Algebra

Vector Spaces over field K

Def: $\emptyset \neq W \subseteq V$ is a subspace of V if

(i) $\overrightarrow{w_1}, \overrightarrow{w_2} \in W \Rightarrow \overrightarrow{w_1} + \overrightarrow{w_2} \in W$

(ii) $\overrightarrow{w} \in W, \lambda \in \mathbb{R} \Rightarrow \lambda \overrightarrow{w} \in W$

Def: $T : V \rightarrow W$ is a homomorphism if

(i) $T(\overrightarrow{v_1} + \overrightarrow{v_2}) = T(\overrightarrow{v_1}) + T(\overrightarrow{v_2})$

(ii) $T(\lambda \overrightarrow{v}) = \lambda T(\overrightarrow{v})$

$T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ in general $T(\overrightarrow{v}) = \mathbb{R}A$ with $A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$

"Homomorphisms of vector spaces have long been called linear transformations"

"Matrices represent linear transformations"

$\text{Ker}(T) = \{ \overrightarrow{v} : T(\overrightarrow{v}) = \overrightarrow{0} \}$

$\text{Im}(T) = \{ \overrightarrow{w} : \exists \overrightarrow{v} \text{ s.t. } T(\overrightarrow{v}) = \overrightarrow{w} \}$

1. $\overrightarrow{v_1}, \ldots, \overrightarrow{v_n}$ are linearly independent if $\sum_{i=1}^{n} a_i \overrightarrow{v_i} = \overrightarrow{0} \Rightarrow a_i = 0$

2. $\overrightarrow{v_1}, \ldots, \overrightarrow{v_n}$ span V if $\forall \overrightarrow{w} \in V$ there exist a_1, \ldots, a_n s.t. $\overrightarrow{w} = \sum_{i=1}^{n} a_i \overrightarrow{v_i}$

3. $\overrightarrow{v_1}, \ldots, \overrightarrow{v_n}$ is a basis for V if both 1 & 2 hold.

Big Fact: If V has a finite basis, then all basis have the same size called $\text{dim}(V)$.

Example: $Q(\overrightarrow{v}) = \{ a \overrightarrow{v} + b \overrightarrow{w} : a, b \in \mathbb{Q} \}$. Consider $Q(\overrightarrow{v})$ as a vector space over the \mathbb{Q}.

\uparrow [Remember, we want to specify over what \mathbb{Q}]

Claim: $\overrightarrow{v_1}, \overrightarrow{v_2}$ basis. ["To prove this we need to show linear ind. & span"]

1. Span: All $x \in Q(\overrightarrow{v})$ here $x = a + b \overrightarrow{v}$

2. Linear Independence: Suppose $a + b \overrightarrow{v} = 0$

 $b = 0 \Rightarrow a = 0$

 $b \neq 0 \Rightarrow \overrightarrow{v} = -\frac{b}{a}$
More Facts:
- If \(v_1, \ldots, v_s \) is linearly independent then \(s \leq \dim(V) \)
- If \(v_1, \ldots, v_t \) span \(V \) then \(\dim(V) \leq t \)
- When \(\dim(V) = n \) ("when you know you are in \(n \) space")
 - \(v_1, \ldots, v_n \) linearly independent \(\Rightarrow \) basis
 - \(v_1, \ldots, v_n \) spans \(V \) \(\Rightarrow \) basis
- Extra fact: \(W \subset V \Rightarrow \dim(W) \leq \dim(V) \)

Example - \(V = \mathbb{F}[x]/(f(x)) \), where \(\deg(f(x)) = n \), is a vector space over \(\mathbb{F} \)
\(\dim(V) = n \) with basis \(1, x, x^2, \ldots, x^{n-1} \)

\(\geq \) Def: Where \(F \subset K \)
\[[K:F] = \text{dimension of } K \text{ as a vector space over } F \text{ (if no finite cases may be } \infty \) \]

Example - 1) \([\mathbb{Q}(i) : \mathbb{Q}] = 2 \) where basis consists of \(1, i \)
 2) \([\mathbb{C} : \mathbb{R}] = 2 \) where basis consist of \(1, i \)

Thm: Let \(F \subset K \), both fields \([K:F] = 1 \iff K=F \)

Pf: (i) \(K=F \) then Basis \(\{1\} \)
(ii) Suppose \(F \subset K \). Pick \(x \in K \), \(x \notin F \) and claim \(x, 1 \) are linearly independent (over \(F \)).
 If \(a+bx = 0 \) with \(a, b \in F \)
 \(b=0 \Rightarrow a=0 \)
 \(b \neq 0 \Rightarrow x = -a/b \in F \)

\(\therefore [K:F] \geq 2 \)
Tower Theorem Let \(F \subseteq K \subseteq L \) with \([K:F] < \infty\), \([L:K] < \infty\).

Then \([L:F] < \infty\) and \([L:F] = [L:K][K:F]\).

\[
\begin{bmatrix}
\text{dim}(5) \\
\text{dim}(15)
\end{bmatrix}
\]

\[
\begin{bmatrix}
\text{dim}(4) \\
(1, \sqrt{2}, \sqrt{3}, \sqrt{6})
\end{bmatrix}
\]

Example: \(\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \{ \alpha + \beta \sqrt{3} : \alpha, \beta \in \mathbb{Q}(\sqrt{2}) \} \)

\[
\begin{align*}
\text{dim}(1) & \quad (1, \sqrt{2}, \sqrt{3}, \sqrt{6}) \\
\text{dim}(2) & \quad \mathbb{Q}(\sqrt{2}) \\
\text{dim}(5) & \quad \mathbb{Q}(\sqrt{2}) \\
\text{dim}(15) & \quad \mathbb{Q}(\sqrt{2}, \sqrt{3})
\end{align*}
\]

Proof: Let \(\lambda_1, \ldots, \lambda_n \) be the basis for \(L \) over \(K \). Let \(\mu_1, \ldots, \mu_m \) be the basis for \(K \) over \(F \).

Claim: \(\lambda_i \mu_j : 1 \leq i \leq N, 1 \leq j \leq M \) is a basis for \(L \) over \(F \).

(i) span. Let \(\alpha \in L \), write \(\alpha = \sum_{j=1}^{m} B_j \mu_j \) with \(B_j \in K \).

\[\alpha = \sum_{j=1}^{m} \sum_{i=1}^{n} \alpha_{ij} \lambda_i \mu_j \]

(ii) linearly independent. Suppose \(0 = \sum_{j=1}^{m} \sum_{i=1}^{n} a_{ij} \lambda_i \mu_j \) (\(a_{ij} \in F \))

\[= \sum_{j=1}^{m} B_j \mu_j \] where \(B_j = \sum_{i=1}^{n} a_{ij} \lambda_i \)

Since \(\mu_1, \ldots, \mu_m \) forms a basis \(\Rightarrow \) all \(B_j = 0 \).

\[0 = \sum_{i=1}^{n} a_{ij} \lambda_i \] \(\Rightarrow \) all \(a_{ij} = 0 \)

This proof is also in the book.

Corollary: Let \(F \subseteq K \subseteq L \) with \([L:F] < \infty\). Then \([K:F], [L:K]\) is finite and so is \([L:F] = [L:K][K:F]\).

Pf: (1) Let \(\alpha_1, \ldots, \alpha_s \) be basis for \(L \) over \(F \).

Claim: \(\alpha_1, \ldots, \alpha_s \) span \(L \) over \(K \)

Claim: \(\exists \) finite basis of \(L \) over \(K \)
2. K is a subspace of L. (as vector spaces over F)

$s [K:F] \leq [L:F]$. [Note we use the extra fact I]

Example -

\[
\begin{array}{c}
\text{Big} \\
\text{Small}
\end{array}
\]

with a prime dimension, then there do not exist
intermediate fields (unless they are trivial).

Example -

\[
\begin{array}{c}
\text{Big} \\
\text{Small}
\end{array}
\]

where the dimension is a power of two. Then the
dimension from intermediate field to small field
would also be a power of 2. (This example will
come up a lot.)

Let $F = \Omega, \alpha \in F$.

Def. We say that α is algebraic over F if \exists $a_0, \ldots, a_n \in F$ where not all
equal 0, then $a_0 + a_1 \alpha + \ldots + a_n \alpha^n = 0$.

Default. $F = \mathbb{Q}, \Omega = \mathbb{C}$ and α is algebraic. (Complex number
that satisfies some polynomial.)

[Ex. Algebraic over K, then coefficients are K. The algebraic default]

is complex numbers.

[Ex. π is not algebraic, it is transcendental.

Every $\alpha \in \Omega$ is algebraic over F, written as $\alpha = x + iy$.

$(x - x)^2 = (iy)^2 = -y^2$ where x, y are constants.

$\alpha^2 - 2\alpha x + (x^2 + y^2) = 0.$]