Square Root Constructibility

Definition 1 A square root tower is a tower of fields

\[Q = K_0 \subset K_1 \subset \ldots \subset K_r = K \]

with, for \(1 \leq i \leq r \), \(K_i = K_{i-1}(\sqrt[2]{\alpha_i}) \) where \(\alpha_i \in K_{i-1} \).

Definition 2 \(\alpha \) is square root constructible if there exists a square root tower (1) with \(\alpha \in K_r \).

Theorem 0.1 Given a square root tower (1) there exists another tower with fields \(K_i^+ \), \(0 \leq i \leq r \) (plus other intermediate fields in the tower) where \(K_i \subset K_i^+ \) and (critically) \(K_i^+ : Q \) is normal.

Proof: \(K_0^+ = Q \). Suppose, by induction, that \(K_i^+ \) has been defined and is the splitting field of \(f(x) \in Q[x] \). Let \(\gamma \) be such that \(K_i = K_{i-1}(\sqrt[2]{\gamma}) \). Let \(p(x) \in Q[x] \) be the minimal polynomial for \(\gamma \) and let \(\gamma = \gamma_1, \ldots, \gamma_s \) be the roots of \(p(x) \). Set

\[K_i^+ K_{i-1}^+ (\sqrt[2]{\gamma_1}, \ldots, \sqrt[2]{\gamma_s}) \]

We extend the tower from \(K_{i-1}^+ \) to \(K_i^+ \) by

\[K_{i-1}^+ \subset K_{i-1}^+ (\sqrt[2]{\gamma_1}) \subset K_{i-1}^+ (\sqrt[2]{\gamma_1}, \sqrt[2]{\gamma_2}) \subset \ldots \subset K_{i-1}^+ (\sqrt[2]{\gamma_1}, \sqrt[2]{\gamma_2}, \ldots, \sqrt[2]{\gamma_s}) = K_i^+ \]

To show \(K_i^+ : Q \) is normal set

\[g(x) = f(x)p(x^2) \]

The roots of \(p(x^2) \) are \(\pm \sqrt[2]{\gamma_j} \) and the roots of \(f(x) \) generate \(K_i^+ \) so that \(K_i^+ \) is the splitting field of \(g(x) \).

Theorem 0.2 Let \(\alpha \) be square root constructible. Let \(\alpha \) have minimal polynomial \(h(x) \in Q[x] \) with \(h(x) \) having roots \(\alpha = \alpha_1, \ldots, \alpha_r \). Let \(L = (\alpha_1, \ldots, \alpha_r) \) be the splitting field of \(h(x) \) over \(Q \). Then \([L : Q] \) must be a power of two.

Proof: There is a square root tower (1) with \(\alpha \in K \) so by Theorem 0.1 there is a square root tower ending in some \(K^+ \) with \(\alpha \in K^+ \) and \(K^+ : Q \) normal. But then all \(\alpha_j \in K^+ \) so that \(L \subset K^+ \). As \([K^+ : Q] \) is a power of two so is \([L : Q] \).

Comment: Later we will show that Theorem 0.2 gives an if and only if condition for \(\alpha \) to be square root constructible.