For every complex problem there is a simple solution. And it’s always wrong.

1. (*) Suppose that the Huffman Code for \{v, w, x, y, z\} has 0 or 1 as the code word for z. \textit{Prove} that the frequency for z cannot be less than \(\frac{1}{3}\). \textit{Give an example} where the frequency for z is 0.36 and z does get code word 0 or 1.

2. (a) What is an optimal Huffman code for the following code when the frequencies are the first eight Fibonacci number?

\[a : 1, b : 1, c : 2, d : 3, e : 5, f : 8, g : 13, h : 21 \]

(b) The Fibonacci sequence is defined by initial values 0, 1 with each further term the sum of the previous two terms. Generalize the previous answer to find the optimal code when there are \(n\) letters with frequencies the first \(n\) (excluding the 0) Fibonacci numbers.

3. Suppose that in implementing the Huffman code we weren’t so clever as to use Min-Heaps. Rather, at each step we found the two letters of minimal frequency and replaced them by a new letter with frequency their sum. How long would that algorithm take, in Thetaland, as a function of the initial number of letters \(n\).

4. \textbf{DO NOT SUBMIT} Consider the undirected graph with vertices 1, 2, 3, 4, 5 and adjacency lists (arrows omitted) 1 : 25, 2 : 1534, 3 : 24, 4 : 253, 5 : 412. Show the \(d\) and \(\pi\) values that result from running BFS, using 3 as a source. Nice picture, please!

5. Show the \(d\) and \(\pi\) values that result from running BFS on the undirected graph of Figure A, using vertex \(u\) as the source.

6. We are given a set \(V\) of boxers. Between any two pairs of boxers there may or may not be a rivalry. Assume the rivalries form a graph \(G\) which is given by an adjacency list representation, that is, \(\text{Adj}[v]\) is a list of the rivals of \(v\). Let \(n\) be the number of boxers (or nodes) and \(r\) the number of rivalries (or edges). Give a \(O(n + r)\) time algorithm that determines whether it is possible to designate some of boxers as
GOOD and the others as BAD such that each rivalry is between a GOOD boxers and a BAD boxer. If it is possible to perform such a designation your algorithm should produce it.

Here is the approach: Create a new field TYPE[v] with the values GOOD and BAD. Assume that the boxers are in a list L so that you can program: For all \(v \in L \). The idea will be to apply BFS\[v\] – when you hit a new vertex its value will be determined. A cautionary note: BFS\[v\] might not hit all the vertices so, just like we had DFS and DFS-VISIT you should have an overall BFS-MASTER (that will run through the list L) and, when appropriate, call BFS[v].

Note: The cognescenti will recognize that we are determining if a graph is bipartite!

7. **DO NOT SUBMIT** Show how DFS works on Figure B. All lists are alphabetical except we put R before Q so it is the first letter. Show the discovery and finishing time for each vertex.

8. Show the ordering of the vertices produced by TOP-SORT when it is run on Figure C, with all lists alphabetical.

9. **DO NOT SUBMIT** Let \(G \) be a DAG with a specific designated vertex \(v \). Uno and Dos (Spanish for One and Two) play the following game. A token is placed on \(v \). The players alternate moves, Uno playing first. On each turn if the token is on \(w \) the player moves the token to some vertex \(u \) with \((w, u) \) an edge of the DAG. When a player has no move, he or she loses. Except for the first part below, we assume Uno and Dos play perfectly.

(a) Argue that the game must end. Indeed, argue that if \(G \) has \(n \) vertices then the game cannot take more than \(n - 1 \) moves. (Key: Its a DAG!)

(b) Define \(\text{VALUE}[z] \) to be the winner of the game (either Uno or Dos) where the token is initially placed at vertex \(z \) and Uno plays first. (That is, \(\text{VALUE}[z] \) being Uno means that the player who has the move will win, \(\text{VALUE}[z] \) being Dos means that the player who has the move will lose.) When \(z \) is a leaf node and Uno plays first, Uno has no move and so loses and therefore \(\text{VALUE}[z] \) is Dos. But what if \(z \) is not a leaf node. Suppose the \(\text{VALUE}[w] \) are known for all \(w \in Adj[z] \). How do those values determine \(\text{VALUE}[z] \)? (To give part of the answer: Suppose there is some \(w \in Adj[z] \) with
VALUE[w] equal Dos. From z Uno’s winning strategy is to move to w.)

(c) Using the above idea modify DFS-VIST[v] to find who wins the original game. In your modified algorithm there will be an extra function VALUE[w] which is originally set to NIL for all vertices w, representing that the winner of the game starting at w has not yet been determined. When the unmodified DFS-VISIT[w] would be finished add a couple of lines of pseudocode to give VALUE[w]. Give an upper bound on the time of your algorithm.

I cannot live without people. – Pope Francis