Honors Algebra II V63.0349
Assignment 2
Due, Friday, Feb 5 in Recitation

Many persons who have not studied mathematics confuse it with arithmetic and consider it a dry and arid science. Actually, however, this science requires great fantasy.
– Sophia Kovalevsky

1. In \(\mathbb{Z}_7[x] \) let \(f(x) = 2x^5 + 3x^4 + 4x + 4 \) and \(g(x) = 3x^2 + x + 5 \). Find \(q(x), r(x) \) with \(f(x) = q(x)g(x) + r(x) \) and either \(r(x) = 0 \) or \(r(x) \) having smaller degree than \(g(x) \).

2. (*) What is the remainder when \(x^{1000000} \) is divided by \(x^3 + x + 1 \) in \(\mathbb{Z}_2[x] \). (There is a pattern!)

3. Further problems on \(\mathbb{Z}[\omega] \), as in assignment 1.
 (a) What are the possible values of \(|\alpha|^2, \alpha \in \mathbb{Z}[\omega] \), with \(|\alpha|^2 \leq 11 \). (Notation: For \(\alpha = a + bi \in \mathbb{C} \), \(|\alpha| = \sqrt{a^2 + b^2} \), the distance from \(\alpha \) to the origin on the complex plane.)
 (b) Factor the numbers 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 into irreducibles in \(\mathbb{Z}[\omega] \). Prove that you do indeed have irreducibles. [One aid: If \(\alpha = \beta \gamma \) then \(|\alpha|^2 = |\beta|^2 |\gamma|^2 \). Also, \(|\alpha|^2 = 1 \) exactly for the six units of assignment 1.]
 (c) Find the minimal positive real \(x \) with the following property: For any \(\beta \in \mathbb{C} \) there exists \(\alpha = a + b\omega \in \mathbb{Z}[\omega] \) with \(|\beta - \alpha| \leq x \). (The geometry of \(\mathbb{Z}[\omega] \) is particularly helpful here.)
 (d) Use the above and following the argument for \(\mathbb{Z}[i] \), prove that \(\mathbb{Z}[\omega] \) is a Euclidean Ring under \(d(\alpha) = |\alpha|^2 \).

4. Even more problems on \(\mathbb{Z}[\omega] \), as in assignment 1.
 (a) In the picture of \(\mathbb{Z}[\omega] \) (you can use the picture from the solutions to assignment one) mark (with a little circle) those points which are in the ideal (2).
 (b) Describe \(\mathbb{Z}[\omega]/(2) \) as \(\overline{\alpha_1}, \ldots, \overline{\alpha_r} \) for some specific \(\alpha_1, \ldots, \alpha_r \). (You have to figure out what \(r \) is!)
 (c) Give the multiplication table for \(\mathbb{Z}[\omega]/(2) \). Is it a field? (It is automatically a ring so to be a field every element has to have a multiplicative inverse.)
5. Let’s call an integral Domain D together with a function $d : D - \{0\} \rightarrow \{0, 1, 2, \ldots\}$ a Banana Domain (not its real name!) if

(a) $d(\alpha) \leq d(\alpha\beta)$ for all nonzero $\alpha, \beta \in D$

(b) If $\alpha, \beta \in D - \{0\}$ and if there does not exist $q \in D$ with $\alpha = q\beta$ then there exist $a, b \in D$ with $a\alpha + b\beta \neq 0$ and (critically!) $d(a\alpha + b\beta) < d(\beta)$.

Prove that a Banana Domain is a P.I.D. (Hint: Follow the argument that a Euclidean Domain is a P.I.D.)

Math is natural. Nobody could have invented the mathematical universe. It was there, waiting to be discovered, and its crazy; its bizarre. – John Conway