1. (20) Give an algorithm HORSE with the following property. The input is two arrays \(A[1\cdots N], B[1\cdots N]\), both arrays in increasing order. The output is an array \(C[1\cdots (2N)]\) which has all the values of the arrays \(A,B\) and is in increasing order. How long does your algorithm take? (Brief reason please!)

Solution: This is the MERGE algorithm as given in class.

2. (20) Illustrate the operation of COUNTINGSORT on the array

\[A = (2, 1, 2, 1, 0, 0, 0, 1)\]

with \(n = 8\) and \(k = 2\). Pictures and some well chosen words, please. (You do not need every detailed step but you must make clear the main steps.)

Solution: You have an auxiliary array \(C[0\cdots 2]\) which is initially zero. For \(i = 1\) to \(n = 8\), running through \(A\), you increment \(C[A[i]]\) by one. This gives a count on \(C\): \((3, 3, 2)\). Now for \(j = 1\) to \(2 (k)\) you set \(C[j] \leftarrow C[j] + C[j−1]\). This turns \(C\) into a cumulative count: \((3, 6, 8)\). Finally for \(i = 8\) down to \(1\) (going down the array \(A\)) you set (say) \(value = A[i]\) and then \(position = C[value]\). Then you place the value \(A[i]\) in that position in \(B\): \(B[position] \leftarrow value\). Critically, you then decrement \(C[value]\) so that next time you hit that value it will be going to a different place.

3. (20) For the following algorithms let \(T(N)\) denote the total number of times the step after the WHILE step is reached. For the first algorithm give (five points) an exact formula for \(T(N)\). For the second algorithm first (ten points) give \(T(N)\) as a precise sum. Then (five points) Find \(T(N)\) is the form \(T(N) = \Theta(g(N))\) for a standard \(g(N)\). Reasons please!

(a) \(X=1\)

\[\text{WHILE } X < N \quad \text{do } X=2*X\]

Solution: After applying the doubling \(t\) times you will have \(X = 2^t\). So \(T[N]\) is the maximal \(t\) with \(2^t < N\) which is the maximal \(t\) with \(2^t \leq N−1\) which is the maximal \(t\) with \(t \leq \lg(N−1)\) which is \(\lfloor \lg(N−1) \rfloor\). (Almost full credit if you missed the \(-1\).)
(b) FOR I=1 TO N
 X=1
 WHILE X^2 ≤ I
 X ++
 Solution: For each I you will apply the X++ step when X ≤ √I so \([\sqrt{I}]\) times. Thus
 \[T(N) = \sum_{I=1}^{N} [\sqrt{I}] \]

 Without the floor the splitting in half methods makes \(T(N) = \Theta(N^{3/2})\). The floors only effect each term by at most one and therefore the sum by at most \(N\) which is negligible compared to \(\Theta(N^{3/2})\) so the answer is \(T(N) = \Theta(N^{3/2})\).

4. (10) In hashing, what are collisions? Describe one method (your choice!) for dealing with them.
 Solution: Collisions are when there are two items \(x, y\) which have the same hash value, that is, \(h(x) = h(y)\). There are two methods: One is to have the hash table be a table of linked lists and simply add \(y\) to the linked list. The other is to have a probe sequence, if \(h(y)\) fails you have backups \(h_1(y), h_2(y), \ldots\) that you try.

5. (20) Let \(A\) is a max-heap with heapsize \(N\). Describe a program called here \textsc{BigGulp}(A, i, key) that replaces \(A[i]\) by a value \(key\) which is bigger than \(A[i]\) and then restores the heap property. How long does \textsc{BigGulp} take? How long does \textsc{BigGulp} take in the special case when \(i = 1\)?
 Solution: Set \(y = i\) and reset \(A[y] \leftarrow key\). Now while \(y \neq 1\) you check whether \(A[parent[y]] < A[y]\). If it is you interchange \(A[parent[y]]\) and \(A[y]\) and reset \(y\) to \(parent[y]\). Else you stop. When \(i = 1\) you stop immediately so it takes 1 (or \(O(1)\)) steps. (Its bad form to say it takes zero steps because, after all, you have to check that \(i = 1\).)

6. (15) You want to sort five elements \(a, b, c, d, e\) using seven paired comparisons. Assume that your question is “Is \(a < b\)” and that the answer was Yes. Assume that your second question is “Is \(a < c\)” Using the Information-Theoretic Lower Bound prove that you will not be able to sort the elements.
 Solution: Suppose the answer is Yes. (For a method to work it has
to work in all cases.) Now we know that \(a \) is the smallest of \(a, b, c \). Of the 120 original orderings, one third of them, or 40, are still valid. But we only have five further questions and \(40 > 2^5 \) so we cannot succeed by the Information Theoretic Lower Bound.

7. (15) There is an algorithm \texttt{RABBIT}(A,B) that multiplies two \(n \times n \) matrices \(A, B \) by performing seven multiplications of \((n/2) \times (n/2) \) matrices and then performing \(O(n^2) \) further operations. Create a recursive equation for the time \(T(n) \) that \texttt{RABBIT}(A,B) takes and use the Master Theorem to give \(T(n) \) asymptotically.

\textbf{Solution:} This is Strassen’s Algorithm. The recursion is

\[T(n) = 7T(n/2) + O(n^2) \]

which is the low overhead case of the Master Theorem so that \(T(n) = \Theta(n^\alpha) \) where \(\alpha = \log_2 7 \).

8. (15) Let \(A[1 \cdots N] \) be an array with all entries integers between 0 and \(N \). How long would \texttt{RADIX-SORT} take to sort \(A \) assuming that we use base 2 (that is, binary)? (Assume the entries \(A[I] \) are already given as binary strings in the input.) You must give an argument for your answer.

\textbf{Solution:} Each counting sort would take time \(O(N) \). But there are \(\lg N \) binary digits so the total time is \(O(N \lg N) \).

9. (5) State the binary-search-tree property. (That is, the condition that the keys are required to fulfill.)

\textbf{Solution:} For any node \(x \) and any node \(y \) in the left subtree of \(x \), the value at \(y \) is \(\leq \) the value at \(x \). For any node \(x \) and any node \(y \) in the right subtree of \(x \), the value at \(y \) is \(\geq \) the value at \(x \).