Suppose that an irreducible $p(x) \in Q[x]$ of degree n has complex roots $\alpha_1, \ldots, \alpha_n$ and we set $K = Q(\alpha_1, \ldots, \alpha_n)$. Each $\sigma \in \Gamma[K : Q]$ permutes the roots though not every permutation of the roots yields an automorphism σ.

Suppose ρ is a polynomial function of $\alpha_1, \ldots, \alpha_n$ which is symmetric. Then every $\sigma \in \Gamma[K : Q]$ has $\sigma(\rho) = \rho$. Hence $\rho \in Q$. As an example suppose a cubic $p(x) \in Q[x]$ has roots α, β, γ and let

$$\rho = (\alpha - \beta)^2(\alpha - \gamma)^2(\beta - \gamma)^2$$

(1)

Any permutation of α, β, γ fixes ρ and hence ρ is a rational number. (FYI: this is called the discriminant and generalizes the famous $b^2 - 4ac$ term with quadratics.)

When ρ is not fully symmetric in $\alpha_1, \ldots, \alpha_n$ there is still some information to be gleaned. Suppose κ is fixed by the alternating group, the even permutations of $\alpha_1, \ldots, \alpha_n$. If $\Gamma[K : Q]$ is contained in the alternating group then $\kappa \in Q$ as before. Otherwise, $\Gamma[K : Q]$ would have more than $n!/2$ elements and so would be the full symmetric group of $\alpha_1, \ldots, \alpha_n$. In that case κ would not be in Q since it isn’t fixed by all $\sigma \in \Gamma[K : Q]$. Letting H be the alternating group, as $|H| = |G|/2$, $[H^1 : Q] = 2$. Then κ would be in a quadratic extension of Q. Continuing the cubic example above, now set

$$\kappa = (\alpha - \beta)(\alpha - \gamma)(\beta - \gamma)$$

(2)

Assume $\Gamma[K : Q] \cong S_3$. Of the six permutations of α, β, γ, three send κ to itself and the other three send κ to $-\kappa$ (which is not κ as $\kappa \neq 0$ as α, β, γ are distinct). (For example, if α, β are flipped and γ stays where it is then κ goes to $-\kappa$ but if α goes to β which goes to γ which goes to α then κ goes to κ.) Then $[Q(\kappa) : Q] = 2$ so κ can be expressed in terms of a square root. Since, further, $\kappa^2 = \rho \in Q$, κ will be the square root of a rational number.