Let us fix some finite extension $F \subset K$ of subfields of C and set G to be the Galois Group $\Gamma(K : F)$. However, we now assume K is a Normal Extension of F. Recall that we have already defined the map \ast from intermediate fields to subgroups and the map \dagger from subgroups to intermediate fields.

Theorem 0.1 Let $F \subset K$ be subfields of C with K a Normal extension of F and set G to be the Galois Group $\Gamma(K : F)$. Then for any intermediate field L

\[(L^\ast)^\dagger = L\]

Proof: We already know $L \subset (L^\ast)^\dagger$. Now suppose $\beta \in K$ and $\beta \notin L$. Our goal is to show $\beta \notin (L^\ast)^\dagger$. Recall that as K is a normal extension of F, K is a normal extension of L.

Let $p(x)$ be the minimal polynomial for $\beta \in L[x]$ and let β_1 be another root of $p(x)$. As K is a normal extension of L, $\beta_1 \in K$. Thus there is an isomorphism $\sigma : L(\beta) \to L(\beta_1)$ which fixed L and has $\sigma(\beta) = \beta_1$. Applying the Full Isomorphism Extension Theorem we extend σ to an isomorphism σ^{++} with domain K. But as σ^{++} fixes L and K is normal over L, the range of σ^{++} must be K. That is, σ^{++} is an automorphism of K which fixes all $\alpha \in L$ but does not fix β. So $\beta \notin (L^\ast)^\dagger$. End of Proof.

This has a perhaps surprising followup.

Theorem 0.2 Let $F \subset K$ be subfields of C with K a normal extension of F. Then there are only finitely many intermediate fields L.

Proof: From Theorem 0.2, L is determined by L^\ast but as $G = \Gamma(K : F)$ is finite there can be only finitely many subgroups H, only finitely many possible L^\ast.

Theorem 0.3 Let K be a finite extension of F, both subfields of C. Then there are only finitely many intermediate fields L.

Proof: Extend K to K^+ so that K^+ is a normal extension of F. From Theorem 0.2 there are only finitely many intermediate fields between F and K^+ and thus only finitely many intermediate fields between F and the smaller K.

1
Theorem 0.4 Let \(F \) be a subfield of \(C \) and \(\alpha, \beta \in C \), both algebraic over \(F \). Then there exists \(\gamma \in C \) with
\[
F(\gamma) = F(\alpha, \beta)
\] (2)

Proof: As \(\alpha, \beta \) are algebraic over \(F \), \(F(\alpha, \beta) \) is a finite extension of \(F \). Now for each integer \(i \) set \(F_i = F(\alpha + i\beta) \). Each of these are subfields of \(F(\alpha, \beta) \) but by Theorem 0.3 there are only finitely many such subfields so there must be \(i \neq j \) with \(F_i = F_j \). Thus \(F_i \) contains \(\alpha + i\beta \) and \(\alpha + j\beta \). But then it contains \(\alpha = \frac{1}{j-i}j(\alpha + i\beta) - i(\alpha + j\beta) \) and \(\beta = \frac{1}{j-i}(\alpha + j\beta) - (\alpha + i\beta) \). Thus \(F_i \) must be all of \(F(\alpha, \beta) \) and so we can take \(\gamma = \alpha + i\beta \).

Theorem 0.5 Single Generator Theorem. Let \(K \) be a finite extension of \(F \), both subfields of \(C \). Then there is an element \(\gamma \in K \) such that \(K = F(\gamma) \).

Proof: We claim that for any \(\alpha_1, \ldots, \alpha_r \in C \), all algebraic over \(F \), there exists a \(\gamma \in C \) with \(F(\gamma) = F(\alpha_1, \ldots, \alpha_r) \). This comes from repeatedly applying Theorem 0.4 to replace two of the generators by one. (Formally we apply induction on \(r \).) Now as \(K \) is a finite extension of \(F \) we can write \(K = F(\alpha_1, \ldots, \alpha_r) \) for some finite set of \(\alpha \)'s and then replace them by a single \(\gamma \).