1. (20) Let $A[1 \cdots N]$ and $B[1 \cdots N]$ be arrays of numbers that are already in increasing order. Give an efficient algorithm for creating an array $APPLE[1 \cdots 2N]$ consisting of the $2N$ entries in A and B, placed in increasing order. How long (give a short reason) does your algorithm take?

Solution: This is the MERGE algorithm. The time is $O(N)$.

2. (20) For the following algorithms let $T(N)$ denote the total number of times the step after the WHILE step is reached. For the first algorithm give an exact formula for $T(N)$. For the second algorithm first give $T(N)$ as a precise sum. Then find $T(N)$ is the form $T(N) = \Theta(g(N))$ for a standard $g(N)$. Reasons please!

(a) $W=1$
\[\text{WHILE } W < N \]
\[\quad \text{do } W=2*W \]
\[\text{END WHILE} \]

Solution: When you hit the WHILE for the t-th time $W = 2^{t-1}$. So you want the maximal t so that $2^{t-1} < N$, or $2^{t-1} \leq N-1$ or $t \leq 1 + \lg(N - 1)$ so $\lceil 1 + \lg(N - 1) \rceil$.

(b) FOR $J=1$ TO N
\[V=J \]
\[\text{WHILE } V \leq N \]
\[\quad \text{do } V=2*V \]
\[\text{END WHILE} \]
END FOR

Solution: The inner loop takes (ignoring floors and ceilings) $\lg(N/J)$ so you want $\sum_{J=1}^{N} \lg(N/J)$. One approach is that this is $\lg(N^N/N!)$. But by Stirling's Formula $N^N/N! \sim e^N(2\pi N)^{-1/2}$ so the \lg is $\Theta(N)$.

(c) (20) Let $W[1 \cdots N]$ be an array of integers with all $1 \leq W[i] \leq K$. Give (psuedocode is fine) the algorithm COUNTINGSORT that ends with W in increasing order. (You may, and should, create auxilliary arrays.) Analyze the running time of COUNTINGSORT.
when \(K = N \). (Note: It is not sufficient simply to give the answer, an analysis is called for.)

Solution: This is basic COUNTINGSORT. When \(K = N \) all three parts take time \(O(N) \) for a total time of \(O(N) \).

3. (25) Consider the following Binary Search Tree \(\text{TREE} \) with \(\text{ROOT(TREE)} = R \).
(The values have been deliberately excluded. Assume the values are distinct.))

<table>
<thead>
<tr>
<th>vertex</th>
<th>A</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>L</th>
<th>M</th>
<th>O</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>leftchild</td>
<td>NIL</td>
<td>L</td>
<td>T</td>
<td>NIL</td>
<td>NIL</td>
<td>NIL</td>
<td>A</td>
<td>NIL</td>
<td></td>
</tr>
<tr>
<td>rightchild</td>
<td>G</td>
<td>O</td>
<td>M</td>
<td>H</td>
<td>NIL</td>
<td>NIL</td>
<td>NIL</td>
<td>I</td>
<td>NIL</td>
</tr>
<tr>
<td>parent</td>
<td>R</td>
<td>A</td>
<td>I</td>
<td>R</td>
<td>G</td>
<td>H</td>
<td>G</td>
<td>NIL</td>
<td>H</td>
</tr>
</tbody>
</table>

(a) (5) Draw a (nice!) picture of this tree.

Solution: Start at the root with R and children A,I. Continuing

```
          R
         /   \
        A     I
       / \
      G   H
     /   \
    L   O  \
        \
        T
```

(b) (10) Which is the vertex with minimal value. Illustrate how the program \(\text{MIN} \) will find it.

Solution: Start at root R. Go to left A. Go to left NIL. So A is the MIN.

(c) (10) Give the vertices of the tree in increasing order of value.
(Give an indication of your method, but you needn't give every detail.)

Solution: \(\text{IOTW(R)} \) calls \(\text{IOTW(A)} \). Nothing on left so print A. Now call \(\text{IOTW(G)} \). Left to L, print L; print G; then print O; finish \(\text{IOTW(G)} \); finish \(\text{IOTW(A)} \); print R; Now \(\text{IOTW(I)} \). Final answer: ALGORITHM

4. (20) Let \(A \) be an array of length 127 in which the values are distinct and in increasing order.

(a) In the procedure \(\text{BUILD-MAX-HEAP(A)} \) precisely how many times will two elements of the array be exchanged? (Reason, please!)

Solution: (from first assignment!) \(\text{BUILD-MAX-HEAP(A)} \) starts
from \(I = \text{LENGTH}(A)/2 \) \(\text{DOWN} \) to 1, every \(I \) will do Max-Heapify.

For \(32 \leq I \leq 63 \), there should be one exchange.
For \(16 \leq I \leq 31 \), there should be 2 exchanges.
For \(8 \leq I \leq 17 \), there should be 3 exchanges.
For \(I = 4, 5, 6, 7 \), there should be 4 exchanges.
For \(I = 2, 3 \) there should be 5 exchanges.
The root goes down to the bottom, 6 exchanges.
Total: \(32 \cdot 1 + 16 \cdot 2 + 8 \cdot 3 + 4 \cdot 4 + 2 \cdot 5 + 1 \cdot 6 = 120 \)

(b) Now suppose the values are distinct and in decreasing order.
Again, in the procedure \textsc{Build-Max-Heap}(A) precisely how many times will two elements of the array be exchanged? (Reason, please!)

\textbf{Solution:} Never! Each element will be placed originally in precisely its correct final spot.

5. (20) Consider an algorithm \textsc{BohoC} for multiplication of two \(n \) digit numbers. (Don’t worry about how \textsc{BohoC} really works, we just want an analysis based on the information below.) It multiplies two \(n \) digit numbers by making five recursive calls to multiplication of two \(n/2 \) digit numbers plus two additions of \(n \) digit numbers. Each of the additions take time \(O(n) \). Give the recursion for the time \(T(n) \) for \textsc{BohoC} and use the Master Theorem to find the asymptotics of \(T(n) \).
Is \textsc{BohoC} a good algorithm to use for \(n \) large? Give brief reason for your answer.

\textbf{Solution:} \(T(n) = 5T(n/2) + O(n) \). This is the low overhead case so \(T(n) = \Theta(n^\alpha) \) wth \(\alpha = \log_2 5 \). As \(\log_2 5 > 2 \) this is taking more than time \(O(n^2) \) which is what the standard multiplication takes so, no, this is not a good algorithm.