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Now we examine (similar to Theorem 1.4.2)

� =
X
���

Pr[B� ^B� ]

We split the sum according to the number of vertices in the intersection of
copies � and �. Suppose they intersect in j vertices. If j = 0 or j = 1 then
A� \ A� = ; so that � � � cannot occur. For 2 � j � v let fj be the
maximal jA� \A� j where � � � and �; � intersect in j vertices. As � 6= �,
fv < e. When 2 � j � v � 1 the critical observation is that A� \ A� is a
subgraph of H and hence, as H is strictly balanced,

fj
j
<
e

v

There are O(n2v�j) choices of �; � intersecting in j points since �; � are
determined, except for order, by 2v � j points. For each such �; �

Pr[B� ^B� ] = pjA�[A� j = p2e�jA�\A� j � p2e�fj

Thus

� =
vX

j=2

O(n2v�j)O(n�
v
e
(2e�fj))

But

2v � j �
v

e
(2e� fj) =

vfj
e
� j < 0

so each term is o(1) and hence � = o(1). By Janson's Inequality

lim
n!1

Pr[^B�] = lim
n!1

M = exp[�ce=a]

completing the proof. 2
The �ne threshold behavior for the appearance of an arbitrary graph H

has been worked out but it can get quite complicated.
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We set

p =
�(1� �)

�

so as to maximize this quantity. The added assumption of Theorem 1.2
assures us that the probability p is at most one. Then

E
h
� ln[Pr[^i2SBi]

i
�
�2(1� �)

2�

Therefore there is a speci�c S � I for which

� ln[Pr[^i2SBi] �
�2(1� �)

2�

That is,

Pr[^i2SBi] � e�
�2(1��)

2�

But
Pr[^i2IBi] � Pr[^i2SBi]

completing the proof. 2

3 Appearance of Small Subgraphs Revisited

Generalizing the �ne threshold behavior for the appearance of K4 we �nd
the �ne threshold behavior for the appearance of any strictly balanced graph
H .
Theorem 3.1 Let H be a strictly balanced graph with v vertices, e edges and
a automorphisms. Let c > 0 be arbitrary. Let A be the property that G
contains no copy of H . Then with p = cn�v=e,

lim
n!1

Pr[G(n; p) j= A] = exp[�ce=a]

Proof. Let A�; 1 � � �
�n
v

�
v!=a, range over the edge sets of possible copies

of H and let B� be the event G(n; p) � A�. We apply Janson's Inequality.
As

lim
n!1

� = limn!1

 
n

v

!
v!pe=a = ce=a

we �nd
lim
n!1

M = exp[�ce=a]
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Reversing

Pr[Bij ^1�j<i Bj ] � Pr[Bi] +
Pd

j=1 Pr[Bj ^Bi]

� Pr[Bi]
�
1 + 1

1��

Pd
j=1 Pr[Bj ^Bi]

�
since Pr[Bi] � 1� �. Employing the inequality 1 + x � ex,

Pr[Bij ^1�j<i Bj ] � Pr[Bi]e
1

1��

Pd

j=1
Pr[Bj^Bi]

For each 1 � i � m we plug this inequality into

Pr[^i2IBi] =
mY
i=1

Pr[Bij ^1�j<i Bj ]

The terms Pr[Bi] multiply to M . The exponents add: for each i; j 2 I with
j < i and j � i the term Pr[Bj ^Bi] appears once so they add to �=2. 2
Proof of Theorem 1.2 As discussed earlier, the proof of Theorem 1.1 gives

Pr[^i2IBi] � e��+
1

1��
�
2

which we rewrite as

� ln[Pr[^i2IBi]] �
X
i2I

Pr[Bi]�
1

2(1� �)

X
i�j

Pr[Bi ^Bj ]

For any set of indices S � I the same inequality applied only to the Bi; i 2 S

gives

� ln[Pr[^i2SBi]] �
X
i2S

Pr[Bi]�
1

2(1� �)

X
i;j2S;i�j

Pr[Bi ^Bj ]

Let now S be a random subset of I given by

Pr[i 2 S] = p

with p a constant to be determined, the events mutually independent. (Here
we are using probabilistic methods to prove a probability theorem!) Each
term Pr[Bi] then appears with probability p and each term Pr[Bi^Bj ] with
probability p2 so that

E
h
� ln[Pr[^i2SBi]

i
� E [

P
i2S Pr[Bi]]�

1
2(1��)E

hP
i;j2S;i�j Pr[Bi ^ Bj ]

i
= p� � 1

1��p
2�
2
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2 The Proofs

The original proofs of Janson are based on estimates of the Laplace trans-
form of an appropriate random variable. The proof presented here follows
that of Boppana and Spencer [1989]. We shall use the inequalities

Pr[Bij ^j2J Bj ] � Pr[Bi]

valid for all index sets J � I; i 62 J and

Pr[BijBk ^
^
j2J

Bj ] � Pr[BijBk]

valid for all index sets J � I; i; k 62 J . The �rst follows from general Corre-
lation Inequalities. The second is equivalent to the �rst since conditioning
on Bk is the same as assuming pr = Pr[r 2 R] = 1 for all r 2 Ak.
Proof of Theorem 1.1 The lower bound follows immediately. Order the index
set I = f1; . . . ; mg for convenience. For 1 � i � m

Pr[Bij ^1�j<i Bj ] � Pr[Bi]

so
Pr[Bij ^1�j<i Bj ] � Pr[Bi]

and

Pr[^i2IBi] =
mY
i=1

Pr[Bij ^1�j<i Bj ] �
mY
i=1

Pr[Bi]

Now the upper bound. For a given i renumber, for convenience, so that
i � j for 1 � j � d and not for d + 1 � j < i. We use the inequality
Pr[AjB ^ C] � Pr[A ^ BjC], valid for any A;B;C. With A = Bi, B =
B1 ^ . . .^Bd, C = Bd+1 ^ . . .^Bi�1

Pr[Bij ^1�j<i Bj ] = Pr[AjB ^ C] � Pr[A ^BjC] = Pr[AjC]Pr[BjA^ C]

From the mutual independence Pr[AjC] = Pr[A]. We bound

Pr[BjA ^ C] � 1�
dX

j=1

Pr[Bj jBi ^ C] � 1�
dX

j=1

Pr[Bj jBi]

from the Correlation Inequality. Thus

Pr[Bij ^1�j<i Bj ] � Pr[Bi]�
dX

j=1

Pr[Bj ^Bi]
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the value of Pr[^i2IBi] if the Bi were independent.
Theorem 1.1 (The Janson Inequality). Let Bi; i 2 I , �;M be as above and
assume all Pr[Bi] � �. Then

M � Pr[^i2IBi] �Me
1

1��
�
2

Now set
� = E[X ] =

X
i2I

Pr[Bi]

For each i 2 I

Pr[Bi] = 1� Pr[Bi] � e�Pr[Bi]

so, multiplying over i 2 I ,
M � e��

It is often more convenient to replace the upper bound of Theorem 1.1 with

Pr[^i2IBi] � e��+
1

1��
�
2

As an example, set p = cn�2=3 and consider the probability that G(n; p)
contains no K4. The Bi then range over the

�n
4

�
potential K4 - each being

a 6-element subset of 
. Here, as is often the case, � = o(1), � = o(1)
(as calculated previously) and � approaches a constant, here k = c6=24. In
these instances Pr[^i2IBi] ! e�k . Thus we have the �ne structure of the
threshold function of !(G) = 4.

As � becomes large the Janson Inequality becomes less precise. Indeed,
when � � 2�(1 � �) it gives an upper bound for the probability which is
larger than one. At that point (and even somewhat before) the following
result kicks in.
Theorem 1.2 (The Generalized Janson Inequality). Under the assumptions
of Theorem 1.1 and the further assumption that � � �(1� �)

Pr[^i2IBi] � e�
�2(1��)

2�

Theorem 1.2 (when it applies) often gives a much stronger result than
Chebyschev's Inequality as used earlier. We can bound V ar[X ] � �+� so
that

Pr[^i2IBi] = Pr[X = 0] �
V ar[X ]

E[X ]2
�
�+ �

�2

Suppose � = o(1), � ! 1, � � �, and 
 = �2

� ! 1. Chebyschev's upper
bound on Pr[X = 0] is then roughly 
�1 while Janson's upper bound is
roughly e�
 .
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Lecture 3: The Poisson Paradigm

When X is the sum of many rare indicator \mostly independent" random
variables and � = E[X ] we would like to say that X is close to a Poisson
distribution with mean � and, in particular, that Pr[X = 0] is nearly e��.
We call this rough statement the Poisson Paradigm. We give a number of
situations in which this Paradigm may be rigorously proven.

1 The Janson Inequalities

In many instances we would like to bound the probability that none of a set
of bad events Bi; i 2 I occur. If the events are mutually independent then

Pr[^i2IBi] =
Y
i2I

Pr[Bi]

When the Bi are \mostly" independent the Janson Inequalities allow us,
sometimes, to say that these two quantities are \nearly" equal.

Let 
 be a �nite universal set and let R be a random subset of 
 given
by

Pr[r 2 R] = pr;

these events mutually independent over r 2 
. (In application to G(n; p), 

is the set of pairs fi; jg, i; j 2 V (G) and all pr = p so that R is the edge set
of G(n; p).) Let Ai; i 2 I , be subsets of 
, I a �nite index set. Let Bi be the
event Ai � R. (That is, each point r 2 
 \ 
ips a coin" to determine if it
is in R. Bi is the event that the coins for all r 2 Ai came up \heads".) Let
Xi be the indicator random variable for Bi and X =

P
i2I Xi the number

of Ai � R. The event ^i2IBi and X = 0 are then identical. For i; j 2 I

we write i � j if i 6= j and Ai \ Aj 6= ;. Note that when i 6= j and not
i � j then Bi; Bj are independent events since they involve separate coin

ips. Furthermore, and this plays a crucial role in the proofs, if i 62 J � I
and not i � j for all j 2 J then Bi is mutually independent of fBj jj 2 Jg,
i.e., independent of any Boolean function of those Bj . This is because the
coin 
ips on Ai and on [j2JAj are independent. We de�ne

� =
X
i�j

Pr[Bi ^ Bj ]

Here the sum is over ordered pairs so that �=2 gives the same sum over
unordered pairs. (This will be the same � as in Lecture 1. We set

M =
Y
i2I

Pr[Bi];


