

NSF PLANT GENOME 2012: Phylogenomic Network Inference

TASK LIST
1. Dataset: Select species with best expression data and compute expression (Kranthi)
2. Correlation network: computer correlation network (Dennis)
3. Phylogenetic tree:  Ortholog assignment prior to random selection of orthologs
from Ernest Lee (Kranthi will get this).
       4.   Aim 1:  Fix bug and rerun Aim 1 (Sabini)

AIMS:

Aim 1.  Phylogenomic Network Inference: Infer networks in data poor species based on data rich neighbors.  (Shasha)
	Arab (data rich) -----TRAIN- Medicago (data poor)
				^
			       Glycine (middle class)
	Outcome:
1. Expression interaction network for Medicago
2. Refine with protein interaction from Arabidopsis

New compared to last version:  
	Going beyond reverse blast
	Prelim results better (John Sabini)
	More explan of methods

	Preliminary Results: have previous, should get new better results, some bug with old program 
(Sabini and Wei)

Aim 2.  Phylogenomic Trait Network: Gene to trait correlation, prioritized by network analysis (Kranthi & Shasha)
1. Identify traits and presence/absence in 21 species tree (e.g. seed expression sets)
2. Compute correlation of expression and trait > 2 species
3. Filter list of correlated genes based on:  
a. Vote (more species with association ranked higher)- assign weight based on phylogenetic distance.
b. Rank based on network connectivity in Arabidopsis –expression, protein, etc. (e.g. hubiness)

Example:   Species A		Species B
 	 Expr. Gene X		Expr. Gene Y
Protein        X-Y, suggests X and Y are both involved in trait eventhough expression data only would not have predicted.  This gives us gene pair idea that we would not have found by studying each one alone.  Test by validation.

c. Validate:  Compare culled list vs. expression list to Existing mutant list (e.g. seed mutant – David Meinke list).  Show increase in % correct predictions of phenotype from network analysis (for individual genes or gene pairs).
(see Network based breast cancer predictor paper)

	Outcome: Better ability to predict trait to gene

Aim 3.  Network Orthologs: Orthology based on sequence refined by correlation
1. Identify orthologs using seq methods- eg BLAST and others
2. Refine orthology using conservation of expression in target species compared to source
3.  Validation??????
Outcome: Refined orthology assignments

Aim 4. PhyloNet Tree: Network derived phylogeny
	1.  Start with species from 21 tree with a lot of expression data
	2.  Build network for each species based on correlation daya
	3.  Calculate network similarity between species 
	4.  Build Phylogenetic tree based on network similarity 
	5.  Display phylogenetic tree based on networks.

	Outcome:  
Identify network motifs conserved at specific nodes (e.g. monocots, legumes)
	e.g. core network motifs (e.g. shared across dicots and monocots)
	vs.  specific (e.g. legumes).
	Will help in translatability of predictions across species.

	



PROJECT SUMMARY “Plant Genome: Phylogenomic Network Inference”
1. Senior personnel 	
 	PI: Gloria Coruzzi (NYU Biology, Center for Genomics & Systems Biology) 
 	 Co-PI: Dennis Shasha (NYU Courant Institute of Mathematical Sciences)
    	 Co-PI: Manpreet Katari (NYU Biology, Center for Genomics & Systems Biology) 
     	Collaborator: Rodrigo Gutierrez (Pontificia Universidad Catolica de Chile)
2. Intellectual merit of the proposed activity [Gloria to write]
Overview:  Gene networks have proven to be an invaluable approach to discovering the function of known genes, and for associating genes of unknown function with those of known function.  The Arabidopsis multinetwork developed in our previous cycle of NSF funding, proved to be an invaluable approach to derive and validate biological hypotheses for gene regulatory networks based largely on gene expression datasets.   The challenge is to now go beyond Arabidopsis with our network predictions – which is of special interest for crop genomics.  This is now feasible because with the advent of RNA-seq technology, it is now possible to create regulatory networks across any/all species.  Our goal of this Plant Genome proposal is to develop and implement methods that will improve the predictability of when a discovery in Arabidopsis will translate into a crop.  We will do this by comparing gene networks between Arabidopsis to those across a phylogenomic tree of 21 plant species spanning the major plant clades including crop plants.  The methods we develop for learning the rules of gene interactions in two (or more) “source” species and predicting function in one (or more) “target” species, will enable us to improve predictions for which gene interaction discoveries will translate across species.  As an applied example, such a tool could be used to help determine when a prediction from Arabidopsis can translate to a crop (Aim 1), and conversely when a gene interaction in a crop can be tested in Arabidopsis (Aim 2), and determining when a gene interaction is universal (to all plant genomes), or specific to a subgroup (e.g. legumes) (Aim 3).

Species are being sequenced at a vastly increasing rate. When embarking on the study of a newly sequenced species, researchers would benefit from tools that infer gene interaction networks from experiments on phylogenomically neighboring species. We propose to develop such “Phylogenomic Network Inference (PNI)” tools. Our vision is to construct species-specific interaction networks of many kinds (transcription factor-binding networks, protein-protein, metabolic, miRNA-RNA, etc.) for many species synergistically. In this vision for PNI, every experiment in species s, will contribute to inferences on s, and all related species based on phylogenomic distance. The experimental bases of our inference will vary from steady-state wild-type experiments, to time-series experiments, to mutant experiments, all on 21 plant species whose genomes have been fully-sequenced, and are of great practical and research importance (e.g. Arabidopsis, rice, soy). This project will leverage the facilities of the current VirtualPlant software platform (www.virtualplant.org) developed under an NSF Grant (DBI-0445666), that includes Arabidopsis multinetwork data, analysis, integration and manipulation tools [1]. In this grant, we will develop tools that will infer gene interaction networks in a target species, based on measured results in a fully-sequenced source species, and also an approach to select which experiments are likely to be most helpful. While PNI is described with respect to plants, the framework and basic algorithms may be extended to any under-analyzed species. This work will achieve one of the main goals of Systems Biology – predicting network states under untested conditions. Fold in other aims We divide the work into four aims: 

Aim 1: Development of the Phylogenomic Network Inference (PNI) model on Expression data same as before with better explanations - Dennis with Kranthi annotations
Aim 2: Inferring novel edges in interaction networks. (KRANTHI)
use same method as aim1 and predict interactions in arabidopsis and experimentally validate - Kranthi
Aim 3: Fix arabidopsis as source. Find which of the paralogs - Manny
Aim 4: compare and identify clade specific interactions.  – Dennis


------------------------------------------------------------------------------------------------------------------------------

Aim 1: Development of the Phylogenomic Network Inference (PNI) model on Expression data  
Rationale. With the increasing number of genome sequences becoming available, it will be increasingly common to find a newly sequenced species s, that is phylogenomically similar to other species on which there are already available experiments. Many of those experiments will be genome-wide transcriptome expression measurements, which can used to infer a network of positive and negative expression correlation for the newly sequenced species s. We postulate that a network of expression correlation can be inferred in a species (target) having relatively little expression information by using experiments from one or more significantly better studied species (sources). Our approach will be to train the algorithm using the same several source species on a third species (trainer) where the trainer will be at a similar at a phylogenomic distance from the source species as the target and where the trainer has a “gold standard” in the form of a has moderate to high number of expression studies. Our method here focuses on expression data, but could be used for other kinds of network relationships.
Our neighboring species strategy for inferring edges between genes in species s, starts with pair-wise gene expression correlation data on other species. From that data, we will train a machine-learning algorithm to determine whether there will be correlation between two genes in species s.  In addition to the simple Pearson correlation we use in this preliminary work, we will use related techniques such as mutual information [25], and Spearman correlation. (Note: It is a separate question to determine whether correlation signifies causality. If genes g1 and g2 correlate, g1 is a transcription factor, g2 is not, and g2 has a transcription factor-binding site that the protein associated with g1 can bind to, then this is some evidence for causality. The best test is time-series experiment and analysis [22,26-29], followed by a knock-out or over-expression experiment. As that data becomes available, we will use it as part of our network inference project.)  

The input for our algorithm will be in the three formats described below.
orthotab: target species| target gene | other species | other gene | orthology val1 | orthology val2 …: gives the gene-to-gene orthology value, according to several different orthology measures for example: reciprocal best blast [30] hits, OrthologID [4], OrthoMCL [31], and Inparanoid [32]. 

edgetab: species | gene1 | gene2 | edgetype | strength | p-value | number of different experimental conditions: gives the strength and the p-value (the probability it could arise by chance – we evaluate this using a non-parametric re-sampling approach) of a given experimentally determined edge. We consider only experimentally determined edges as an input to this inference algorithm to avoid circular inferences. Note that certain edge relationships may be present only in certain conditions (e.g. drought conditions for plants). In that case, the tools we propose could be used just for the conditions of interest. In our preliminary work, we find correlations that generally hold over all conditions.
   
species1 | species2 | species similarity measure1 | species similarity measure2: measures sequence similarity according to several criteria (e.g. distance based, for example average percent identity of protein sequences, or through parsimony). 
   
Now, to predict an edge between g1 and g2 in target species s, we will combine evidence from edges in one or more source species, as well as evidence from experiments in species s itself. The basic method will be regression and regression trees, with a penalty for complexity. 

For the sake of performance and robustness to noise, we will use some mixture of the following three approaches:
1. Random Forests [33,34] Random forests are ensembles of decision trees which are constructed from random subsets of the data. They're fast to train, easy to parallelize, and perform extremely well.
2. Large-Scale SVM Regression [35] Bottou demonstrated that a stochastic gradient descent solver for a variety of learning problems (including support vector machine optimization) is able to scale with extremely large datasets, while converging to the predictive performance of traditional optimization algorithms.
3. Large-Scale L-Regularized Learning [36] Stochastic coordinate descent (a method related to stochastic gradient descent, but with a slightly different update rule), can be used to learn sparse regression models, with small training-times, even for data sets where both the dimensionality and the number of training-points is large. This is the approach used in our preliminary work.
	The net effect of this analysis will be to find the weighting of different factors that will lead us to conclude that two genes in some species are correlated. Then, using available Arabidopsis time-series data [22], and other datasets that are currently being generated in our lab and others, we will combine correlation with time-series [22,26-29] and perturbation approaches using Graphical Lasso [37] to form causal networks. 
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Phylogenomic
 Network Inference Model. 
 
Panel A
, describes the equation used on the training data to determine the coefficients (a1, a2, a3..), which are then used for predicting the correlation edges in 
Panel B
. Panel B shows an example where the model is trained (e.g. coefficients are determined) using correlation data in Arabidopsis (A) and Soy (G, Glycine max) as well as orthology data between A and G. Then, the model is used to predict correlated edges in M (Medicago) (a neighbor species of G), given the coefficients determined in training, and orthology between genes in A and M and correlations in A. When training on several pairs of species, coefficient a4
 (species distance measure)
 will be used in training and predictions.
)Preliminary Results.  In our initial case study, we consider steady-state data on three species Arabidopsis (A), Medicago (M), and Soy (G) (Glycine max) Fig. 4 & Table 2. We selected these three species as an initial test case because (i) there is ample and reliable Affymetrix data for each, and (ii) Medicago and Soybean -- both legumes -- are quite closely related (more so than Arabidopsis and Rice, as we discuss in the preliminary work for Aim 2).  We tested the ability to infer Pearson correlation edges in a “target” species, knowing only correlation edges in a “source” species, and the gene-by-gene orthology between genes in the source species, and genes in the target species (Fig. 4).  For this study, we analyze only those genes that are conserved across all three species - Arabidopsis, Medicago and Soybean. 
	We used stochastic gradient descent as the machine learning technique, by training a linear equation of the form:
Estimated correlation in target = a1*mean of orthologous values + a2*correlation of source pair + a3*p-value of correlation of source pair, and + a4*species distance measure (Fig. 4A). This form of the equation was chosen based on our expectation that the confidence of correlation in the target species depends on the confidence in the orthology assignments(a1*MOv), strength  and confidence in the correlation of expression in source species(a2*Cs and a3*Ps) and a measure of the conservation of this correlation across various phylogenomic distances (a4*Sv) Here, mean of orthologous values is calculated as follows: if g1 and g2 are the source pair, and g1' and g2’ are the potential target pair, and g1 and g1’ are reciprocally best blast hits (as are g2 and g2’), then we take the mean of the orthology values, in this case percent identity, between g1 and g1', and between g2 and g2'. We chose the linear form of this equation because such equations are easy to understand and entail discovering just a small handful of coefficients.
However, this equation ignores relevant information because many gene pairs (besides reciprocal best blast hits) in the source species, may be relevant to the target pair g1 and g2, for example paralogs. We may require some form of aggregation over the gene pairs of the source species that are orthologous above a threshold to g1 and g2. (Note: That is unnecessary in this preliminary study, where we focus on reciprocal best blast hits.) When using a threshold, cross-validation on a training set, would set the level of the threshold. Finally, once we have data on many pairs of species, we will include a4, that measures the similarity of species.
Since there are a different number of experiments for each species and experiments from different sources, the distribution of correlation values can vary. So, we define two genes as “highly positively correlated”, if their correlation is in the top 5% of all measured correlations, and “highly negatively correlated”, if their correlation is in the bottom 5%, and “in between” otherwise. Thus, our machine-learning algorithm predicts which of these three categories (positive, between, or negative) an edge in the target species is in. To assess the quality of the predictions, we compare the predicted results (that use no expression experiments in the target species), with the results from the experiments in the target species.
 (
Table 2: 
Phylogenomic
 Network Inference between Arabidopsis (A), Medicago (M), and Soy (G, 
Glycine max
). 
The table is separated into two parts – (Left) Coefficients obtained from training and (RIGHT) The precision and recall of the correlation predictions. The analysis was performed reciprocally, using A
 M for training, and then predicting G, or using A
 G as training, and M for test. 
Recall is less for n
egative correlation 
values because the training set is smaller.
)[image: ]We have assigned coefficients to the linear equation using Arabidopsis (A) as source species, and Soy (G, Glycine max) as the target. Then, we use those coefficients to infer edges in Medicago (M), based on edges in Arabidopsis (Figure 4B). Then, we will do another test in which Soy and Medicago reverse roles. Results from these tests are summarized in Table 2.
When we train using Arabidopsis (A) and Medicago (M) data, we get values a1 = 0.0276, a2 = 1.2619, a3 = -0.8109.  We then test this using Arabidopsis and Soy (G), to get 18,292 predicted highly positive correlations, 3,684 predicted highly negative correlations. This gives us a recall of 0.91, for highly positive correlations, with a precision of 0.96, and for highly negative correlations, we get a recall of 0.62, and precision of 0.89 (Table 2).
	When we train using Arabidopsis (A) and Soy (G) data, we get values a1 = 0.0894, a2 =1.0571, a3 =-0.0063. We then test this using Arabidopsis (A) and Medicago (M), to get 21,384  predicted highly positive correlations, and 228 predicted highly negative correlations. This gives us a recall of 0.99 for highly positive correlations, with a precision of 0.98, and recall of 0.01 and precision of 0.8, for highly negative correlations. Recall is less for negative correlation values because the training set is smaller (Table 2).
	The two training sets provide different weights for the coefficients, which can be summarized as a shift in reliance on the orthology value (a1) to the confidence in correlation in source (a2+a3) when we replace Soy(G) with Medicago(M). This shift in reliance may be explained by the fact that Soy has gone through a recent whole genome duplication and hence often has 2 paralogs for each Arabidopsis gene of which only one might still maintain the correlation. Hence the estimation for correlation between these two species might be more sensitive to the orthology assignment being correct. To address this issue, we propose to assign confidence to the ortholog assignments based on expression data (NEW Aim 3). Additionally, using multiple species, with varying ploidy levels, at the training stage is expected to alleviate this apparent distortion in orthology assignments.  
In this preliminary test, we only used one pair of species to train.  As we develop this aim, we will train on several pairs of species, in which case coefficient a4*species distance measure will be used in both training and predictions.  Note also that this preliminary experiment makes predictions only about pairs in the target species whose members are highly orthologous to some pair in the source species. Our recall numbers would be much lower if we were measuring our success against identifying ALL correlation edges in the target species. Orthology helps and may identify some of the most important edges, but this technique complements rather than replaces in-species experimentation.

Expected Outcomes of Aim 1.  Our goal in this Aim, is to construct a machine-learning model that can predict, with high recall and precision, the expression correlation of edges between genes in a little-studied “target” species, by inference from a well-studied “source” species. As more data about the species becomes available, we then apply the rest of our workflow to find a refined causal network. 

Aim 2: Inferring novel edges in interaction networks. (KRANTHI). (Kranthi says- we need to add more detail about the independent inference of correlation networks in the lesser-studied species and provide one or two firm examples of novel edges we might discover.  We need to discuss with Dennis if we can expect to do an initial study, along the proposed lines, before we submit?)

Numerous studies in gene expression and protein interactions has led to vast advances in our knowledge of the networks responsible for the broad and specific responses of plants to their environments. The bulk of this research has been conducted in a small number of reference species. While this approach has increased our depth of knowledge about individual gene functions and gene networks, significant gaps remain in our understanding of the broad spectrum of responses that plants are capable of. 

We postulate that some of the missing information is a result of the limitations of experiments that can be done in the limited set of well-studied species. For example, development of symbiotic relations, such as nodulation (The Plant Journal, 63: 86–99), or highly tissue specific responses, such as photomorphogenesis (Li et al. Plant Phys. August 2011 vol. 156 no. 4 2124-2140.), are difficult, if not impossible, to explore in Arabidopsis thaliana. Further, many unexplored environments, such as tolerance to extreme salt concentrations, osmotic stress etc., remain poorly explored (Find reference). Therefore, information regarding network interactions that have not been explored in the model species might indeed exist in the data from other species. We propose to use the model developed in Aim 1 to learn and incorporate such specific information from otherwise poorly studied species into the existing knowledge of the better studied model species. 

For this aim we propose to independently create an interaction network for each species and use them as the source and training data sets as in Aim 1 (Fig 4B). As an initial study, we will use a network for Glycine max (Soybean, S) gene interaction (derived from correlation of expression) as the source and a similar data set from Populus trichocarpa (Poplar, P) as the training set. Both S and P have large deep transcriptome profiling datasets available publicly (SRA, NCBI) and are at approximately similar phylogenetic distance from Arabidopsis thaliana (A). The training step will identify the relevant values for coefficients at this phylogenetic distance. We will then predict edges between genes in A using multiple deep transcriptome profiling studies from A. We expect to recover majority of the edges already known in A, providing measures of precision and recall. In addition novel edges, learned from S and P will predict novel edges in A. Applying stringent cutoffs for false discover rate will leave us a modest set of novel gene interactions in A that have not been discovered through experiments directly in A. 

To further validate such novel interactions, experiments, such as protein interaction assays, overexpressors or knockout/knockdown mutants, will be designed and conducted in A. The precise nature of the experiment will depend on the nature of the genes involved in the interactions. For example, a novel edge between a transcription factor and a metabolic gene might suggest transcriptional regulation of the target, while an edge between a surface receptor and a kinase might suggest a protein-level interaction.

The strength of this approach lies in taking advantage of specialized experiments performed in certain species and projecting the relationships derived therein to a species that is much better studied and is vastly more compatible for molecular manipulation. Such an approach when successful will allow us to develop a more integrated network of gene interactions that is applicable across all plant species and improves our ability to understand, and help improve, agronomically important traits in the cultivated crop species.


Aim 4: Network-based Phylogeny (DENNIS-  ALL NEW)
Here is the promised first draft of aim 4. It goes beyond decorating the phylogenomic tree to creating trees solely based on networks.

Traditionally, phylogenomic analysis has been anchored in sequence data, usually sequences of nucleotides. In many natural phenomena however, interactions are as important as the hardware. For example, birds and fish flock in similar patterns even though their genetic makeup is quite different.
   
This leads us to the notion of identifying species based on their networks and building trees based on network metrics instead of sequence metrics. We call the result a PhyloNetomic tree. This aim proposes to build a visualization and analytical tool for the construction of PhyloNetomic trees.
   
Building a tree requires an end user to decide (i) the type of data to use, e.g. one or more of expression, protein-protein interaction and so on; (ii) the quality of the edges in terms of strength and p-value; (iii) the stringency of orthology across species; and  (iv) the criteria for comparing networks. We deal with each in turn.
   
Because expression data is often the easiest to obtain, the default data type for our tool will be expression networks. However, the tool will allow one or more data types to be used. Thus a species might be characterized by the union of a set of expression edges of different data types.
   
For an edge to belong to a network, the user will specify cutoffs (e.g. for expression edges, the user might specify correlation of at least 0.7 and p-value below 0.01). The user must also decide for each species S whether to consider only edges that arise from experiments on S or also edges inferred from other species. To avoid any chance of circularity, the default will be to allow only edges from experiments on S itself.
   
Comparing edges across different species S1 and S2 implies that certain genes from S1 be considered identical to certain genes from S2. Determining whether two genes are identical or not requires the specification of an orthology cutoff. For example, two genes might be considered identical only if their Blast score is ...[insert reasonable criterion] or they might be considered to be identical only if they are reverse top Blast hits of one another.
   
The network similarity between two species might be established by use of a Jaccard metric: similarity will equal the size of the intersection of the networks from the two species  divided by the size of the union of their networks. If desired, different edge types might be considered more or less important. For example, protein-protein edges may be treated as more important than expression edges.
   
   
The PhyloNetomic tree will then be constructed based on these user decisions [will need an example figure]. The tree itself will be queryable as follows:
   
1. At every node in the PhyloNetomic tree, it will be possible to find the network elements (for any subset of network data types) that are common to all (or a certain user-specified fraction) of the species in the clade governed by that node
   
2. The user may click on two nodes in the tree to find common network edges as well as the symmetric difference (edges that one has but the other doesn't).
   
3. A set of edges will be convertible to a set of genes for purpose of GO analysis or other such purpose.
   
4. A set of edges will be displayable using Cytoscape.
   
Such a tool will permit a network-based analysis of a set of species. For example, it will be possible to answer questions such as:
   
1. How does the PhyloNetomic tree differ from the Phylogenomic one for one or more clades?
   
2. In which GO terms do two species (or two clades) differ most strongly in their expression correlation? In which GO terms are they most similar?
   
3. Which network motifs are found in some clade?
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