Notes on Kruskal’s Algorithm for Minimal Spanning Tree

In Kruskal’s algorithm (§23.2) the edges are ordered e_1, \ldots, e_E by weight and e_i is added to the tree if and only if its addition does not cause a cycle. The data structure that does this efficiently is covered in detail in Chapter 21, which we are not covering. Instead, these notes give a specific implementation of the algorithm. Assume the edges have already been ordered by weight and x_i, y_i are the vertices of e_i. To each vertex x we have functions $\pi(x)$ and $\text{SIZE}(x)$, initially all $\pi(x) \leftarrow x$ and all $\text{SIZE}(x) \leftarrow 1$.

For $i = 1$ to E we set (for notational convenience) $x \leftarrow x_i$, $y \leftarrow y_i$ and do the following:

WHILE $\pi(x) \neq x$
 $x \leftarrow \pi(x)$ (*going down the stairs*)

WHILE $\pi(y) \neq y$
 $y \leftarrow \pi(y)$ (*going down the stairs*)

IF $x \neq y$ then DO
 IF $\text{SIZE}(x) \leq \text{SIZE}(y)$ then DO
 $\pi(x) \leftarrow y$
 $\text{SIZE}(y) \leftarrow \text{SIZE}(y) + \text{SIZE}(x)$
 OTHERWISE DO
 $\pi(y) \leftarrow x$
 $\text{SIZE}(x) \leftarrow \text{SIZE}(x) + \text{SIZE}(y)$

Add e_i to Minimal Spanning Tree

At any time the $\pi(x)$ will give a rooted forest with $\pi(x) = x$ exactly when x is a root. In that case $\text{SIZE}(x)$ will be the size of the forest. Certain edges will have already been put in the Minimal Spanning Tree so that the structure will be a forest. That forest and the forest given by $\pi(x)$ will have the same components (though they may have different edges).

Example. $e_1 = (a, c)$, $e_2 = (c, b)$, $e_3 = (d, e)$, $e_4 = (a, d)$, $e_5 = (b, d)$. With $i = 1$ we add e_1 to tree, $\pi(a) \leftarrow c$ and $\text{SIZE}(c) \leftarrow 2$. With $i = 2$ we add e_2 to tree, as $\text{SIZE}(c) > \text{SIZE}(b)$ we set $\pi(b) \leftarrow c$ and $\text{SIZE}(c) \leftarrow 3$.

With $i = 3$ we add e_3 to tree, $\pi(d) \leftarrow e$ and $\text{SIZE}(e) \leftarrow 2$. Now $i = 4$ so $x \leftarrow a; y \leftarrow d$. The WHILE parts trace x down to its root c and y down to its root e. As $\text{SIZE}(c) > \text{SIZE}(e)$ we set $\pi(e) \leftarrow c$, $\text{SIZE}(e) \leftarrow 5$ and add e_4 to the tree. Note that the current state of the Minimal Spanning Tree and the forest given by π have different edges but the same components. Now with $i = 5$, $x \leftarrow b; y \leftarrow e$. Both x, y trace down with the WHILE loops to the same c so we do nothing and e_5 is not added to the tree.
To analyze the time we note that the process is done E times, so we analyze the process with a particular $x = x_i, y = y_i$. The key aspect to the time is we must iterate $\pi(x) \leftarrow x$ until reaching a root. (Similarly for y.) At first blush, this seems like it might take time V. (V is number of vertices.) However, here we use the fact that when we earlier considered an edge x, y and we moved them down to their roots we then reset $\pi(x) \leftarrow y$ where $\text{SIZE}[y]$ had been bigger than $\text{SIZE}[x]$. Now the new $\text{SIZE}[y]$ became the old $\text{SIZE}[x] + \text{SIZE}[y]$. That is, the new $\text{SIZE}[y]$ is at least double the old $\text{SIZE}[x]$. As x is no longer a root its value of $\text{SIZE}[x]$ will never change. The value of $\text{SIZE}[y]$ may change later, but it can only get larger. Hence we will have $2 \cdot \text{SIZE}[x] \leq \text{SIZE}[y]$ forevermore. Therefore, as we look at a path $x, \pi(x), \pi(\pi(x)), \ldots$ the value $\text{SIZE}(\cdot)$ at least doubles each iteration. Therefore the path can only be of length $\log V$. This is a big savings over the length V without this aspect. Now the process with a particular x, y takes time $O(\log V)$ and therefore the total time is $O(E \log V)$.

Path Compression: (This is extra material and not on the final!) Before we move “down the stairs” we save, temporarily, the original value of x. (same for y) with

$$\text{originalx} \leftarrow x$$

Then we go “down the stairs” to the new value of x. Now we go back up to originalx and reset the entire path to arrow the new x:

$$\begin{align*}
z &\leftarrow \text{originalx} \\
\pi[z] &\leftarrow x \\
\text{WHILE} &\pi[z] \neq z \\
\pi[z] &\leftarrow x \\
z &\leftarrow \pi[z]
\end{align*}$$

That is, the entire path from originalx to x is now pointing directly to x. This has effectively doubled the time, as we go down the WHILE loop twice. However, when later in the program we have a WHILE loop that hits originalx it will jump directly to x. That is, the path has been *compressed*. Analysis of path compression is remarkably subtle (mathematicians love it!) but lets just say that it gives an improved running time for MST when n is really large.