Python Syntax

· # - comments. The line after this character is disregarded by the program. It’s just for the programmer’s convenience and notes.

· print – prints whatever follows to the screen.

· = - assignment. Items on the right are given to the variable on the left.

· variableName = raw_input(“Message”)

· Message is printed

· user is prompted for input

· the input is assigned to variable named variableName

· variableName = input(“Message”)

· same as previous, but the input must be numerical

· + when working with Strings means concatenation: extending a String
· Given String a

· a[0] is the first character in a

· a[1] is the second character in a, and so on

· a[number:] is the String starting at a[number] and ending at the end of a

· Ex: a = “CompThought”

· a[2:] evaluates to “mpThought”

· a[-1] is the last character of a

· a[-2] is the second last character of a, and so on

· Use this comment at the beginning of python programs:

· #!/usr/bin/env python

Program Examples
#!/usr/bin/env python

print “hello, world”

your = raw_input (“What is your name? “)

print “Hello, “ + your + “! How are you, “ + your + “?”

- comments

#!/usr/bin/env python

us_money = input (“Money value in US $ “)

euro_money = us_money *0.6707

print “US$”, us_money, “= Euros “, euro_money

#!/usr/bin/env python

euroamount = input (“Money value in euros “)

us_money = euroamount /0.6707

print “euros”, euroamount, “= us dollars “, euro_money

#!/usr/bin/env python

b = “the”

c = “cat”

d = “ is on the mat”

a = b + “ “ + c + d

print a

b = b + “ “

a = b * 5

print a

print “The first character of”, c , “ is ”, c[0]

print “The length of c is: “ , len(c)

print “The word \””+ c+ “\” has”, len(c) ,”characters”

print “all but the first two letters is: “ + d[2:]

name = raw_input (“Please, type in your name “)

name = (name + “!”) * 5

Assignment for Monday
1. Read the Djkstra
2. Write a Python program that converts a word to Pig Latin

a. Pig Latin: bring the first letter of the word to the end and add “ay”
Using Addition to do Subtraction
· gives us subtraction

· 8 – 6 = 8 + (10-6) [and throw away the carry]

· 8+(4) – 10

In other words, we inert the number n that we are subtracting (in terms of our base: 10 – n), add the resulting number, and disregard the carry
· Ones’ complement

· same idea as before, but with 0’s and 1’s

· flip every bit of the number

Invert the number n that we are subtracting in terms of base 2 (1 – n). Since an 8-bit number is eight 0’s and 1’s, it’s actually more like 11111111 – n. To relate this to base 10, if we’re subtracting a number like 345, it’s like adding (1000 – 345). This is done by flipping every bit of the number. However, since we’re subtracting the number from 1111111 (which would be like subtracting it from 999 because this +1 would give us a “round number” – round number being basex), we have to add 1 in the end (or bring the highest carry over to the back).
· Twos’ compliment

· same as ones’ compliment, but adds 1
· flip every number to the left of the first (“right-est”) 1

This method takes care of the problem of bring the high-end carry all the way to the low end in conclusion of the addition by subtracting the n from 11111111 and adding 1 to it. Then the result (the twos’ complement) is added and the high-end carry is disregarded. Notice that flipping all digits to the left of the lowest order 1, is the same as flipping all digits and adding 1 to the result.

Example:
1101 – 0100
original
n
0100

ones’ comp
1011

twos’ comp
1100

Using Twos’ complement:

 1101 +

 1100

11001

Disregard high-end carry: 1001

When adding a number and it’s Twos’ complement the result is always 0 and a high end carry (1). When getting a number’s Twos’ complement, you first get its Ones’ complement. Switching each bit in the number guarantees that in the addition of the number and Ones’ complement, the result will be all 1’s,

11010100
+
number

00101011

Ones’ complement

11111111

because the concept is that if the bit is a 1, you don’t add anything (add 0), but if it’s a 0, you add 1. The result has to be 1 for every bit. Next, you add 1 to get Ones’ complement to get the Twos’ complement. Analogously, you can add 1 to the result of the described addition

11010100
+
number

00101011

Ones’ complement

11111111

 11111111
+1

 00000000
100000000
Since the numbers have a limited amount of bits, the 1 in the front of the number becomes the high-end carry and is treated accordingly.
