replaced by an arbitrary H are discussed
at the end of this section.) We know that p = n�2=3 is a threshold function
so that for p � n�2=3 this probability is o(1). Here we want to estimate
that probability. Our estimates here will be quite rough, only up to a o(1)
additive factor in the hyperexponent, though with more care the bounds
di�er by \only" a constant factor in the exponent. If we were to consider
all potential K4 as giving mutually independent events then we would be

led to the estimate (1� p6)(
n

4) = e�n
4+o(1)p6 . For p appropriately small this

turns out to be correct. But for, say, p = 1
2 it would give the estimate

e�n
4+o(1)

. This must, however, be way o� the mark since with probability

2�(
n

2) = e�n
2+o(1)

the graph G could be empty and hence trivially satisfy A.
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Then n =
p
2
k(1+o(1))

so for k � k0,

f(k + 1)=f(k) =
n

k
2�k(1 + o(1)) = n�1+o(1)

Set
k = k(n) = k0(n)� 4

so that
f(k) > n3+o(1)

Now we use the Generalized Janson Inequality to estimate Pr[!(G) < k].
Here � = f(k). (Note that Janson's Inequality gives a lower bound of

2�f(k) = 2�n
3+o(1)

to this probability but this is way o� the mark since with

probability 2�(
n

2) the random G is empty!) The value � was examined in
Lecture 2 and we showed

�

�2
=

��

�
=

k�1X
i=2

g(i)

There g(2) � k4=n2 and g(k � 1) � 2kn2�k=� were the dominating terms.
In our instance � > n3+o(1) and 2�k = n�2+o(1) so g(2) dominates and

� � �2k4

n2

Hence we bound the clique number probability

Pr[!(G) < k] < e��
2(1+o(1))=2� = e�(n

2=k4)(1+o(1)) = e�n
2+o(1)

as k = �(ln n). (The possibility that G is empty gives a lower bound so that

we may say the probability is e�n
2+o(1)

, though a o(1) in the hyperexponent
leaves lots of room.)
Theorem 2.1. (Bollob�as [1988]) Almost always

�(G)) � n

2 log2 n

Proof. The argument that

�(G) � n

�(G)
� n

2 log2 n
(1 + o(1))

almost always was given in Lecture 2.
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As � ranges from �1 to +1, e�e
�

ranges from 1 to 0. As n0(k + 1) �p
2n0(k) the ranges will not \overlap" for di�erent k. More precisely, let K

be arbitrarily large and set

Ik = [n0(k)[1� K

k
]; n0(k)[1 +

K

k
]]

For k � k0(K), Ik�1 \Ik = ;. Suppose n � n0(k0(K)). If n lies between the
intervals (which occurs for \most" n), which we denote by Ik < n < Ik+1,
then

Pr[!(G(n; p))< k] � e�e
K

+ o(1);

nearly zero, and

Pr[!(G(n; p))< k + 1] � e�e
�K

+ o(1);

nearly one, so that

Pr[!(G(n; p)) = k] � e�e
�K � e�e

K

+ o(1);

nearly one. When n 2 Ik we still have Ik�1 < n < Ik+1 so that

Pr[!(G(n; p)) = k or k � 1] � e�e
�K � e�e

K

+ o(1);

nearly one. As K may be made arbitrarily large this yields the celebrated
two point concentration theorem on clique number given as Corollary 2.1.2.
Note, however, that for most n the concentration of !(G(n; 1=2)) is actually
on a single value!

2 Chromatic Number

Again �x p = 1=2 (there are similar results for other p) and let G � G(n; 12).
We shall �nd bounds on the chromatic number �(G). The original proof of
Bollob�as used martingales and will be discussed later. Set

f(k) =

 
n

k

!
2�(

k

2)

Let k0 = k0(n) be that value for which

f(k0 � 1) > 1 > f(k0)
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Lecture 4: The Chromatic Number Resolved!

The centerpiece of this lecture is the result of B�ela Bollob�as that, with
G � G(n; 12), �(G) � n=(2 log2 n) almost surely.

1 Clique Number Revisited

In this section we �x p = 1=2, (other values yield similar results), let G �
G(n; p) and consider the clique number !(G). For a �xed c > 0 let n; k!1
so that  

n

k

!
2�(

k

2) ! c

As a �rst approximation

n � k

e
p
2

p
2
k

and

k � 2 lnn

ln 2

Here � ! c so M ! e�c. The � term was examined earlier. For this k,
� = o(E[X ]2) and so � = o(1). Therefore

lim
n;k!1

Pr[!(G(n; p))< k] = e�c

Being more careful, let n0(k) be the minimum n for which 
n

k

!
2�(

k

2) � 1:

Observe that for this n the left hand side is 1 + o(1). Note that
�n
k

�
grows,

in n, like nk. For any � 2 (�1;+1) if

n = n0(k)[1 +
�+ o(1)

k
]

then  
n

k

!
2�(

k

2) = [1 +
�+ o(1)

k
]k = e� + o(1)

and so
Pr[!(G(n; p))< k] = e�e

�

+ o(1)


