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Rather than giving the full generality we assume p = n~% with % > o>
0. The result is:

_n4—6a+o(1)

PrlGi(n,p) = A] = ¢

for%>a2%and

_n2—a+o(1)

PrlGi(n,p) = A] = ¢

% > a > 0.
The upper bound follows from the inequality

for

Pr[G(n,p) | A] > max [(1 - p*)(), (1 - p)(Z)]

This is actually two inequalities. The first comes from the probability of GG
not containing a K4 being at most the probability as if all the potential K4
were independent. The second is the same bound on the probability that G
doesn’t contain a Ky - i.e., that G has no edges. Calculation shows that the
“turnover” point for the two inequalities occurs when p = n=2/5+0(1),

The upper bound follows from the Janson inequalities. For each four set
a of vertices B, is that that 4-set gives a K4 and we want Pr[/\B_a]. We
have 1 = ©(n*p®) and —In M ~ p and (as shown in Lecture 1) A = O(uA*)
with A* = ©(n?p® +np?®). With p =n~" and 2 > a > £ we have A* = o(1)
so that

Pi[AB,] < e #(1+o() = ety

When % > a > 0 then A* = O(n?p°) (somewhat surprisingly the np® never
is significant in these calculations) and the extended Janson inequality gives

2—a

Pi[AB, < e @ /8) = (~OW/AY) — o=n

The general result has been found by T. Luczak, A. Rucinski and S.
Janson. Let H be any fixed graph and let A be the property of not containing
a copy of H. For any subgraph H' of H the correlation inequality gives

Pr[G(n, p) | A] < e Flul

[}

where Xp is the number of copies of H' in G. Now let p = n= where

we restrict to those a for which p is past the threshold function for the
appearance of H. Then

Pr(G(n,p) = A] = & myin e~ F Vi)

min e
Hl
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The reverse inequality was an open question for a full quarter century!
Set m = |n/In?n|. For any set S of m vertices the restriction G|g has the
distribution of G(m,1/2). Let k = k(m) = ko(m) — 4 as above. Note

k ~ 2logym ~ 2log,n

Then
—p2te(1)

Prla[G|s] < k] < e

140(1)

There are (TZ) < 2N =™ such sets S. Hence

Prla[G|s] < k for some m-set 5] < gm!He ool o(1)
That is, almost always every m vertices contain a k-element independent
set.
Now suppose G has this property. We pull out k-element independent
sets and give each a distinct color until there are less than m vertices left.
Then we give each point a distinct color. By this procedure

X(G) <[] +m<E4+m
= 2107;271(1 + 0(1)) + 0(10;71)

and this occurs for almost all G. O

3 Some Very Low Probabilities

Let A be the property that GG does not contain K4 and consider Pr[G/(n, p) |=
A] as p varies. (Results with K4 replaced by an arbitrary H are discussed
at the end of this section.) We know that p = n=2/% is a threshold function
so that for p > n~2/3 this probability is o(1). Here we want to estimate
that probability. Our estimates here will be quite rough, only up to a o(1)
additive factor in the hyperexponent, though with more care the bounds
differ by “only” a constant factor in the exponent. If we were to consider
all potential K4 as giving mutually independent events then we would be
led to the estimate (1 — p6)(2) = e For p appropriately small this
turns out to be correct. But for, say, p = % it would give the estimate

e~ This must, however, be way off the mark since with probability

2=(3) = =7 the graph G could be empty and hence trivially satisfy A.
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Then n = \/§k(1+0(1)) so for k ~ kg,

Flk+ 1)/ f(k) = 22751 4 o{1)) = 020
Set
k= k(n) = ko(n) — 4

so that
f(k) > n3—|—o(1)

Now we use the Generalized Janson Inequality to estimate Prjw(G) < k.
Here g = f(k). (Note that Janson’s Inequality gives a lower bound of

9=(k) = 9=n"*V ¢ this probability but this is way off the mark since with

probability 2=(2) the random G is empty!) The value A was examined in
Lecture 2 and we showed

A A
EE—

There g(2) ~ k*/n? and g(k — 1) ~ 2kn27%/u were the dominating terms.
In our instance p > n?t°M) and 27% = n=2+°() 50 ¢(2) dominates and

H2 k4
n2

A ~

Hence we bound the cliqgue number probability

Prjw(G) < k] < o= 12 (1+o(1)/28 _ —(n?/k*)(140(1)) _ €_n2+o(1)

as k = O(Inn). (The possibility that G is empty gives a lower bound so that
we may say the probability is e_”2+o(1), though a o(1) in the hyperexponent
leaves lots of room.)

Theorem 2.1. (Bollobas [1988]) Almost always

X(G))

n

- 2logy n

Proof. The argument that

n n
> >
(@) 2 a(G) ~ 2logy n

(L+o(1))

almost always was given in Lecture 2.
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As A ranges from —oo to +oo, e—e ranges from 1 to 0. As ng(k + 1) ~
ﬁno(k) the ranges will not “overlap” for different k. More precisely, let K
be arbitrarily large and set

K K
I = [mo(R){1L = ) mo()[1 4 ]
For k > ko(K), I—1 NI, = . Suppose n > no(ko(K)). If n lies between the
intervals (which occurs for “most” n), which we denote by I < n < I[41,
then

K

Priw(G(n,p)) <k <™ +o(1),
nearly zero, and
Prlw(G(n,p) < k+1] > ™" +o(1),
nearly one, so that
Prlw(G(n,p)) = k] > ™" — ™" 4 o(1),
nearly one. When n € I we still have I,_1 < n < Iy4q so that

K

Priw(G(n,p))=kork—1]>e" - e o(1),

nearly one. As K may be made arbitrarily large this yields the celebrated
two point concentration theorem on clique number given as Corollary 2.1.2.
Note, however, that for most n the concentration of w(G/(n,1/2))is actually
on a single value!

2 Chromatic Number

Again fix p = 1/2 (there are similar results for other p) and let G ~ G(n, 1).
We shall find bounds on the chromatic number x(G). The original proof of
Bollobas used martingales and will be discussed later. Set

Let ko = ko(n) be that value for which

flko —1) > 1> f(ko)
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Lecture 4: The Chromatic Number Resolved!

The centerpiece of this lecture is the result of Béla Bollobds that, with
G ~ G(n,3), X(G) ~ n/(2log, n) almost surely.

1 Clique Number Revisited

In this section we fix p = 1/2, (other values yield similar results), let G ~
G/(n, p) and consider the clique number w(G). For a fixed ¢ > 0let n,k — oo
so that

As a first approximation

k
no~— 2"

ev?2

and
2lnn

In2

Here p — ¢ so M — e7¢. The A term was examined earlier. For this k,

A = o( E[X]?) and so A = o(1). Therefore

~

C

lim Prjw(G(n,p)) < k]=e"°

n,k—o0

Being more careful, let ng(k) be the minimum n for which

Observe that for this n the left hand side is 1 + o(1). Note that (}) grows,
in n, like n*. For any A € (—o00, +o0) if

n = ng(kf1 + 22
then
(Z) 9-(3) = 1+ A ‘|‘k0(1)]k =t +o(1)
and so



