1. Let \(R \) be a ring and \(M \subset R \) an ideal. Assume \(M \neq R \) (but do not assume \(M \) is maximal). Let \(a \in R \).

 (a) Assume there exists an ideal \(N \) with \(M \subset N \subset R \) and \(M \neq M, R \) and \(a \in N \). Prove that \(a \) has no multiplicative inverse in \(R/M \).

 Solution: For any \(r \in R \), \(\overline{a} \cdot \overline{r} = \overline{ar} \). Setting \(n = ar \), as \(N \) is an ideal \(n \in N \). We claim \(n \neq 1 \). For if \(n = 1 \) then \(n - 1 = m \in M \subset N \) so \(1 = n - (n - 1) \in N \) and \(N = R \).

 (b) Assume there does not exist an ideal \(N \) with \(M \subset N \subset R \) and \(M \neq M, R \), and \(a \in N \). Prove that \(\overline{a} \) has a multiplicative inverse in \(R/M \).

 Solution: Set
 \[
 M^+ = \{ m + ar : m \in M, r \in R \}
 \]
 Then \(a \in M^+ \) so \(M \neq M^+ \) and \(M \subset M^+ \) and therefore (as there is no intermediate size ideal) \(M^+ = R \) so \(1 \in M^+ \) and \(1 = m + ar \) for some \(r \in R \) and so \(\overline{1} = \overline{ar} \).

2. Let \(R \) be a ring and let \(a, b \in R \). Set
\[
M = \{ ar + bs : r, s \in R \}
\]
Prove that \(M \) is an ideal.

Solution:

(a) Identity: \(0 = a(0) + b(0) \in M \)

(b) Closure under Addition. Let \(\alpha, \beta \in M \) so that \(\alpha = ar_1 + bs_1, \beta = ar_2 + bs_2 \). Then \(\alpha + \beta = a(r_1 + r_2) + b(s_1 + s_2) \in M \).

(c) Closure under Additive Inverse. Let \(\alpha \in M \) so that \(\alpha = ar + bs \). Then \(-\alpha = a(-r) + b(-s) \in M \).

(d) Closure under Multiplication by Anything. Let \(\alpha \in M \) so that \(\alpha = ar + bs \). For any \(t \in R \), \(t\alpha = a(rt) + b(st) \in M \).

3. Let \(\mathbb{Z}[i] = \{ a + bi : a, b \in \mathbb{Z} \} \) where \(i = \sqrt{-1} \), the usual Gaussian Integers.
(a) For \(\alpha \in \mathbb{Z}[i] \) define (this is called a norm) \(N(\alpha) = |\alpha|^2 \), where \(|\cdot| \) is the usual complex number absolute value, that is \(|c+di| = \sqrt{c^2 + d^2} \). Give a formula for \(N(\alpha) \) for \(\alpha \in R \). Show \(N(\alpha\beta) = N(\alpha)N(\beta) \).

Solution: \(N(a+bi) = a^2 + b^2 \). We need show
\[(a^2 + b^2)(c^2 + d^2) = (ac - bd)^2 + (bc + ad)^2\]
This follows from elementary (high-school) algebra. Or we may think of this as the writing of complex numbers \(\alpha = a + bi = \text{Re}e^{i\theta} \), so that \(|\alpha| = \text{Re} \). When we multiply complex numbers the \(\text{Re} \) values multiply so that \(|\alpha\beta| = |\alpha| \cdot |\beta| \) and, squaring, \(N(\alpha\beta) = N(\alpha)N(\beta) \).

(b) Precisely which elements of \(\mathbb{Z}[i] \) have multiplicative inverses? (Use the norm to show that you have everything.)

Solution: \(+1, -1, i, -i\). To be a unit you must have norm one (as norms can’t go down under multiplication by nonzero elements) and so \(a^2 + b^2 = 1 \) which has these four solutions.

(c) Define \(\phi : \mathbb{Z}[i] \to \mathbb{Z}[i] \) by \(\phi(a+bi) = a - bi \). (This is generally known as complex conjugation.) Show that \(\phi \) is a homomorphism by showing \(\phi(\alpha + \beta) = \phi(\alpha) + \phi(\beta) \) and \(\phi(\alpha\beta) = \phi(\alpha)\phi(\beta) \). Show that \(\phi \) has kernel \(\{0\} \).

Solution: Straightforward calculation.

(d) A number \(\alpha \in \mathbb{Z}[i] \) is called composite if we can write \(\alpha = \beta\gamma \) where neither \(\beta \) not \(\gamma \) have multiplicative inverses. (That last condition is to avoid “trivial” factorizations like \(23 = i(-23i) \).)

If it is nonzero, not a unit, and not composite it is called prime. Show that \(2 \) is composite. Show that \(41 \) is composite. Show \(7+2i \) is prime. (Idea: Use the norm)

Solution: \(2 = (1+i)(1-i) \), \(41 = (5+4i)(5-4i) \), but \(7+2i \) has norm 53. If \(7+2i = \alpha\beta \) then \(53 = N(\alpha)N(\beta) \) and the norm is a positive integer and 53 is a prime in the integers so one of \(N(\alpha), N(\beta) = 1 \), say \(\alpha \), and thus \(\alpha \) is a unit.

4. Set
\[R = \{a+b\sqrt{-5} : a, b \in \mathbb{Z} \} \]

(a) Give a formula for \(N(\alpha) \) (as defined above) for \(\alpha = a+b\sqrt{-5} \in R \).

Solution:
\[N(a+b\sqrt{-5}) = (a+b\sqrt{-5})(a-b\sqrt{-5}) = a^2 + 5b^2 \]
(b) Precisely which elements of R have multiplicative inverses? (Use the norm to argue that you have all of them.)

Solution: Only $+1, -1$. As norm goes up under multiplication by a nonzero element the norm must be one and these are the only two solutions to $a^2 + 5b^2 = 1$.

(c) Set

$$I = \{2\alpha + (1 + \sqrt{-5})\beta : \alpha, \beta \in R\}$$

Plot those (a, b) with $-4 \leq a, b \leq +4$ so that $a + b\sqrt{-5} \in I$.

Solution: It will be a checkerboard pattern with every other element. That is, every (a, b) with $a + b$ even.

(d) Show that I is an ideal.

Solution: Special case of general result in second problem above.

(e) Show that $1 \not\in I$.

Solution: For any $\alpha = a + b\sqrt{-5}$ and $\beta = c + d\sqrt{-5}$ we have $2\alpha + (1 + \sqrt{-5})\beta = x + y\sqrt{-5}$ where $x = 2a + c - 5d$ and $y = 2b + c + d$. But then $x + y = 2a + 2b + 2c - 4d$ is even. That is, every element $x + y\sqrt{-5} \in I$ must have $x + y$ even. So $1 + 0\sqrt{-5} \not\in I$.

(f) Show that I is not a principal ideal. (Idea: Assume $I = \langle \kappa \rangle$ and use the properties of $N(\cdot)$ above.)

Solution: If $I = \langle \kappa \rangle$ then $\kappa|2$ so $N(\kappa)|N(2) = 4$ and $\kappa|(1 + \sqrt{-5})$ so $N(\kappa)|N(1 + \sqrt{-5}) = 6$. So $N(\kappa)|2$. But no $\kappa \in R$ has norm two so $N(\kappa) = 1$ so $\kappa = \pm 1$ but we know $1, -1 \not\in I$.

(g) Find representatives of R/I. What well known field is it isomorphic to?

Solution: $R/I = \{0, 1\}$ and is isomorphic to \mathbb{Z}_2.