Honors Algebra II
Assignment 10 Solutions

1. Let \(F \subset L \subset K \) be fields in \(\mathbb{C} \). Assume that \(K : F \) is normal and that \(L : F \) is normal. Let \(\tau \in \Gamma[K:F] \) and \(\sigma \in \Gamma[K:L] \). Let \(l \in L \)

 (a) Using a result shown in class argue that \(\tau(l) \in L \).
 \textbf{Solution:} We showed that when \(L : F \) was normal that any isomorphism \(\gamma : L \to L' \) over \(F \) had \(L' = L \). The restriction of \(\tau \) to \(L \) is such an isomorphism so \(L' = L \).

 (b) Show that \((\tau \sigma \tau^{-1})(l) = l \).
 \textbf{Solution:} Set \(\tau(l) = l' \) so \(l' \in L \). So \(\sigma(l') = l' \). So \(\tau^{-1}(l') = l \).
 That is \((\tau \sigma \tau^{-1})(l) = l \).

 (c) From the above show that \(\Gamma[K:L] \) is a normal subgroup (get out those Algebra I notes!) of \(\Gamma[K:F] \). (Assume its already been shown that it is a subgroup. You only need show the normal part.)
 \textbf{Solution:} We’ve shown that if \(\tau \in \Gamma[K:F] \) and \(\sigma \in \Gamma[K:L] \) then \(\tau \sigma \tau^{-1} \) fixes all elements of \(L \) so \(\tau \sigma \tau^{-1} \in \Gamma[K:L] \). That is what we need to show that you have a normal subgroup.

 (d) In the case \(F = \mathbb{Q} \), \(L = \mathbb{Q}(\omega) \), \(K = F(\alpha, \omega) \) (with \(\alpha = 2^{1/3}, \omega = e^{2\pi i/3} \) as in our standard example) give the groups \(\Gamma[K:L] \) and \(\Gamma[K:F] \) explicitly in terms of permutations of \(\alpha, \beta = \alpha \omega, \gamma = \alpha \omega^2 \).

 \textbf{Solution:} \(\Gamma[K:F] \), as done in class, is all six permutations of \(\alpha, \beta, \gamma \). Now fix \(L \), so \(\tau(\omega) = \omega \). There are three cases. Either \(\tau(\alpha) = \alpha \) so \(\tau = e \). Or \(\tau(\alpha) = \beta = \alpha \omega \). Then \(\tau(\beta) = \tau(\alpha \omega) = \alpha \omega = \gamma \) and similarly \(\tau(\gamma) = \alpha \). So \(\tau \) sends \(\alpha, \beta, \gamma \) into \(\beta, \gamma, \alpha \) respectively. Similary if \(\tau(\alpha) = \gamma, \tau \) sends \(\alpha, \beta, \gamma \) into \(\gamma, \alpha, \beta \) respectively.

2. Let \(F \subset K \) be fields in \(\mathbb{C} \) with \([K:F] = 2\). Prove that \(K : F \) is a normal extension.
 \textbf{Solution:} Let \(K : F \) be an extension of degree 2. Then \(K = F(\alpha) \) for some \(\alpha \), where the minimal polynomial of \(\alpha \) in \(K[x] \) has degree 2. Let \(m(x) \in K[x] \) be the minimal polynomial of \(\alpha \), so

 \[m(x) = x^2 + bx + c \]

 for some \(b, c \in K \). (We may assume \(m(x) \) is monic to make the calculations easier.) We will show \(K : F \) is normal by showing that \(K \)
is a splitting field for the polynomial \(m(x) \) over \(F \). By the quadratic formula, the roots of \(m(x) \) are given by

\[
x = \frac{-b \pm \sqrt{b^2 - 4c}}{2}
\]

As \(m(x) \) is irreducible the roots are distinct. Suppose

\[
\alpha = \frac{-b + \sqrt{b^2 - 4c}}{2},
\]

(the case where the square root is subtracted is similar) then

\[
\beta = \frac{-b - \sqrt{b^2 - 4c}}{2} = \frac{b - \sqrt{b^2 - 4c} - 2b}{2} = -\alpha - b.
\]

Therefore, \(\alpha, \beta \in F(\alpha) = K \). (Another approach: Letting \(\alpha, \beta \) be the roots, \(\alpha + \beta = -b \) immediately from the connection between the roots of a polynomial and its coefficients.)

3. Let \(K_1, K_2 \) be normal extensions of \(Q \). Let \(M \) denote the minimal field containing \(K_1 \cup K_2 \). Prove that \(M \) is a normal extension of \(Q \). [One approach: Write \(K_1 = Q(\alpha_1, \ldots, \alpha_r) \) where the \(\alpha_i \) are all the roots of some \(p(x) \in Q[x] \) and do similarly for \(K_2 \).]

Solution: Write \(K_1 \) as above and similarly \(K_2 = Q(\beta_1, \ldots, \beta_s) \) where the \(\beta_j \) are all the roots of some \(q(x) \in Q[x] \). Then \(M = Q(\alpha_1, \ldots, \alpha_r, \beta_1, \ldots, \beta_s) \) which are all the roots of \(p(x)q(x) \) which is in \(Q[x] \). (Reminder: To be a splitting field you don’t need to have an irreducible polynomial!)

4. Let \(\alpha \) be a root of \(f(x) = x^3 + x^2 - 2x - 1 \in Q[x] \).

(a) Show \(f(x) \) is irreducible over \(Q \).

Solution: It is a cubic and by Gauss’s Theorem if it factors it would factor into \(\mathbb{Z}[x] \) so it would a factor \(x - a \) so it would have an integer root \(a \). Then \(a \) would have to divide \(-1\) so it would be either \(+1\) or \(-1\), and neither of them work.

(b) Find \([Q(\alpha) : Q] \).

Solution: \(f(x) \) is irreducible over \(Q \) and \(\alpha \) is a root of \(f(x) \), so \(f(x) \) is the minimal polynomial for \(\alpha \) over \(Q \). Hence \([Q(\alpha) : Q] = \deg(f) = 3 \).

(c) Set \(\beta = -1/(\alpha + 1) \). Find \(\beta \) in the form \(a + b\alpha + c\alpha^2 \).

Solution: First lets find \(1/(1 + \alpha) \): \((\alpha + 1)(a + b\alpha + c\alpha^2) = \)
\[a + b \alpha + c \alpha^2 + a \alpha + b \alpha^2 + c(-\alpha^2 + 2 \alpha + 1) = 1 \]
gives the equations:
\[a + c = 1, \quad b + a + 2c = 0, \quad c + b - c = 0 \]
so \(b = 0, \ a = 2, \ c = -1 \). Thus \(\beta \) is the negative of that:
\[\beta = \alpha^2 - 2. \]

(d) Show that \(f(\beta) = 0 \). (Bit of grunt work here!)
Solution: We need show
\[
\frac{-1}{(1 + \alpha)^3} + \frac{1}{(1 + \alpha)^2} - 2 - \frac{1}{1 + \alpha} - 1 = 0
\]
Multiplying out by \((1 + \alpha)^3\) we get that a polynomial which is zero. Or, we need show
\[
(\alpha^2 - 2)^3 + (\alpha^2 - 2)^2 - 2(\alpha^2 - 2) - 1 = 0
\]
One makes a list of \(\alpha^3, \alpha^4, \alpha^5, \alpha^6 \) and everything works out.

(e) Find \(\gamma \in Q(\alpha) \), \(\gamma, \beta, \alpha \) distinct, with \(f(\gamma) = 0 \). (Idea: If \(f(x) = (x - \alpha)(x - \beta)(x - \gamma) \) then \(\alpha + \beta + \gamma \) is determined.)
Solution: \(\alpha + \beta + \gamma = -1 \) so \(\gamma = -1 - \alpha - \beta \).

(f) Deduce that \(Q(\alpha) : Q \) is normal.
Solution: It is the splitting field of \(f(x) \).

(g) List all of the \(Q \)-automorphisms of \(Q(\alpha) \). What familiar group is \(\Gamma(Q(\alpha) : Q) \) isomorphic to?
Solution: When \([Q(\gamma) : Q] = r \) and \(Q(\gamma) \) is normal over \(Q \) then the Galois group has precisely \(r \) elements. But there is precisely one group on three elements. So \(\Gamma(Q(\alpha) : Q) \) must be isomorphic to \(Z_3 \). One is the identity. Then there is a \(\sigma \) with \(\sigma(\alpha) = \beta \). We can’t have \(\sigma(\gamma) = \gamma \) as that would make \(\sigma \) the identity (as \(Q(\alpha) = Q(\gamma) \)) so \(\sigma(\gamma\alpha\beta) = \alpha \) and \(\sigma(\beta\gamma) = \gamma \). The final automorphims sends \(\alpha, \beta, \gamma \) to \(\alpha, \gamma, \beta \) respectively.

(h) Let \(K \) be the fixed field of \(\Gamma(Q(\alpha) : Q) \). Prove \(K = Q \).
Solution: This is the Galois Correspondence Theorem – the entire Galois Group corresponds to the ground field.

5. As in last week’s assignment set \(\alpha = 2^{1/4}, \beta = i\alpha, \gamma = -\alpha, \delta = -i\alpha \).
Set \(p(x) = x^4 - 2 \). Set \(K = Q(\alpha, \beta, \gamma, \delta) \). Set \(L = Q(i) \). Also, set \(M = Q(\alpha) \) and \(N = Q(\sqrt{2}) \).

(a) Give the factorization of \(p(x) \) into irreducible factors in \(Q[x] \).
Solution: It is irreducible by the Eisenstein Criterion.

(b) Give the factorization of \(p(x) \) into irreducible factors in \(K[x] \).
Solution: It completely factors \(p(x) = (x-\alpha)(x-\beta)(x-\gamma)(x-\delta) \).
(c) Give the factorization of $p(x)$ into irreducible factors in $M[x]$.
Solution: Well, $(x - \alpha)$ is a factor. But as $\gamma = -\alpha \in M$ so is $(x - \gamma) = (x + \alpha)$. Taking those out $p(x) = (x - \alpha)(x + \alpha)(x^2 + \sqrt{2})$. Here $\sqrt{2} = \alpha^2 \in M$. Also, $x^2 + \sqrt{2}$ is irreducible in $M[x]$ as its two roots, γ, δ, are not in M as they are complex numbers.

(d) Give the factorization of $p(x)$ into irreducible factors in $N[x]$.
Solution: $p(x) = (x^2 - \sqrt{2})(x^2 + \sqrt{2})$. As $[Q(\alpha) : Q] = 4$, $\alpha \notin N$. Thus $(x - \alpha)$ is not a factor in $N[x]$. Similarly $x - \beta, x - \gamma, x - \delta$ are not factors. Thus the quadratics above are irreducible in $N[x]$.