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5 High Girth and High Chromatic Number

Many consider the following one of the most pleasing uses of the probabilistic
method, as the result is surprising and does not appear to call for noncon-
structive techniques. The girth of a graph G is the size of its smallest circuit.
Theorem 5.1(Erd}os [1959]). For all k; l there exists a graphG with girth(G) >
l and �(G) > k.
Proof. Fix � < 1=l and let G � G(n; p) with p = n��1. Let X be the number
of circuits of size at most l. Then
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as �l < 1. In particular
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Set x = d3p lnne so that
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Let n be su�ciently large so that both these events have probability less
than :5. Then there is a speci�c G with less than n=2 cycles of length less
than l and with �(G) < 3n1�� lnn. Remove from G a vertex from each cycle
of length at most l. This gives a graph G� with at least n=2 vertices. G�

has girth greater than l and �(G�) � �(G). Thus

�(G�) � jG�j
�(G�)

� n=2

3n1�� lnn
=

n�

6 lnn

To complete the proof, let n be su�ciently large so that this is greater than
k.
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Ramsey function. To unravel the de�nition R(k; l) > n means that there
exists a Red-Blue coloring of Kn with neither Red Kk nor Blue Kl. In his
1947 paper Erd}os considered the case k = l.
Theorem 4.1. If  

n

k

!
21�(

k

2
) < 1

then R(k; l)> n.
Proof. Let G � G(n; 12) and consider the random two-coloring given by
coloring the edges of G red and the other edges of Kn blue. Let X be the
number of monochromaticKk. Then the left hand side above is simply E[X ].
With E[X ] < 1, Pr[X = 0] > 0. Hence there is a point in the probability
space - i.e., a graph G, whose coloring has X = 0 monochromatic Kk. 2

Note here a subtle (for some) point. With positive probability G(n; 12)
has the desired property and therefore there must - absolutely, positively -
exist a G with the desired property. Random Graphs and the Probabilistic
Method are closely related. In Random Graphs we study the probability of
G(n; p) having certain properties. In the Probabilistic Method our goal is to
prove the existence of a G having certain properties. We create a probability
space in which the probability of the random G having these properties is
positive, and from that it follows that some such G must exist.

Applying some simple asymptotics to the theorem yields that R(k; k) >p
2
n(1+o(1))

. In 1935 Erd}os and George Szekeres found the upper bound
R(k; k) < 4n(1+o(1)) by nonrandom means. While there have been improve-
ments in lower order terms, these bounds remain the best known up to
(1 + o(1))n terms. It is also interesting that no exponential lower bound is
known by constructive means.

A general lower bound is the following.
Theorem 4.2. If there exists p 2 [0; 1] with 
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then R(k; l)> n.
Proof. Let G � G(n; p) and color the edges of G red and the other edges
of Kn blue. Then the left hand side above is simply the expectation of the
number of red Kk plus the number of blue Kl. For some G this is zero and
that G gives the desired coloring. 2

Dealing with the asymptotics of this result can be quite tricky. For
example, what does this imply about R(k; 2k)?
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expectation E[X ] = �. Now consider the r-th factorial moment E[(X)r]
for any �xed r. By the symmetry E[(X)r] = (n)rE[X1 � � �Xr]. For vertices
1; . . . ; r to all be isolated the r(n� 1)� �r2� pairs fi; xg overlapping 1; . . . ; r
must all not be edges. Thus

E[(X)r] = (n)r(1� p)r(n�1)�(
r

2
) � nr(1� p)r(n�1) � �r

(That is, the dependence among the Xi was asymptotically negligible.) As
all the moments of X approach those of P (�), X approaches P (�) in distri-
bution and in particular the theorem holds. 2

Now we give the Erd}os-R�enyi famous \double exponential" result.
Theorem 3.2. Let

p = p(n) =
logn

n
+

c

n
+ o(

1

n
)

Then
lim
n!1

Pr[G(n; p) is connected] = e�e�c

For such p, n(1 � p)n�1 � � = e�c and by the above argument the
probability that X has no isolated vertices approaches e��. If G has no
isolated vertices but is not connected there is a component of k vertices for
some 2 � k � n

2 . Letting B be this event

Pr[B] �
n=2X
k=2
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The �rst factor is the choice of a component set S � V (G). The second
factor is a choice of tree on S. The third factor is the probability that those
tree pairs are in E(G). The �nal factor is that there be no edge from S to
V (G)� S. Some calculation (which we omit but note that k = 2 provides
the main term) gives that Pr[B] = o(1) so that X 6= 0 and connectivity have
the same limiting probability. 2

4 The Probabilistic Method

In 1947 Paul Erd}os started what is now called the Probabilistic Method with
a three page paper in the Bulletin of the American Mathematical Society.
The Ramsey function R(k; l) is de�ned as the least n such that if the edges
of Kn are colored Red and Blue then there is either a Red Kk or a Blue
Kl. The existence of such an n is a consequence of Ramsey's Theorem and
will not concern us here. Rather, we are interested in lower bounds on the
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!(G) � (2 log2 n)(1 + o(1). This will turn out to be the right asymptotic
answer.

For the lower bound (which is not best possible) we outline an analysis
of the following \greedy algorithm". We �nd an independent set C on G as
follows. Set S0 = V (G), a1 = 1 and S1 equal the set of vertices not adjacent
to a1. Having determined a1; . . . ; ai and Si let ai+1 be the least vertex of
Si and let Si+1 be those x 2 Si � faig not adjacent to ai+1. Continue
until St = ; and set C = fa1; . . .atg. A fairly straightforward analysis
gives that jCj � log2 n almost surely, and moreover that the probability (for
any given � > 0 that jCj < (log2n)(1 � �) is o(n�1). Call this one pass of
the algorithm. Now we give all points of C color \one", remove vertices C
from G and iterate. Let G1 be G with C removed. Critically, it �nding C

we only \exposed" edges involving C so that we can consider G1 to have
distribution G(n1;

1
2), where n1 = n� jCj is the number of vertices. Letting

nj be the number of vertices remaining after the j-th pass, almost surely we
have nj+1 < nj � (1 � �) log2 nj so that the algorithm is completed using
less than n

log
2
n (1 + �0) colors. (Actually, to avoid end e�ects we can stop

the algorithm when there are o(n= logn) vertices remaining and simply give
each such vertex a separate color.)

It is tempting to improve the lower bound as follows. We know that
almost surely G contains an independent set of size � 2 log2 n. Let C be
that set, remove C from G giving G1 and iterate. The problem is, of course,
that G1 no longer has distribution G(n1;

1
2) and no proof has been found

along these lines of the true result that �(G) � n
2 log

2
n almost surely.

3 Connectivity

In this section we give a relatively simple example of what we call the Poisson
Paradigm: the rough notion that if there are many rare and nearly inde-
pendent events then the number of events that hold has approximately a
Poisson distribution. This will yield one of the most beautiful of the Erd}os-
R�enyi results, a quite precise description of the threshold behavior for con-
nectivity. A vertex v 2 G is isolated if it is adjacent to no w 2 V . In G(n; p)
let X be the number of isolated vertices.
Theorem 3.1. Let p = p(n) satisfy n(1� p)n�1 = �. Then

lim
n!1

Pr[X = 0] = e��

We let Xi be the indicator random variable for vertex i being isolated
so that X = X1 + . . . + Xn. Then E[Xi] = (1 � p)n�1 so by linearity of
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At the other extreme i = k � 1

g(k� 1) =
k(n� k)2�(k�1)�n

k

�
2�(

k

2
)

� 2kn2�k

E[X ]

As k � 2 log2 n the numerator is n�1+o(1). The denominator approaches
in�nity and so g(k � 1) = o(1). Some detailed calculation (which we omit)
gives that the remaining g(i) are also negligible so that Corollary 1.3.5 ap-
plies. 2

Theorem 1.1 leads to a strong concentration result for !(G). For k �
2 log2 n

f(k + 1)

f(k)
=

n� k + 1

k + 1
2�k = n�1+o(1) = o(1)

Let k0 = k0(n) be that value with f(k0) � 1 > f(k0 + 1). For \most" n

the function f(k) will jump from a large f(k0) to a small f(k0 + 1). The
probability that G contains a clique of size k0 + 1 is at most f(k0 + 1)
which will be very small. When f(k0) is large Theorem 1.1 implies that G
contains a clique of size k0 with probability nearly one. Together, with very
high probability !(G) = k0. For some n one of the values f(k0); f(k0 + 1)
may be of moderate size so this argument does not apply. Still one may
show a strong concentration result found independently by Bollob�as, Erd}os
[1976] and Matula [1976].
Corollary 1.2 There exists k = k(n) so that

Pr[!(G) = k or k + 1]! 1

2 Chromatic Number

Again let us �x p = 1
2 and this time we consider the chromatic number �(G)

with G � G(n; p). Our results in this section will be improved in Lecture 4.
Theorem 2.1. Almost surely

n

2 log2 n
(1 + o(1)) � �(G) � n

log2n
(1 + o(1))

For the lower bound we use the general bound

�(G) � n=!(G)

which is true since each color class must be a clique in G and so can be used
at most !(G) times. But G has the same distribution as G so almost surely
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Lecture 2: More Random Graphs

1 Clique Number

Now we �x edge probability p = 1
2 and consider the clique number !(G).

We set

f(k) =

 
n

k

!
2�(

k

2
);

the expected number of k-cliques. The function f(k) drops under one at
k � 2 log2 n. (Very roughly, f(k) is like nk2�k2=2.)
Theorem 1.1 Let k = k(n) satisfy k � 2 log2 n and f(k)!1. Then almost
always !(G) � k.
Proof. For each k-set S let AS be the event \S is a clique" and XS the
corresponding indicator random variable. We set

X =
X
jSj=k

XS

so that !(G) � k if and only if X > 0. Then E[X ] = f(k) ! 1 and we
examine ��. Fix S and note that T � S if and only if jT \ Sj = i where
2 � i � k � 1. Hence

�� =
k�1X
i=2
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and so
��

E[X ]
=

k�1X
i=2

g(i)

where we set

g(i) =

�k
i

��n�k
k�i

�
�n
k

� 2(
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2
)

Observe that g(i) may be thought of as the probability that a randomly
chosen T will intersect a �xed S in i points times the factor increase in
Pr[AT ] when it does. Setting i = 2,

g(2) = 2

�k
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