
Robin Moser makes Lovász Local Lemma Algorithmic!

Notes of Joel Spencer

1 Preliminaries

The idea in these notes is to explain a new approach of Robin Moser 1 to
give an algorithm for the Lovász Local Lemma. This description is of the
approach as modified and improved by Gábor Tardos. We don’t strive for
best possible or most general here. In particular, we stick to what is called
the symmetric case.

Lets start with a particular and instructive example. Let xi, 1 ≤ i ≤ n

be Boolean variables. Let Cj, 1 ≤ j ≤ m be clauses, each the disjunction of
k variables or their negations. For example, with k = 3, x8∨x19∨x37 would
be a typical clause. We say two clauses overlap, and write Ci ∼ Cj, if they
have a common variable xk, regardless of whether the variable is negated
or not in the clauses. A set of clauses is called mutually satisfiable if there
exists a truth assignment of the underlying variables so that each clause is
satisfied or, equivalently, if the ∧ of the clauses is satisfiable.

Theorem 1.1 Assume, using the above notation, that each clause overlaps
at most d clauses (including itself). Assume

2−k dd

(d − 1)d−1
≤ 1 (1)

Then the set of clauses is mutually satisfiable. Moreover (and this is the new
part) there is an algorithm that finds an assignment for which each clause
Cj is satisfied that runs in linear time in n, with k, d fixed.

Here is a more general setting. Let Ω be a set of size n. For v ∈ Ω let
Xv be independent random variables. For 1 ≤ j ≤ m let ej ⊆ Ω and let Bj

be an event that depends only on the values Xv, v ∈ ej. We say two events
overlap, and write Bi ∼ Bj, if ei ∩ ej 6= ∅.

Theorem 1.2 Assume, using the above notation, that each event overlaps
at most d events (including itself). Assume

Pr[Bj ] ≤ p for all j (2)

1Moser is a graduate student (!) at ETH, working with Emo Welzl
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and that

p
dd

(d − 1)d−1
≤ 1 (3)

Then
∧m

j=1Bj 6= ∅ (4)

Moreover (and this is the new part) there is an algorithm that finds an
assignment of the Xi for which each Bj holds that runs in linear time in n,
with k, d fixed.

To say the implication of Theorem 1.1 from Theorem 1.2 consider a
random assignment Xv of the variables xv. That is, each Xv independently
takes on the values true, false with probabilities one half. The ”bad” event
Bj is then that the clause Cj is not satisfied, which has probability 2−k.
The event that none of the bad events occur is nonempty. By Erdős Magic,
there is a point in the probability space, which is precisely an assignment
of truth values, such that no bad event occurs, which is precisely that the
clauses are all simultaneously satisfied.

We will write the proof in the more general form, but the example of
Theorem 1.1 is a good one to keep in mind.

The time of the algorithm actually will depend on some data structure
assumptions which we omit.

The Moser-Tardos (ML) Algorithm.

1. Give Xv random values from their distributions.

2. WHILE some Bj holds.

3. PICK some Bj that holds.

4. Reset the Xv, v ∈ ej , independently

5. END WHILE

The selection mechanism for PICK can be arbitrary. For definiteness, we
may pick the minimal j for which Bj holds, but it doesn’t affect the proof.
We just need some specified mechanism for PICK.

As this is a randomized algorithm, its output may be and will be con-
sidered a random variable. Let Bt, et be the event and underlying set in
the t-th iteration of the WHILE loop. We shall refer to this as time t in
the running of ML. We define the LOG of the running of the algorithm to
be the sequence e1, . . . , et, . . .. A priori, there is no reason to believe that
this algorithm will actually terminate, and so the LOG might be an infinite
sequence. On the other extreme, the initial random assignment might work
in which case LOG would be the null sequence.

For convenience we let H = {e1, . . . , em} so that the e ∈ H are just the
possible values of the et.

For e ∈ H let COUNT [e] denote the number of times e appears in LOG,
that is, the number of times t for which e = et. A priori this could be infinite.
But our main result is:
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Theorem 1.3

E[COUNT [e]] ≤
1

d − 1
(5)

Given this result, linearity of expectation gives

Theorem 1.4 The expected length of LOG is at most m
d−1

where m is the
number of events.

As each event overlaps at most d events, each v ∈ Ω can be in at most d

events, and so m ≤ nd. Theorem 1.4 then gives that the expected length of
LOG is linear in the size of Ω. This is why we call the MT algorithm linear
time, though in particular instances one would need further assumptions
about the data structure.

The remainder of the argument is a proof of Theorem 1.3.
Given a running of MT with the LOG of size at least t we define TREE[t]

to be a rooted tree with vertices labelled by the e ∈ H. (Note: Several
vertices may have the same label.) The root of TREE[t] is et. Now we
construct the tree by reverse induction from i = t− 1 to i = 1. (When t = 1
the tree has only the root e1.) For a given i we check whether there is a j,
i < j ≤ t, such that ei, ej overlap and ej has already been placed in the tree.
If there is no such j we go on to the next i, that is, we do not put ei in the
tree. If there is such a j select that j for which ej is lowest (that is, furthest
from the root, this part is important!) and add to the tree by making ei

a child of ej . In case of ties, use an arbitrary tiebreaker, for example, pick
that j with the smallest index.

TREE[t] gives a concise description of those ei that are relevant to et.
It has certain key tautological properties.
• The TREE[t] are all different.
Reason: If s < t and TREE[s], TREE[t] were equal, they would have to
have the same root e = es = et. In creating TREE[t] each time ei = e for
1 ≤ i ≤ t there will be another node e in the tree. (When i < t as ei does
overlap et it is placed in the tree.) That is, e appears in the tree precisely
the number of times in appears in e1, . . . , et. When e = es = et, however,
these numbers will be different for TREE[s], TREE[t] as all the copies of e

in TREE[s] are in TREE[t] and et is in TREE[t] but not TREE[s].
• The e ∈ TREE[t] on the same level of the tree do not overlap.
Reason: Suppose r < s and er, es ∈ TREE[t] and suppose they did overlap.
When er is placed in the tree it is placed as low as possible. Since es is
already in the tree it is placed on the level below es or even lower.
• When er, es ∈ TREE[t] overlap and r < s, er is lower than es.
Reason: Above.
• Let v ∈ Ω and let f0, . . . , fs be the nodes of TREE[t] that contain v.
Order these by the depth of the node in the tree with the first being the
furthest from the root. (From above there will be no ties.) Then the fs will
be in this order in the LOG.
Reason: Say 0 ≤ i < j ≤ s. After fj was placed in TREE[t] the later (in
creating TREE) fi overlaps fj and so is placed on the level below fj or even
lower.
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• Furthermore, there will be no other e in the LOG that contain v and come
before fs.
Reason: All such e overlaps fs and so would be placed in the TREE.

Let T be a rooted tree with vertices labelled by e ∈ H and such that
when f is a child of e, f, e overlap. For each such T let OCCUR[T ] be the
event that T = TREE[t] for some t. Let |T | denote the number of nodes of
T .

Theorem 1.5

Pr[OCCUR[T ]] ≤ p|T | (6)

While the proof of Theorem 1.5 is short, it is subtle and we begin
with two simple examples. Suppose T consists solely of the root e. Then
OCCUR[T ] means that at some time t in the running of ML an event Bt

held and values Xi, i ∈ et = e were changed. But it further means that
there had been no es overlapping e before this time. That is, the values Xi,
i ∈ et = e, were unchanged from their original values. Thus for OCCUR[T ]
to hold it is necessary that Bt holds with the original values of the Xi and
this occurs with probability at most p. Now suppose T consists solely of
the root e and a child f . Suppose f arises at time s and then e arises at
time t > s. The subtlety arises with those i ∈ Ω lying in both e and f .
For these we must distinguish the original value of Xi and the revised value
after time s. It is necessary that Bs hold with the original values of Xi and
this occurs with probability at most p. It is further necessary that Bt holds
using the revised values Xi for i ∈ e∩ f and the original values for the other
i ∈ e. This also occurs with probability at most p and, more importantly,
that probability that both Bs and Bt hold is at most p2. This is because in
looking at Bt we are looking at different ”coin flips” for the values Xi.

We argue the general case for Theorem 1.5 by preprocessing the random-
ness. That is, each variable v ∈ Ω independently makes a countable number
of evaluations of Xv, labelled x0

v, x
1
v, . . .. Following this preprocessing ML is

deterministic. When v needs to reset Xv for the i-th time, it takes the value
xi

v, x0
v being the original evaluation. We call i above the evaluation number.

Preprocessing is a powerful tool in analyzing random algorithms, though it
has no affect on the actual running of the algorithms.

While TREE[t] does not determine LOG, or even the precise order of
the appearances of the nodes of TREE[t] in the LOG, it does determine
the order of appearance of the nodes f0, . . . , fs containing any given vertex
v. When the ML algorithm reached fi, v had value xi

v. That is, for each
e ∈ TREE[t] and each vertex v ∈ e there is an evaluation number i so
that when ML reaches e the vertex v had value xi

v. Critically, this i is
determined by the TREE (even though many values of LOG could yield
the same TREE) and the particular node e and vertex v. For OCCUR[T ]
it is necessary that

For each e ∈ TREE the associated bad event B occurs where for each
v ∈ e, v is using the i-th evaluation with i the evaluation number as

determined above.
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For each e ∈ TREE this occurs with probability at most p as the various
evaluations are independent. Moreover, critically, the various events B are
mutually independent as for each v one uses different evaluation number for
each one. Thus the probability that all the B hold at their various ”times”
is at most p|T |, completing Theorem 1.5.

Now we turn to proving Theorem 1.3 by bounding E[COUNT [e]]. As
the values TREE[t] are tautologically distinct, no T can be counted more
than once in COUNT [e] and so

E[COUNT [e]] =
∑

T

Pr[OCCUR[T ]] ≤
∑

T

p|T | (7)

where the sum is over all finite trees with root e, and the second inequality
is from Theorem 1.5.

We bound the Right Hand Side of 7 using standard methods from alge-
braic combinatorics. Let PUREdenote the infinite rooted tree in which every
node has precisely d children. Let ACTUALbe the infinite tree rooted at e

in which f has as children all g which overlap it. Our basic assumption is
that each node in ACTUAL will have at most d children and so ACTUAL is a
subtree of PURE . Hence the sum for subtrees T of ACTUAL is at most the sum
for subtrees of PURE . Here we have an exact result.

Theorem 1.6 Assume

p ≤
(d − 1)d−1

dd
(8)

Then, taking the sum over all subtrees of PURE rooted at the root of PURE ,

y =
∑

T

p|T | (9)

is finite, and is that unique y, 0 ≤ y ≤ 1

d−1
, satisfying

y = p(1 + y)d (10)

Proof: Assumming the sum is finite, we find 10 by considering the terms
when there are i children of the root in T . Each subtree then gives a contri-
bution of y and they are independent so the total contribution is yi. Thus

y = p

d
∑

i=0

(

d

i

)

yi = p(1 + y)d (11)

In general let ys be the sum 9 over all T of depth at most s. Then y0 = p

and 11 becomes

ys+1 = p

d
∑

i=0

(

d

i

)

yi
s = p(1 + ys)

d (12)

and basic analysis shows that this sequence approaches a fixed point y as
desired.
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