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Theorem 4.5 Let H be any �xed graph. For every subgraph H 0 ofH (includ-
ing H itself) let XH 0 denote the number of copies of H 0 in G(n; p). Assume
p is such that E[XH 0]!1 for every H 0. Then

XH � E[XH]

almost always.
Proof. Let H have v vertices and e edges. As in Theorem 4.4 it su�ces to
show �� = o(E[X ]). We split �� into a �nite number of terms. For each H 0

with w vertice and f edges we have those (y1; . . . ; yv) that overlap with the
�xed (x1; . . . ; xv) in a copy of H 0. These terms contribute, up to constants,

nv�wpe�f = �

�
E[XH]

E[XH 0]

�
= o(E[XH])

to ��. Hence Corollary 3.5 does apply. 2
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be that subgraph with maximal density �(H1) = e1=v1. (When H is bal-
anced we may take H1 = H .) They showed that p = n�v1=e1 is the threshold
function. This will follow fairly quickly from the methods of theorem 4.5.

We �nish this section with two strengthenings of Theorem 4.2.
Theorem 4.4 Let H be strictly balanced with v vertices, e edges and a
automorphisms. Let X be the number of copies of H in G(n; p). Assume
p� n�v=e. Then almost always

X �
nvpe

a

Proof. Label the vertices of H by 1; . . . ; v. For each ordered x1; . . . ; xv let
Ax1;...;xv be the event that x1; . . . ; xv provides a copy of H in that order.
Speci�cally we de�ne

Ax1;...;xv : fi; jg 2 E(H)) fxi; xjg 2 E(G)

We let Ix1;...;xv be the corresponding indicator random variable. We de�ne
an equivalence class on v-tuples by setting (x1; . . . ; xv) � (y1; . . . ; yv) if there
is an automorphism � of V (H) so that y�(i) = xi for 1 � i � v.Then

X =
X

Ix1;...;xv

gives the number of copies of H in G where the sum is taken over one entry
from each equivalence class. As there are (n)v=a terms

E[X ] =
(n)v
a

E[Ix1;...;xv ] =
(n)vp

e

a
�
nvpe

a

Our assumption p� n�v=e implies E[X ]!1. It su�ces therefore to show
�� = o(E[X ]). Fixing x1; . . . ; xv,

�� =
X

(y1;...;yv)�(x1;...;xv)

Pr[A(y1;...;yv)jA(x1;...;xv)]

There are v!=a = O(1) terms with fy1; . . . ; yvg = fx1; . . . ; xvg and for each
the conditional probability is at most one (actually, at most p), thus con-
tributing O(1) = o(E[X ]) to ��. When fy1; . . . ; yvg \ fx1; . . . ; xvg has i
elements, 2 � i � v � 1 the argument of Theorem 4.2 gives that the contri-
bution to �� is o(E[X ]). Altogether �� = o(E[X ]) and we apply Corollary
3.5 2
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general, complicated due to the overlapping of potential copies of H .) Let
XS be the indicator random variable for AS and

X =
X
jSj=v

XS

so that A holds if and only if X > 0. Linearity of Expectation gives

E[X ] =
X
jSj=v

E[XS] =

 
n

v

!
Pr[AS ] = �(nvpe)

If p� n�v=e then E[X ] = o(1) so X = 0 almost always.
Now assume p � n�v=e so that E[X ] ! 1 and consider the �� of

Corollary 3.5 (All v-sets look the same so the XS are symmetric.) Here
S � T if and only if S 6= T and S; T have common edges - i.e., if and only
if jS \ T j = i with 2 � i � v � 1. Let S be �xed. We split

�� =
X
T�S

Pr[AT jAS ] =
v�1X
i=2

X
jT\Sj=i

Pr[AT jAS ]

For each i there are O(nv�i) choices of T . Fix S; T and consider Pr[AT jAS ].
There are O(1) possible copies of H on T . Each has - since, critically, H is
balanced - at most ie

v edges with both vertices in S and thus at least e� ie
v

other edges. Hence

Pr[AT jAS ] = O(pe�
ie

v )

and
�� =

Pv�1
i=2 O(n

v�ipe�
ie

v )

=
Pv�1

i=2 O((n
vpe)1�

i

v )

=
Pv�1

i=2 o(n
vpe)

= o(E[X ])

since nvpe !1. Hence Corollary 3.5 applies. 2
Theorem 4.3 In the notation of Theorem 4.2 if H is not balanced then
p = n�v=e is not the threshold function for A.
Proof. LetH1 be a subgraph ofH with v1 vertices, e1 edges and e1=v1 > e=v.
Let � satisfy v=e < � < v1=e1 and set p = n��. The expected number of
copies of H1 is then o(1) so almost always G(n; p) contains no copy of H1.
But if it contains no copy of H1 then it surely can contain no copy of H . 2

The threshold function for the property of containing a copy of H , for
general H , was examined in the original papers of Erd}os and R�enyi. Let H1
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�(H).
Examples. K4 and, in general, Kk are strictly balanced. The graph
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is not balanced as it has density 7=5 while the subgraph K4 has density
3=2. The graph

r
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r
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is balanced but not strictly balanced as it and its subgraph K4 have
density 3=2.
Theorem 4.2 Let H be a balanced graph with v vertices and e edges. Let
A(G) be the event that H is a subgraph (not necessarily induced) of G.
Then p = n�v=e is the threshold function for A.
Proof. We follow the argument of Theorem 4.1 For each v-set S let AS be
the event that GjS contains H as a subgraph. Then

pe � Pr[AS ] � v!pe

(Any particular placement of H has probability pe of occuring and there
are at most v! possible placements. The precise calculation of Pr[AS ] is, in
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4 Appearance of Small Subgraphs

What is the threshold function for the appearance of a given graph H . This
problem was solved in the original papers of Erd}os and R�enyi. We begin
with an instructive special case.
Theorem 4.1 The property !(G) � 4 has threshold function n�2=3.
Proof. For every 4-set S of vertices in G(n; p) let AS be the event \S is a
clique" and XS its indicator random variable. Then

E[XS] = Pr[AS ] = p6

as six di�erent edges must all lie in G(n; p). Set

X =
X
jSj=4

XS

so that X is the number of 4-cliques in G and !(G) � 4 if and only if X > 0.
Linearity of Expectation gives

E[X ] =
X
jSj=4

E[XS] =

 
n

4

!
p6 �

n4p6

24

When p(n)� n�2=3, E[X ] = o(1) and so X = 0 almost surely.
Now suppose p(n) � n�2=3 so that E[X ]! 1 and consider the �� of

Corollary 3.5. (All 4-sets \look the same" so that the XS are symmetric.)
Here S � T if and only if S 6= T and S; T have common edges - i.e., if and
only if jS\T j = 2 or 3. Fix S. There are O(n2) sets T with jS\T j = 2 and
for each of these Pr[AT jAS ] = p5. There are O(n) sets T with jS \ T j = 3
and for each of these Pr[AT jAS ] = p3. Thus

�� = O(n2p5) +O(np3) = o(n4p6) = o(E[X ])

since p� n�2=3. Corollary 3.5 therefore applies and X > 0, i.e., there does

exist a clique of size 4, almost always. 2
The proof of Theorem 4.1 appears to require a fortuitous calculation

of ��. The following de�nitions will allow for a description of when these
calculations work out.
De�nitions. Let H be a graph with v vertices and e edges. We call �(H) =
e=v the density of H . We call H balanced if every subgraph H 0 has �(H 0) �
�(H). We call H strictly balanced if every proper subgraph H 0 has �(H 0) <
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and thus in asymptotic terms we actually have the following stronger asser-
tion:
Corollary 3.3

If V ar[X ] = o(E[X ]2) then X � E[X ] a.a.

Suppose again X = X1+. . .+Xm where Xi is the indicator random variable
for event Ai. For indices i; j write i � j if i 6= j and the events Ai; Aj are
not independent. We set (the sum over ordered pairs)

� =
X
i�j

Pr[Ai ^ Aj ]

Note that when i � j

Cov[Xi; Xj] = E[XiXj ]�E[Xi]E[Xj] � E[XiXj ] = Pr[Ai ^Aj ]

and that when i 6= j and not i � j then Cov[Xi; Xj] = 0. Thus

V ar[X ] � E[X ] + �

Corollary 3.4. If E[X ]! 1 and � = o(E[X ]2) then X > 0 almost always.
Furthermore X � E[X ] almost always.

Let us say X1; . . . ; Xm are symmetric if for every i 6= j there is an
automorphism of the underlying probability space that sends event Ai to
event Aj . Examples will appear in the next section. In this instance we
write

� =
X
i�j

Pr[Ai ^ Aj ] =
X
i

Pr[Ai]
X
j�i

Pr[Aj jAi]

and note that the inner summation is independent of i. We set

�� =
X
j�i

Pr[Aj jAi]

where i is any �xed index. Then

� =
X
i

Pr[Ai]�
� = ��

X
i

Pr[Ai] = ��E[X ]

Corollary 3.5. If E[X ]! 1 and �� = o(E[X ]) then X > 0 almost always.
Furthermore X � E[X ] almost always.

The condition of Corollary 3.5 has the intuitive sense that condition-
ing on any speci�c Ai holding does not substantially increase the expected
number E[X ] of events holding.
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The reality is that the BS are not mutually independent though when jS \
T j � 1, BS and BT are mutually independent. This is quite a typical
situation in the study of random graphs in which we must deal with events
that are \almost", but not precisely, mutual independent.

3 Variance

Here we introduce the Variance in a form that is particularly suited to the
study of random graphs. The expressions � and �� de�ned in this section
will appear often in these notes.

Let X be a nonnegative integral valued random variable and suppose we
want to bound Pr[X = 0] given the value � = E[X ]. If � < 1 we may use
the inequality

Pr[X > 0] � E[X ]

so that if E[X ]! 0 then X = 0 almost always. (Here we are imagining an
in�nite sequence of X dependent on some parameter n going to in�nity.)
But now suppose E[X ] ! 1. It does not necessarily follow that X > 0
almost always. For example, let X be the number of deaths due to nuclear
war in the twelve months after reading this paragraph. Calculation of E[X ]
can make for lively debate but few would deny that it is quite large. Yet
we may believe - or hope - that Pr[X 6= 0] is very close to zero. We can
sometimes deduce X > 0 almost always if we have further information about
V ar[X ].
Theorem 3.1

Pr[X = 0] �
V ar[X ]

E[X ]2

Proof. Set � = �=� in Chebyschev's Inequality. Then

Pr[X = 0] � Pr[jX � �j � ��] �
1

�2
=
�2

�2
2

We generally apply this result in asymptotic terms.
Corollary 3.2

If V ar[X ] = o(E[X ]2) then X > 0 a.a.

The proof of the Theorem actually gives that for any � > 0

Pr[jX �E[X ]j � �E[X ]] �
V ar[X ]

�2E[X ]2
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This suggests the parametrization p = c=n. Then

lim
n!1

E[X ] = lim
n!1

 
n

3

!
p3 = c3=6

We shall see that the distribution of X is asymptotically Poisson. In partic-
ular

lim
n!1

Pr[G(n; p) j= A] = lim
n!1

Pr[X = 0] = e�c
3=6

Note that
lim
c!0

e�c
3=6 = 1

lim
c!1

e�c
3=6 = 0

When p = 10�6=n, G(n; p) is very unlikely to have triangles and when
p = 106=n, G(n; p) is very likely to have triangles. In the dynamic view the
�rst triangles almost always appear at p = �(1=n). If we take a function
such as p(n) = n�:9 with p(n) � n�1 then G(n; p) will almost always have
triangles. Occasionally we will abuse notation and say, for example, that
G(n; n�:9) contains a triangle - this meaning that the probability that it
contains a triangle approaches 1 as n approaches in�nity. Similarly, when
p(n)� n�1, for example, p(n) = 1=(n lnn), then G(n; p) will almost always
not contain a triangle and we abuse notation and say that G(n; 1=(n lnn))
is trianglefree. It was a central observation of Erd}os and R�enyi that many
natural graph theoretic properties become true in a very narrow range of p.
They made the following key de�nition.
De�nition. r(n) is called a threshold function for a graph theoretic property
A if
(i) When p(n)� r(n); limn!1 Pr[G(n; p) j= A] = 0
(ii) When p(n)� r(n); limn!1 Pr[G(n; p) j= A] = 1
or visa versa.

In our example, 1=n is a threshold function for A. Note that the thresh-
old function, when one exists, is not unique. We could equally have said
that 10=n is a threshold function for A.

Lets approach the problem of G(n; c=n) being trianglefree once more.
For every set S of three vertices let BS be the event that S is a triangle.
Then Pr[BS ] = p3. Then \trianglefreeness" is precisely the conjunction ^BS

over all S. If the BS were mutually independent then we would have

Pr[^BS ] =
Y

[BS ] = (1� p3)(
n

3
) � e�(

n

3
)p3 ! e�c

3=6
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Lecture 1: Basics

1 What is a Random Graph

Let n be a positive integer, 0 � p � 1. The random graph G(n; p) is a prob-
ability space over the set of graphs on the vertex set f1; . . . ; ng determined
by

Pr[fi; jg 2 G] = p

with these events mutually independent.
Random Graphs is an active area of research which combines probability

theory and graph theory. The subject began in 1960 with the monumental
paper On the Evolution of Random Graphs by Paul Erd}os and Alfred R�enyi.
The book Random Graphs by B�ela Bollob�as is the standard source for the
�eld.

There is a compelling dynamic model for random graphs. For all pairs i; j
let xi;j be selected uniformly from [0; 1], the choices mutually independent.
Imagine p going from 0 to 1. Originally, all potential edges are \o�". The
edge from i to j (which we may imagine as a neon light) is turned on when
p reaches xi;j and then stays on. At p = 1 all edges are \on". At time p
the graph of all \on" edges has distribution G(n; p). As p increases G(n; p)
evolves from empty to full.

In their original paper Erd}os and R�enyi let G(n; e) be the random graph
with n vertices and precisely e edges. Again there is a dynamic model:
Begin with no edges and add edges randomly one by one until the graph
becomes full. Generally G(n; e) will have very similar properties as G(n; p)
with p � e

(n
2
)
. We will work on the probability model exclusively.

2 Threshold Functions

The term \the random graph" is, strictly speaking, a misnomer. G(n; p) is a
probability space over graphs. Given any graph theoretic property A there
will be a probability thatG(n; p) satis�es A, which we write Pr[G(n; p) j= A].
When A is monotone Pr[G(n; p) j= A] is a monotone function of p. As an
instructive example, let A be the event \G is triangle free". Let X be the
number of triangles contained in G(n; p). Linearity of expectation gives

E[X ] =

 
n

3

!
p3


