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Abstract:

Advances in sequencing technology have allowed the number of sequenced genomes to greatly outpace the capacity of experimental and computational tools to accurately annotate these genomes. This leaves large gaps in our knowledge of structure and function within proteomes and severely limits interpretation of high-throughput and next generation experiments. To address these limitations, we have developed a proteome annotation pipeline based on structure prediction, where function and structure annotations are generated using an integration of sequence homology, fold recognition and grid-computing enabled de novo structure prediction. We predict protein domain boundaries, 3D structures and Structure Classification of Proteins (SCOP) superfamilies for protein domains from 94 complete genomes (including Human, Arabidopsis, Rice, Mouse, Fly, Yeast, E. coli and Worm). Protein structure predictions (FFAS03 and Rosetta) yield significant numbers of fold annotations spanning these genomes (9% of domains that are otherwise unannotated). We also demonstrate that our structure annotations can be combined with process and localization annotations from the Gene Ontology database to predict molecular function. We provide multiple interfaces to this database, that contains protein domain, structure, and function predictions spanning 94 complete genomes and a metagenomic project at: http://www.yeastrc.org/pdr/ {Riffle, 2005 #74}.

1  Introduction

Annotation of protein function and structure is a fundamental challenge in biology and a critical complement to the ever expanding set of sequenced genomes.  Accurate proteome annotations allow biologists to better interpret unknown genes from high-throughput experiments (e.g. Mass Spectrometry co-IP, yeast two-hybrid screens, microarray, RNAi screens or forward-genetic screens) and form more detailed hypotheses of biological processes.  Unfortunately, experimental annotation efforts fail to cover large portions of proteomes and are often limited to only model organisms. In contrast, computational methods which predict protein structure and function annotations can extend coverage to more of the proteome as well as coverage to non-model organisms and data-sets from now feasible next-generation experiments (e.g., metagenomic sequencing). In addition, annotations across many genomes aid in cross-species and evolutionary characterizations of proteins and biological networks.


Computational protein annotation methods can be broadly grouped into four categories.  (1) Primary sequence based annotation methods predict general features of a protein such as disorder content (DISOPRED{Jones, 2003 #52}, DSSP{Carter, 2003 #40}), secondary structure (Psipred {Jones, 1999 #53}), transmembrane helices {Krogh, 2001 #51}, coiled coils (COILS {LUPAS, 1991 #50}) or signal peptides (SignalP {Bendtsen, 2004 #49}) and can be efficiently applied to full proteomes but have limited ability to describe the specific function of individual proteins in a cellular context. (2) Sequence homology methods (such as Blast {Altschul, 1997 #78}), including methods and databases that organize proteins into families (CATH{Orengo, 1997 #46}, SCOP{Murzin, 1995 #79}, PFAM {Finn, 2008 #73} ), and fold recognition methods (FFAS{Jaroszewski, 2005 #80}) generate putative function annotations (see {Lee, 2007 #18} for a complete review) but are limited in their application to the set of proteins with sequence detectable templates.  (3) Several groups have used machine learning techniques to integrate high throughput experimental data, such as gene expression and protein-protein interactions, to predict protein function ({Lee, 2004 #57} {Marcotte, 1999 #56}{Pena-Castillo, 2008 #82} {Troyanskaya, 2003 #15} {Hazbun, 2003 #36}{Bader, 2002 #14}) but these data-sets are not available for non-model organisms and therefore limit these methods’ coverage.   


(4) Several studies have shown that protein structures derived from either large scale protein experimental determination {Matthews, 2007 #32}{Dessailly, 2009 #17} or large scale protein prediction (homology modeling, fold recognition and de novo) significantly increased the annotation coverage of several proteomes and often provides site specific information such as probable functional sites and surfaces {Ginalski, 2004 #39}, {Zhang, 2009 #41}{Bonneau, 2004 #37} {Malmström, 2007 #83}. Homology modeling is increasingly productive as more structures are solved, however, many targets still lack detectable homologous proteins in the Protein Databank (PDB) {Marsden, 2007 #16}. De novo structure prediction methods do not require sequence homology to known structures and, therefore, can, in principle, provide coverage to proteins unreachable by homology modeling.  Unfortunately this requires vast computational resources and published methods are incapable of keeping pace with incoming genomic data. 
Here we describe the Proteome Folding Pipeline (PFP), a domain-level annotation method which combines de novo (Rosetta {Rohl, 2004 #66}), fold recognition and homology based structure prediction methods into a single protocol that significantly extends functional and structural proteome annotation coverage for 94 complete genomes (as well as several new protein families from recent metagenomics studies). We consider assigning annotations to whole proteins insufficient because many proteins are multi-domain, domains (i.e. independently folding modular unit) generally perform distinct and different molecular functions, and many experimental methods for characterizing function require site-specific hypotheses. We therefore use the domain prediction protocol, Ginzu {Chivian, 2005 #35}, to delineate protein domains and apply structure prediction methods to the domains. The computational cost of performing de novo structure prediction was distributed on a grid of over 1.5 million CPUs worldwide (World Community Grid, wcgrid.org). De novo structure predictions and homology based structure assignments of protein domains were used to assign protein domains into the Structural Classification of Proteins (SCOP), a database that provides a hierarchical classification of protein three dimensional structure{Murzin, 1995 #79}.  We demonstrate the ability to use these SCOP classifications for predicting Gene Ontology (GO) {Ashburner, 2000 #24} molecular functions and begin to explore ways SCOP classifications can be integrated with other high-throughput experimental data-sets. We developed confidence levels and error models for de novo and SCOP classification methods based on a double-blind benchmark of our own construction containing 875 proteins and characterize the error and yield associated with each product of our pipeline (domains, structure, function).  We provide three interfaces to our database: a Cytoscape {Shannon, 2003 #85} network interface (that highlights novel structure and function predictions in the context of protein interaction networks) {Avila-Campillo, 2007 #75}, a web interface that allows users to search for specific genes of interest; http://www.yeastrc.org/pdr/ {Riffle, 2005 #74} and finally, a Blast interface is available to search using individual sequences (http://pfp.bio.nyu.edu/blast/index).  

2  Results

2.1  Proteome Folding Pipeline applied to 94 genomes

We have applied our pipeline to over 389,000 proteins from 94 genomes (figure 1 describes the full pipeline using a hypothetical protein from Lactobacillus prophage, table S1 details the full set of genomes). First, the domain prediction protocol Ginzu{Chivian, 2005 #35} uses primary sequence based annotation methods to predict secondary structure (PSIPRED{Jones, 1999 #53}), disordered regions (DISOPRED{Jones, 2003 #52}), signal sequences (signalP{Bendtsen, 2004 #49}), coiled coil (COILS{LUPAS, 1991 #50}) and transmembrane regions (TMHMM{Krogh, 2001 #51}). PSI-Blast{Altschul, 1997 #78} is then used to identify structures in the PDB with high sequence homology to regions of the query protein, referred to as PDB-Blast hits. At this stage, over 314,000 domains from the set of input proteins were identified. 

  
 Next, we use the fold recognition algorithm, FFAS03{Jaroszewski, 2005 #80}, to match more evolutionarily distant sequences in the PDB, producing an additional 58,000 domains.  We finally use additional sequence based methods (including identifying Pfam domains {Finn, 2008 #73}, an algorithm for predicting domains from multiple sequence alignments (MSA) {Chivian, 2005 #35} and a Heuristic based algorithm for delineating domain boundaries to identify additional putative domains) that combined to produce an additional 325,000 domains. In total, our domain prediction produced nearly 700,000 domains for the 389,000 query proteins which serve as the basis for our domain centric annotation of these proteins. We then used the Rosetta de novo protocol{Rohl, 2004 #66} to predict the three dimensional structure of those domains lacking structure annotation (ie. Pfam, MSA and Heuristic domains) and that are less than 150 residues in length. We predicted de novo folds for 57,000 domains on IBM’s World Community Grid (requiring over 97,000 years of CPU time, resulting in one of the largest repository of protein structure predictions publicly available.  The final step in the pipeline classifies predicted protein domains into structural superfamilies (SCOP). PDB-Blast and FFAS03 domains are assigned the matched PDB’s superfamily while a logistic regression model was created to classify de novo structures and estimate the error associated with de novo predictions. In all, our pipeline classified over 250,000 domains into SCOP superfamilies of which nearly 43,000 are considered confident and novel (FFAS03 and de novo).  

2.2  Domain prediction

As described above, the domain prediction program, Ginzu, allows us to hierarchically organize all structure prediction methods, ensuring that each domain has a structure annotation or prediction derived from the most accurate and most computationally efficient method possible. [It’s a little unclear what the paper is contributing. Ginzu precedes the paper and seems only to predict domains. How does it ensure that the prediction is the best possible [is the best possible even available anywhere?]?] Figure S1 shows the domain types assigned by our pipeline for several representative organisms. PDB-Blast and FFAS03 annotate an average of  47% and  9% respectively of all proteomes (figure S1)   and assign in sum  51% of eukaryotic domain sequences to a given structure, agreeing very closely with previous efforts {Marsden, 2007 #16}. Our predictions for the human proteome has a slightly higher coverage of domain sequences ( 62%), by these two methods, while many pathogenic eukaryotic organisms are sparsely annotated and are observed to have lower PDB-Blast and FFAS03 coverage, for example Trypanosoma cruzi ( 41%) and Plasmodium vivax ( 37%).  Domain coverage across all 94 genomes (figure S1, table S1) confirms that our analysis provides broad coverage of structure annotations even before de novo methods are applied and our strategy for predicting domain boundaries is extensible to a wide variety of organisms. Additionally, our pipeline produced 29,000 Pfam, 105,000 MSA and 190,000 Heuristic domains totaling 324,000 predicted protein domains annotated by non-structure methods.  It is important to note that the smaller than expected number of Pfam domains is due to the large number of domains that are removed from consideration by PDB-Blast and FFAS before Pfam is applied (our pipeline is structure-centric).

2.3  De novo Structure Prediction and SCOP superfamily classification of structure predictions

We used the Rosetta de novo protocol to predict the three dimensional coordinates for domains not annotated by PDB-Blast and FFAS and use the resulting structure predictions to predict SCOP superfamilies for each domain. Rosetta is a knowledge based protein structure prediction algorithm which uses fragments of proteins from the PDB assembled using Monte Carlo to produce ensembles of low energy protein conformations. The Rosetta de novo protocol does not require homology to a solved structure in the PDB and thus is applicable to all protein domains. In practice the algorithm does not scale to protein domains larger than 150 residues (roughly half of protein domains are too large for Rosetta). Structure fragment libraries were produced by comparing the sequence (PSI-Blast) and secondary structure (PSIPRED) of 3 and 9 amino acid windows of query sequences to a nonredundant set of PDB entries. Due to the very large computational cost of running Rosetta on the genome-wide scale, we initiated the Human Proteome Folding Project in collaboration with IBM’s World Community Grid (WCGrid). WCGrid is an IBM project which makes use of idle CPU time on volunteered personal computers around the world to form a very large virtual supercomputer. As of September 25th, 2010, there are over a half million volunteers and nearly 1.6 million devices capable of running Rosetta on WCGrid. Fragment libraries and query sequences were submitted to WCGrid where the Rosetta de novo protocol was executed resulting in structure predictions for 57,000 domains between 40 and 150 residues in length (see materials and methods). The resulting ensemble of structures predicted for  each domain was clustered using root mean squared distance (RMSD) and five of the top de novo predictions (cluster centers) are provided to the user [which user?] through our web interface where they can be viewed directly in the web browser or downloaded for further analysis. 

We next use our de novo structure predictions to predict the SCOP superfamily for each domain.  The SCOP database describes structural and evolutionary relationships of proteins with known structure (the CATH database would also have functioned as an appropriate fold ontology).  SCOP organizes protein structure by a set of hierarchical classes, folds, superfamilies and families and hand curates PDB structures into this hierarchy. We make predictions at the SCOP superfamily level, as proteins within the same superfamily often have low sequence identity but high structural homology and often share functional features. 

For each protein domain, the centroid structures of the top 25 clusters of Rosetta predictions centers were compared to a representative set of SCOP superfamilies structures. Structural comparisons were made with MAMMOTH which returns a statistical significance (z-score) of a match between two protein structures {Ortiz, 2002 #77}. A logistic regression model was then used to estimate the probability (mammoth confidence metric, MCM score {Malmström, 2007 #83}) of a protein domain belonging to a SCOP superfamily. The regression model’s parameters consist of MAMMOTH z-score, Rosetta convergence score, contact order of the predicted structure and a sequence length ratio between the SCOP superfamily representative and the protein domain sequence.  We demonstrate, below and in previous work {Malmström, 2007 #83} , that this score separates true predictions from incorrect conformations and allows us to classify proteins for which no valid predictions were generated by alternate methods. 

Table 1 shows the number of SCOP classifications that were made for all protein domains processed by our pipeline. Over 57,000 domains were de novo folded and classified into a SCOP superfamily of which 12,500 (21.8%) are considered medium confident (MCM score >= 0.8) and 4,500 (7.9%) are considered high confidence (MCM score >= 0.9). In addition, we also assigned SCOP superfamilies based on sequence homology for domains identified by PDB-Blast and FFAS03 which were annotated using the region of the sequence alignment and the matching PDB entry’s SCOP classification (if classified). Table 1 shows the number of PDB-Blast and FFAS03 domains classified by the PFP with SCOP superfamilies. Of the 314,000 PDB-Blast domains, ~207,700 (66%) were annotated with a SCOP superfamily and of the ~58,000 FFAS03 domains, ~30,000 (52%) were annotated with a SCOP superfamily.  In total our pipeline assigned or predicted SCOP superfamilies for over 295,000 domains out of the nearly 700,000 predicted domains.

2.3.1  Validation of De novo Superfamily Predictions

In this section we access the accuracy of our SCOP superfamily classifier using a benchmark of 875 proteins solved after our Rosetta predictions were made (see supplemental table for the complete specification of this benchmark). Previous test sets used for determining accuracy of the MCM score function were composed of predictions made on proteins with structures already in the PDB{Malmström, 2007 #83}.  Benchmarks based only on the PDB are not ideal because de novo predictions that are made when a similar structure is in the PDB will perform well, but only because the test structure is close to a copy of a training structure. In addition, a test set based on the PDB does not reflect real life scenarios such as the classification of a new fold not present in the SCOP database. We compiled a set of 875 de novo structure predictions, from the full set of ~57,000 de novo predictions, whose structures were experimentally solved after Rosetta fragment library selection; we refer to this set of 875 proteins as the Solved After Predicted set (SAP)(table S4). Specifically, these predictions have Blast e-value of  10-5 or less to PDB structures deposited in the PDB after January 1, 2005 (See methods).

De novo structure predictions were made for all sequences in the SAP set and the top 25 cluster centers for each sequence were classified to SCOP superfamilies (described above). The superfamily with the highest MCM score was then compared to the true superfamily of the native structure. We correctly classified 47% (407) of the domain structures out of the 875 in the SAP set. Figure  2 (bottom left) shows a precision/yield curve for the SAP set where predictions are ordered by their MCM score and plotted according to their precision. An MCM score threshold of 0.9 yields 38% (333) of all predictions made in the SAP set and is 78% accurate (figure  2 bottom left). 

It has been shown that the Rosetta de novo protocol performs differently on proteins of different secondary structure content. For example, predictions on proteins with large β-sheet content and/or high contact order tend to be less accurate {Bonneau, 2002 #55}. To determine the variance of accuracies on different fold classes, we separated the SAP set based on their predicted SCOP class. SCOP divides protein structures into four major classes based on the arrangement of secondary structure where class A: α proteins, class B: β proteins, class C: β-α-β proteins and class D: segregated α and β. As shown in figure 2 (top and middle panels) and table 2a, superfamily classification accuracies and yields vary between SCOP classes. Specifically, classes A and D have similar yields of high confident predictions, 45.5% (138 high confidence / 303 total predicted) and 41.8% (142/340), respectively. Class B yields less high-confident predictions,  11% (11/97) but 9 of those predictions were correct. The low yield but high accuracy for class B shows our classifier is robust to Rosetta’s limited ability for folding β proteins. Furthermore, high confident predictions for classes A, C and D are correct a majority of the time, 69%, 73% and 88% respectively. These results show the superfamily classifier is accurate and yields substantial numbers of high quality structural assignments to further proteome annotation. 

A previous study found smaller proteins to have higher absolute de novo model accuracy but poor superfamily predictive power  relative to larger proteins {Bonneau, 2002 #71}. We split our SAP set into domains greater than and less than 100 amino acids to determine if this holds true for our data (tables 2b and 2c). Consistent with this earlier result, larger domains (83%) outperform smaller domains ( 66%) in high confident superfamily prediction accuracy. Although the sample size is small, this supports our previous finding that the length of a protein domain is an important predictor of successful superfamily assignment. Our overall performance on the SAP set demonstrates our ability to accurately classify structure predictions into superfamilies and our ability to rank predictions using our confidence metric. 

2.3.2  Quality of superfamily predictions and underlying structure predictions

In several cases Rosetta produced relatively accurate structure models but we failed to assign the correct SCOP superfamily because the protein fold was not yet annotated in SCOP or was sparsely sampled. In this section we characterize sources of error which affect our ability to accurately classify proteins into SCOP superfamilies. To properly account for a correct superfamily not being classified in the SCOP database, we ran our SAP set on an earlier version of SCOP (v1.67) which was released prior to our de novo predictions. Our analysis of incorrectly classified SCOP superfamilies in the SAP reveals three main distinct sources of error: 1) errors due to the absence of the target fold in SCOP, 2) errors due to inaccuracy of predicted structures and 3) errors due to incorrect classification of an accurate structure.

The first type of error is due to the true fold/superfamily not being represented in our structure comparison set. There are 554 new superfamilies in the current version of SCOP (v1.75) that are absent in the previous version (1.67). Figure 2 bottom right shows a histogram of the incorrectly classified models in the SAP set. Shaded in yellow is the portion of incorrect classifications where the true superfamily is a new superfamily. New superfamily error makes up roughly 62% of the total error in the SAP set. We believe this error type will become less significant as the protein fold space is sampled more thoroughly and more superfamily representatives are included in our structure comparison set. This is evident by the increase in accuracy seen between the two versions of SCOP, v1.75 (table 2a) and v1.67 (table S2). It should be noted that this type of error is absent from previously reported benchmarks based solely on the PDB because the test structures are already classified in the SCOP database. 

The next source of error stems from error in the de novo predicted model. We estimate this by determining if the predicted structure is more similar to the incorrect superfamily than the true superfamily.  Specifically, we compare the structures of the top 5 predicted cluster centers from incorrectly classified domains in the SAP set to the originally assigned superfamilies and the true superfamily using the Mammoth z-score (figure  2 bottom right, shaded gray). Structures that are more similar to the incorrect superfamily are due to insufficient quality of models and this error is estimated to constitute around 28% of the total error. 

The final source of error stems from error in our superfamily classifier method. This error arises when Rosetta produces an accurate model but our classifier method chooses an incorrect superfamily in spite of the fact that a structure with the correct superfamily exists in our database. This misclassification error is estimated by comparing the top 5 predicted cluster centers to the true superfamily and the incorrectly predicted superfamilies (figure  2 bottom right, shaded light green). Error attributed to the classifier method is minimal compared to other error types, approximately 10% of total error. Interestingly, several of the models in this error class have the true superfamily "alpha-beta sandwich, ACT-like" (d.58.18). A recent study describing the CATH hierarchy of structural classification (a classification of 3D protein structures similar to SCOP) describes this fold (CATH Architecture 3.30) to be in a continuous densely populated region of protein fold space where several independent folds have similar features {Cuff, 2009 #54}. Our superfamily classifier depends on structural differences so distinguishing between two closely related folds is more difficult and therefore requires the highest level of structural accuracy and increased sampling of fold space. We believe continuous regions of fold space will be a persistent albeit small source of error for our method and similar structure-based methods. 

In line with our estimates of the relative importance of these three main sources of error, we find that our fold-prediction yield on the SAP set more than doubles when we update from SCOP release 1.67 to 1.75. In addition to improved accuracy, using the current version of SCOP (v1.75) reveals a significant improvement in the yield (figure S2) over SCOP (v1.67). The most dramatic increase is the yield of class D, from 4.3% (v1.67,table S2) of high confident predictions out of all predictions to 16% (v1.75, table 2a). The observed higher yield in class D is possibly due to an increased sampling of class D fold space (there are 167 new class D superfamilies in version 1.75) in the SCOP database. It is encouraging that the main source of error, new superfamily error, may be alleviated as more of the protein fold universe is explored and characterized.

We next asked if the de novo structure models are valuable alone, independent of SCOP superfamily classification. We compared each of the 875 de novo predictions in the SAP set to their experimental structure or high quality homology model using MAMMOTH. Figure S3 shows our superfamily classifier scores are well correlated with model similarity (MAMMOTH z-score) to the true structure. This shows that the superfamily classifier score is predictive of not only superfamily but also model accuracy, allowing de novo models to be used  in other applications that do not require superfamily classification such as active site localization or residue burial estimates (see Figure S4). [But this doesn’t answer the question of whether for example simply doing de novo structure prediction and then ascribing say GO terms to the proteins based on the closest (however defined) structures in known go families would give say better functional prediction. So, maybe this point belongs in the next section.]
2.4  Molecular Function Prediction

We next demonstrate that SCOP superfamily predictions can be integrated with additional information to predict Gene Ontology (GO) molecular functions in an automated way. GO is a controlled vocabulary of molecular functions (GO-MF), biological process (GO-P) and cellular component (GO-C) terms suitable for automated transfer among proteins. We focus on the integration of structural information with GO-P and GO-C due to the wide availability of these predictors across many of the genomes analyzed. Many structural superfamilies exhibit a diverse set of compatible GO functions and additional evidence is needed to determine a specific function. For example, the SCOP immunoglobulin superfamily (sccs: b.1.1) is annotated with several diverse function terms including protein binding (pdbid: 3D2U), transporter activity (pdbid: 2ZJS) and structural molecule activity (pdbid: 1ACY), among others. The function of an immunoglobulin protein can only be understood in the context of its localization and interaction partners in the cell (information that can be found in databases or extracted from high throughput experiments for several organisms). Conversely, structural evidence may allow for the refinement of a general function annotation (eg. binding) inferred by localization or process evidence to a more specific function annotation (miRNA binding). We have developed a naïve Bayes classifier that integrates GO-P and GO-C annotations with predicted SCOP superfamily classifications to predict GO-MF terms.

In our method, all structural evidence takes the form of predicted SCOP superfamily classifications (S). The method produces a log likelihood ratio (LLR) which is computed for each predictor (GO-P,GO-C,S) of a function and summed to provide an overall score for each GO-MF term. The method is trained on sequences annotated with GO-MF terms and structural classifications inferred by high quality BLAST matches (e-val, length) to SCOP superfamily representatives. Due to specific GO annotations being conditionally dependent on parent nodes and many proteins annotated with multiple GO-P and GO-C terms, feature selection was implemented to identify one GO-P and one GO-C term (when available) with the highest mutual information with each potential GO-MF term (see methods for more details). 

2.4.1  Yield of function predictions using superfamily classifications

We applied our function prediction method to 295,000 domains with superfamily classifications from PDB-Blast, FFAS03 and de novo.  We confidently predict specific molecular functions for 44% (129,000) of domains (LLR >0 and function term is annotated to < 2% of proteins in our training set)(table S3). Many domains lack any GO-function annotation (50%, 147,000); we confidently predict novel molecular functions for 15% (22,000) of these unannotated domains (table S3).  The addition of structural evidence derived from our predictions significantly increases the coverage of function annotation to proteins and protein domains with no known GO-MF. In addition, these function predictions are applied directly to domains which addresses the need for site specific annotation in multi-domain proteins.

The value of function predictions is seen not only for unannotated domains but also for "under-annotated" domains which are domains that have a general function but not one specific enough to fully characterize the domain or have multiple functions and are currently only annotated with one. We confidently predict specific functions for 87,000 domains for which we either extended a generic annotation or predicted a new function altogether. In all, we provide confident function predictions for 109,000 under- and unannotated domains, a significant fraction of domains for which structure predictions were generated. 

2.4.2  Accuracy of function prediction method

To determine the accuracy of our method we created a benchmark using sequences processed with our pipeline that are currently annotated with one or more specific GO Function (GO-MF) term (see methods). We compare the accuracy of function prediction derived from structure predictions against function prediction derived from both PDB-Blast and fold recognition. PDB-Blast evidence provides an upper bound on the confidence and expected yield for predictions made by any function prediction method as it is the highest confidence structure assignment method. Figure 3 (upper left) shows that integrating PDB-Blast structural evidence with GO Process (GO-P) and Component (GO-C) (PCS, green) improves prediction accuracy over GO-P and GO-C alone (PC, red) for a random sampling of 5,000 eukaryotic proteins. All combinations of predictors involving structural evidence show improved performance, and the combination of PCS performs best with over 20% recall of known molecular functions at 50% precision. This result confirms that molecular function predictions are more accurate using structural evidence at the level of SCOP superfamily. [this paragraph could be clearer. A possible organization: What is the gold standard? How do you evaluate the benefit of structure?]
Performance of function predictions on FFAS03 structure evidence were also evaluated using a random sampling of 5000 eukaryotic proteins. Figure 3 (upper right) highlights the integrative performance of FFAS03 structural evidence with other GO information. This shows the inclusion of fold recognition structural evidence with GO-P and GO-C (green) mostly outperforms GO-P and GO-C alone (red). The decrease in performance of fold recognition evidence from PDB-Blast ( 7.5% recall at 50% precision) can be attributed to the error in the fold recognition method assigning domains to SCOP superfamilies and the error associated with the longer evolutionary distance causing greater functional divergence. This shows structure evidence at multiple levels of confidence can be used to predict molecular function.

Creating a proper benchmark to address the accuracy of function predictions based on de novo structure evidence is more difficult due to the fact that our pipeline annotates domains with the highest confidence method first, thus, domains with de novo structure predictions are less likely to be annotated with GO functions.  Therefore benchmarking de novo function predictions is complicated by the limited ability to distinguish between a false prediction and a true prediction that is not currently annotated.  De novo function predictions for the SAP set show de novo structure evidence can be used in combination with GO-P and GO-C to predict molecular functions (figure S7).  However, the SAP set is an imperfect benchmark due to its relatively small size.  We anticipate de novo evidence will be a valuable predictor of molecular function as more domains are fully annotated and a more comprehensive benchmark can be created. [Is there no way to do a voting scheme based on taking the unannotated protein, performing structure prediction on it yielding structure S, finding near neighbors to Sin structure space among annotated structures and then voting on GO terms.]
2.4.3  Structural information provides unique function predictions and increase the specificity of function predictions. 

An examination of the molecular function predictions made by our pipeline shows that structural information not only improves our predictive accuracy but allows us to make predictions for a novel set of functions and a novel set of proteins which are not made using the GO- P and GO-C evidence alone. We first made predictions for a random sampling of FFAS03  annotated eukaryotic domains using two evidence sets, PCS (with structure) and PC (without structure). We then determined all of the unique MF terms predicted above a given precision for each evidence set and divided them into sets of functions that were predicted only by PCS, predicted only by PC and predicted by both. Over  48% (306) of the unique functions above 50% precision were only predicted by PCS compared to just  5% (29) only predicted by PC (figure 3 lower left) (the remaining 301 functions were predicted by both evidence sets). We also asked if a unique set of proteins was predicted by the two sets of predictors, PCS and PC with the belief certain proteins require structure evidence for proper annotation. Figure 3 (lower right) shows  21% (359) of unique proteins are annotated by PCS compared to  10% (183) only predicted by PC (the remaining 1201 proteins were predicted by both evidence sets).  The unique and specific nature of many of our structure-derived function predictions, as well as the domain-specificity of these predictions, suggests that our function prediction method will be increasingly valuable to the broad biological community for generating novel hypotheses.
2.5  Example predictions

For example, used our proteome-wide structure prediction database to perform SCOP-superfamily enrichment analysis on D. radiodurans and P. vivax. We show that folds enriched in these organisms reveal highly expanded fold classes used to carry out key adaptations  associated with each organisms’ lifestyle. We also provide, below and in the supplement, several specific examples of SCOP superfamily predictions and GO-MF predictions from several organisms and metagenomic datasets. Our examples represent testable hypotheses for further study, demonstrating the broad utility of the resource to biologists. In all cases, structural and functional validation of the examples relies on information not deposited in the function and structure databases used at the time the prediction was made (if such information exists). Predictions were made on WCGrid from 2004 to 2008, while post processing of the results was carried out from 2006-2009, thus in many cases our high confidence predictions have been partially or fully validated experimentally. 

2.5.1  Expansion of the transglutaminse fold family in D. radiodurans represents a key adaptation to ionizing radiation.

D. radiodurans can withstand extremely large doses of ionizing irradiation (ref). A previous study of the D. radiodurans genome has shown enrichment of specific protein families related to stress response and damage control based on sequence comparisons to other bacterial organisms {Makarova, 2001 #3}. We preformed enrichment analysis based on predicted superfamilies for D. radiodurans 4,864 protein domains from the PFP pipeline (table 3a). Our analysis recovered many of the previous study’s enriched protein families including PR-1-like, Subtilisin-like, Nudix hydrolases and DinB/YfiT-like folds. Our work expands structure prediction coverage and reveals several enriched protein folds not reported in these prior comparisons. In particular, we predict that the D. radiodurans proteome contains 10 or more protein domains with the transglutaminase fold. The transglutaminase fold has been shown to participate in the  nucleotide excision repair (NER) pathway (the Yeast protein RAD4 is homologous to the several members of the transglutaminase family) {Anantharaman, 2001 #2}. The uncharacterized D. radiodurans gene, DR1901, predicted by this study to have a transglutaminase fold exhibits a 10 fold induction in gene expression in response to radiation {Liu, 2003 #1} supporting the hypothesis that several of the proteins that we predict have a transglutaminase fold are directly involved in D. radiodurans response to ionizing radiation, perhaps by participating in NER in a manner similar to RAD4.

2.5.2  Novel structure predictions reveal  an enrichment of several new signaling and virulence related fold families in the P. vivax proteome.

P. vivax is an important human malaria parasite species which has recently shown resistance to common drug treatments{Rieckmann, 1989 #86}. We used our structure predictions for this organism to uncover specific folds that are significantly expanded as a (table  3b). Two protein families commonly found in Plasmodium genomes, and already known to play a key role in pathogeneisis, were recovered, Major surface antigen and Duffy binding domain-like. Additional enriched folds include the FKBP12-rapamycin-binding (5 instances of this fold were predicted by the Rosetta de novo protocol). Rapamycin is an immunosuppressant known to interact with several proteins including mTOR and FKBP12 {Zhou,  #87}; these domains may be involved in the parasite’s interactions with the host immune system during initial stages of infection. Other enriched folds include virulence factors such as the Adhesin YadA fold and the protease cathepsin which make potential drug targets for further study. Our predictions represent interesting candidate members of the complex host-pathogen interaction network already characterized for P. vivax.  

2.5.4  CC_3056 (Caulobacter crescentus) is a truncated hemoglobin fold

The truncated hemoglobin family is a 2/2 α helical fold present in bacteria with functions including NO dioxygenation, oxidation/reduction and involvement in respiration {Vinogradov, 2008 #62}. The Caulobacter crescentus hypothetical protein, CC_3056, was folded using Rosetta (figure 4a) and confidently classified in the "Globin-like" superfamily (MCM > .98); our prediction matched a truncated hemoglobin PDB structure (1DLWa), producing a structure-structure alignment with 4.97Å RMSD (figure 4b). CC_3056 and the truncated hemoglobin, 1DLWa, have only  23% sequence identity but share a semi-conserved heme binding pocket (figure 4c) where 16 out of 26 ligand binding residues are similar (Blossum62 values > 0) including nine identical residues key to the function of 1DLWa. Finally, a close homologue of CC_3056, C. jejuni trHbP, was recently crystalized (after our initial prediction was made, 2IG3) confirming the truncated hemoglobin fold prediction. 

(http://www.yeastrc.org/pdr/viewProtein.do?id=2823436, the PDB-Blast hit to 2IG3 is reported in the web database)

2.5.5  GOS_6366033 (Ocean Metagenomics) is predicted to be a chorismate mutase

The recent metagenomics Global Ocean Sampling (GOS) expedition {Yooseph, 2007 #61} provided > 1700 new protein clusters with no detectable homology to known protein families. From this set of novel families, we folded 2 members for each family < 150 residues in length with Rosetta (877 families).  The predicted fold of GOS_6366033 (figure 4d) confidently matched a chorismate mutase structure (1ECM) {LEE, 1995 #60} (figure 4e). Chorismate mutase catalyzes chorismate to prephenate in the bacterial biosynthesis pathway of tyrosine and phenylalanine. 1ECM and GOS_6366033 share only 11% sequence identity (based on structural alignment, as sequence based methods detect no alignment) but a structure-structure alignment of our model to 1ECM predicts that five GOS_6366033 residues are conserved in the chorismate binding pocket of 1ECM (figure 4f). Two of the conserved residues, Arg51 (Arg44 in GOS_6366033) and Glu52 (Glu45), are identical and participate in hydrogen bonds with the transition state analog of chorismate in 1ECM which possibly stabilize the ligand. Two other conserved residues Leu55 (Met48) and Ile81 (Leu74) are thought to aid binding through hydrophobic forces. A fifth conserved residue, Arg47 (Lys39), stabilizes the Glu52 sidechain through electrostatic interactions in the 1ECM structure leading us to believe the Lys39 in GOS_6366033 protein serves a similar role. 

2.5.6  Rumi (Drosophila melanogaster)

Rumi is an endoplasmic reticulum protein and an important regulator of the Notch-signaling pathway which regulates cell-fate decisions.  Rumi was predicted by our pipeline to be a member of the glycosyltransferase SCOP superfamily (sccs: c.87.1) based on fold recognition analysis (FFAS03). This function prediction was based on a 2005 version of the GO database and integrated the superfamily prediction with GO-P term "carbohydrate metabolic process" (GO:0005975) to predict the GO molecular function term "transferase activity, transferring glycosyl groups" (GO:0016757). Subsequent to this prediction Rumi was shown to display O-glucosyltransferase activity in 2008 by Acar, M., et al., who observed lower amounts of O-glucosylated peptides in Rumi knockdown samples compared to controls {Acar, 2008 #59}, confirms our function prediction for Rumi. This example is a clear case  where GO-P ("carbohydrate metabolic process") or structure alone would have been insufficient to make a prediction as specific as the correct MF-prediction resulting from the integration of this information.

(http://www.yeastrc.org/pdr/viewPSPOverview.do?id=673166)

2.5.7  OOep/MOEP19 (Mus musculus)

Transfer of genetic material from maternal cells to precise locations in oocytes is important for proper development. The previously unannotated mouse gene, MOEP19, was predicted by  FFAS03 to be a member of the Eukaryotic type KH-domain SCOP superfamily (sccs: d.51.1). The KH-domain is a diverse RNA-binding domain superfamily. Our function prediction method using the assigned superfamily, GO-P "cellular macromolecule metabolic process" (GO:0034960) and GO-C "intracellular part" (GO:0044424), confidently predicted MOEP19 to have a "nucleic acid binding" GO-MF annotation (GO:0003676).  It was later shown experimentally by Herr et al. that MOEP19 binds ribonucleotide homopolymers using a RNA binding assay {Herr, 2008 #58}. They also show that MOEP19 is a maternal effect gene involved in blastomere polarity suggesting its involvement in patterning RNA in the developing oocyte. (http://www.yeastrc.org/pdr/viewPSPOverview.do?id=614967)

2.6  Interfaces to our proteome-wide structure and function predictions

Biologists can obtain structure, superfamily, and molecular function predictions along with other predictions (such as secondary structure, disordered regions, and multiple sequence alignments) from the The Yeast Resource Center Public Data Repository{Riffle, 2005 #74}  via a standard web interface(http://www.yeastrc.org/pdr/, figure S5).  A Blast interface (http://pfp.bio.nyu.edu/blast/index)  is available which will find all exact and close matches to query sequences and provide links to the web database (for many users interested in variants of proteins from the 94 genomes, or proteins not found in the 94 genomes processed this Blast interface will serve as the main interface).  Raw data is available upon request in multiple formats.  Additionally, we have integrated our database with the Cytoscape protein-protein interaction plug-in BioNetBuilder {Avila-Campillo, 2007 #75} (http://err.bio.nyu.edu/cytoscape/bionetbuilder/). Nodes in BioNetBuilder display visual queues (e.g. size, shape) indicating the confidence or relevance of our predictions for a each gene in the networks automatically built by the tool. Links to the web database are provided as attributes for each node in the cytoscape network. 

3  Discussion

As the cost of sequencing genomes has fallen, the ability to efficiently and accurately annotate a proteome has become increasingly important. Computational methods are essential for annotation of newly sequenced proteins but current approaches often perform poorly when sequence homology between characterized and unknown proteins is low.  Annotations based on predicted structural homology extend coverage beyond the boundaries attainable by sequence homology but are partially limited by their computational efficiency. We show that combining efficient and accurate sequence-based methods with de novo structure prediction run on a globally distributed grid substantially increases structural annotation coverage and significantly expands the set of annotations for 94 proteomes. 

3.1  Comparison of PFP to complementary methods and complementary experimental efforts

The Robetta server {Chivian, 2005 #35} is domain centric and, like the PFP, attempts to run the most accurate applicable structure prediction method on each predicted domain (PDB-Blast −> Fold recognition −> Rosetta). The main disadvantages of this server are extremely long wait times (in many cases > 6 months), the inability to upload whole genomes, the lack of integrated function prediction, and the much smaller amount of sampling used for the de novo portion of the structure prediction. In the case of genome annotation the most critical of these limitations is the long wait times (due to the computational cost of Rosetta modeling) which limits the scalability to full proteomes, given current architecture. Our pipeline solves this problem by precomputing and archiving de novo structure predictions run on World Community Grid, allowing immediate access to results and for full proteome database queries. For example, a list of all putative transcription factors in a genome is a required input into regulatory network inference algorithms; this and previous work (Bonneau, 2004, Genome Biology) show that proteome-wide structure prediction significantly expands list of putative regulators and signaling proteins. Other key advantages to the PFP as a full proteome annotation tool  include SCOP superfamily classification of structures and GO function predictions based on those structure annotations.  Integrating the Robetta server with the PFP database (such that queries to the Robetta server already contained in our database can be resolved without repeating costly structure prediction calculations) is an attractive area for future work.

The Protein Structure Initiative (PSI) is a multi-group effort to increase the coverage of structure annotations across protein sequence space using both experimental and computational approaches {Dessailly, 2009 #17}. Representative sequences of domain families with unknown structure are selected for experimental structure determination and once solved, the structure can be used as a template to predict the structure (homology modeling) for other sequences in the family. The PSI has greatly increased the number of structures in the Protein Data Bank. More extensive mapping of sequence space to structures assists the PFP sequence and fold recognition based methods (PDB-Blast, FFAS03) and, additionally, adds to the set of structures from which to classify de novo predictions (SCOP superfamily classification). The PSI has increased the fraction of protein sequences that can be assigned a structure by 2.0% over a 3 year period (based on the UniProt protein set{Dessailly, 2009 #17}). In comparison, we report an increase of 1.8% in structural coverage of 94 genomes based on our de novo structure predictions (table 1). Although computationally predicted structures are less accurate than experimental ones, and therefore less valuable for many tasks, the additional coverage afforded by our pipeline is mostly orthogonal to the PSI coverage due to our selection of de novo targets which lack sequence homology to the PDB. The PSI and PFP also differs by the organisms selected for coverage. Eukaryotic organisms are not the primary focus of the PSI whereas the PFP has been applied to a balanced distribution of eukaryotic and prokaryotic organisms (table S1).  The PSI only increased structural coverage for 0.3% of human proteins {Dessailly, 2009 #17} while the PFP increased coverage of human domains by 0.8% with medium and high confidence SCOP classifications derived from de novo structure predictions (table S1). Finally, de novo structure predictions from the PFP could be used to aid in target selection by the PSI. A current problem in selecting sequences for experimental structure determination by the PSI is discriminating sequences with novel folds from evolutionary divergent sequences of known folds. Our pipeline reports SCOP superfamily classifications for de novo structures which are thought to be evolutionary divergent members of the matched superfamily. Sequences without quality SCOP superfamily classifications are possibly members of novel folds and thus could be assigned a higher priority for experimental structure determination with respect to increasing structural coverage of protein space.  Clearly, as our computational techniques for predicting structure improve in parallel to dramatic progress in the technology for experimental determination of structure, computational and experimental approaches will continue to be complimentary.

3.2  Need for improved gene prediction and domain boundary prediction

Our ability to use structure-based methods to improve proteome annotation is highly sensitive to the accuracy of gene prediction and domain boundary prediction methods. For many genomes, gene prediction methods can accurately produce proper start and stop sites as well as intron/exon transition locations. It has been reported, however, for some prokaryotic genomes, 60% of genes are annotated with an incorrect start site {Nielsen, 2005 #9} while other studies suggest limited accuracy (40%-50%) in predicting alternative splicing in eukaryotic genes{Guigó, 2006 #8}.  De novo structure prediction of protein sequences with additional or missing residues will often produce inaccurate results. We believe that as gene prediction techniques continue to improve the identification of protein boundaries, the PFP will show increased accuracy in predicting protein structure annotations for a greater number of proteins. In addition, domain prediction methods are generally good at determining the number of domains but determining domain boundaries to within +/-10 residues has proven difficult. A careful analysis of the performance of the Ginzu domain prediction algorithm {Kim, 2005 #33} showed the PDB-Blast method to be accurate in determining domain boundaries while fold recognition (FFAS03), Pfam, and our heuristic method for parsing multiple sequence alignments were found to be less accurate. In the case of Pfam we believe this higher error in predicted domain boundaries is possibly due to the fact that several Pfam domains represent only the conserved core of a protein family and not the actual domain boundary. Other domain parsing programs such as CHOP {Liu, 2004 #34} could also be used in conjunction with Ginzu to predict domain boundaries. Kim et al. report the overall Ginzu method to have better general performance than many human curated methods which suggests that curation may indeed be a dominant source of incorrect boundary assignment in several popular domain family databases {Kim, 2005 #33}.  Encouragingly there are several promising recent high throughput experimental approaches to determining protein domains which could feasibly alleviate significant portions of domain prediction error. For example in a recent study of the C. elegans early-embryonic interactome network, Boxem et al. used a modular domain view of protein protein interactions to determine the minimal region of the protein necessary to maintain a protein protein interaction {Boxem, 2008 #26} thus elucidating individual domains. In many cases the minimal interacting domains detected by Boxem et al. exhibited excellent correspondence to known structural domains. Similar approaches may be developed in the future to probe domain boundaries in a scalable genome-wide fashion.

3.3  Domain centric annotation

In general, different functions are carried out by different domains within the same protein, however, many of the function annotations in the Gene Ontology database are not mapped to a specific domain in a multi-domain protein. Applications such as genetic functional analysis, genome wide protein evolution and co-evolution studies are hampered by the lack of domain specific annotations. A recent example is the experimental analysis of the Bacillus subtilis spore coat protein, SpoVID. The N-terminal domain has been shown experimentally to be required for encasement of the endospore during final stages of spore coat morphogenesis, while the C-terminal domain is required for necessary protein-protein interactions with other proteins within the spore coat {Wang, 2009 #30}. The n-terminal and c-terminal domains function independently at the molecular level and therefore it is difficult to understand the overall function of SpoVID in spore coat morphogenesis without a separate characterization of its domains. Additionally, Chothia et al. have used domain structures of proteins to study gene duplication, recombination, and divergence and quantitate these processes in terms of their evolutionary impact {Chothia, 2003 #27}. Vogel et al. describe the co-evolution of domain combinations, called supra-domains, that continually reoccur in proteins {Vogel, 2004 #29}.  They note that over one third of structurally characterized proteins contain a supra-domain and therefore are particularly useful for genome evolution and annotation efforts. Such evolutionary studies require domain level annotation but until now have been limited to proteins whose structure is known or predictable via homology modeling. 


We demonstrate the ability to accurately and efficiently predict protein domains and their three dimensional structures on a proteome scale, classify unknown proteins into structural superfamilies, and predict functions based on this structural information. We have provided annotations for 94 proteomes, including medically relevant genomes, model organisms and the Human proteome.  We also provide reliable estimation of error for de novo and function predictions. Although protein function and structure have a complex relationship, the PFP resource will be widely useful due to the hundreds of thousands of new domain-specific function and structure hypotheses that the resource provides for the analyzed genomes and the intuitive interface to this data we provide. We believe the data and interface will allow biologists to readily integrate and produce functional hypotheses based on protein structure and domain boundary prediction, such as described above. With this in mind, we provide multiple interfaces to the resource (an easy to use web interface, a network visualization interface, and raw access to the database) to support the computational biology, biology and clinical communities. 

4  Experimental Procedures

Full descriptions of the methods used in this work are presented in the Extended Experimental Procedures online, including domain prediction, de novo prediction, superfamily prediction, function prediction, enrichment analysis and the evaluation of confidences.  
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7 Figure Legends  

Figure 1: Flow diagram of the Proteome Folding Pipeline using Lactobacillus prophage hypothetical protein Ljo_0324 as an example. (A) The Ljo_0324 sequence is first annotated with primary and secondary structure elements of the sequence (PSIPRED, DISOPRED and not shown TMHMM, COILS and SignalP). (B) Blast and the fold recognition algorithm (FFAS03) is then used to compare the input sequence to the PDB database (PDB-Blast) to identify a structure. (C) Regions of the protein sequence still unannotated are subjected to PFAM, multiple sequence alignments (MSA) and a Heuristic method for domain boundary prediction. All domains determined by PFAM, MSA and Heuristic are tested to see if their length is < 150 amino acids (in addition to other filters). (D) If the sequence passes the filter, the domain is sent to the computational grid where its structure is predicted by Rosetta. (E) Finally, domains with structural annotations (de novo, Blast or fold recognition) are classified into SCOP superfamilies. Regions annotated in the current step are outlined in black and regions annotated in previous steps are outlined in dotted lines. Example can be found at http://www.yeastrc.org/pdr/viewProtein.do?id=2155068  

Figure 2: Distribution of SCOP superfamily classifications. (Top and middle) A set of 875 protein domains (SAP set) folded by Rosetta and whose structure (or close homologue) has been solved after our prediction was used to determine the accuracy of our method’s ability to correctly classify SCOP superfamilies. Plotted in solid lines and dotted lines are the number of correct and incorrect classifications respectively. Classifications are broken down by SCOP class A (α, blue), B (β, yellow), C (β-α-β, red) and D (segregated α and β, green). This graph demonstrates classifications with high confident MCM scores are the most accurate in classifying SCOP superfamily. (Bottom left) The Precision/Yield plot shows the percentage of protein domains in the SAP set classified using SCOP v1.75 for varying precisions. The line is colored by MCM score (right axis). (Bottom right) The histogram of superfamily classification error types represents the total number of incorrectly classified models in the SAP set for different MCM score ranges using a previous version of SCOP (v1.67). New SF error is the error due to a new superfamily (the true superfamily was not represented in the structure comparison set), 62% of total error. Decoy error is the error due to insufficient de novo model quality, 28% of total error. Classifier error is the error due to the superfamily classifier being inaccurate, 10% of total error. 

Figure 3: Function prediction method with structure information out performs method without structure information. (Upper panel) Precision vs Recall for eukaryotic function predictions separated by the type of structure evidence. The graph shows the precision of function predictions versus recall for sequences that were structurally classified by PDB-Blast (left) and FFAS03 (right). The red lines represent the prediction method using GO Process and Component (PC). The green lines represent the prediction method using GO Process, Component and Structure (PCS). The graph shows adding structure information from PDB-Blast and FFAS03 improves precision for function prediction. (Lower panel) Function prediction methods using structure information produce novel function predictions and for a unique set of proteins. Functions were predicted for FFAS03 domains with SCOP classifications from a random sampling of 5,000 proteins with known molecular function. Black lines represent functions (left) or proteins (right) predicted by both predictor methods. Red lines represent functions (or proteins) predicted only by PC. Blue lines represent functions (or proteins) predicted only by PCS. The predictions made with the integration of structure with process and localization terms annotate a unique range of molecular functions and proteins that would be otherwise unreachable.  

Figure 4:  C. crescentus hypothetical protein CC_3056 is a truncated hemoglobin fold and marine metagenome GOS_6366033 is predicted a chorismate mutase. A. Rosetta model of CC_3056. B. Structural alignment of Rosetta model and 1DLWa, a truncated hemoglobin with Mammoth alignment z score of 14.39. C. Rosetta model viewed with 1DLW heme ligand. D. Rosetta model of GOS_6366033. E. Structure alignment of Rosetta model and 1ECMa, a chorismate mutase with alignment z score of 9.71. F. Rosetta model viewed with 1ECM transition state analog of chorismate. Ligand contacting residues that are identical and conserved with matched PDB structures are colored in blue and red respectively for C and F.

8. Tables
	SCOP class
	PDB-BLAST Total (%)
	FFAS03 Total (%)
	De novo Total (%)
	De novo MedConf (%) *
	De novo HighConf (%) **

	A
	45500 (21.9%)
	6148 (20.4%)
	35765 (62.3%)
	8649 (24.2%)
	3432 (9.6%)

	B
	35117 (16.9%)
	4929 (16.3%)
	3117 (5.4%)
	526 (16.9%)
	140 (4.5%)

	C
	57196 (27.5%)
	3999 (13.2%)
	3874 (6.8%)
	590 (15.2%)
	170 (4.4%)

	D
	38152 (18.4%)
	5433 (18.0%)
	12463 (21.7%)
	2204 (17.7%)
	584 (4.7%)

	Other
	31721 (15.3%)
	9674 (32.1%)
	2147 (3.7%)
	559 (26.0%)
	197 (9.2%)

	All
	207686
	30183
	57366
	12528 (21.8%)
	4523 (7.9%)


*MCM score > 0.8

**MCM score > 0.9

 Table 1: Superfamily classifications for domains run through the PFP.  

(a) all protein domains 

	SCOP class
	Total (%)
	Total correct (%)
	MedConf (%)*
	MedConf correct (%)*
	Yield MedConf*
	HighConf (%)**
	HighConf correct (%)**
	Yield HighConf**

	A
	303 (34.6%)
	122 (40.3%)
	186 (61.4%)
	106 (57.0%)
	21.3%
	138 (45.5%)
	95 (68.8%)
	15.8%

	B
	97 (11.1%)
	41 (42.3%)
	27 (27.8%)
	12 (44.4%)
	3.1%
	11 (11.3%)
	9 (81.8%)
	1.3%

	C
	113 (12.9%)
	35 (31.0%)
	59 (52.2%)
	30 (50.8%)
	6.7%
	33 (29.2%)
	24 (72.7%)
	3.8%

	D
	340 (38.9%)
	202 (59.4%)
	209 (61.5%)
	170 (81.3%)
	23.9%
	142 (41.8%)
	125 (88.0%)
	16.2%

	Other
	22 (2.5%)
	7 (31.8%)
	10 (45.5%)
	6 (60.0%)
	1.1%
	9 (40.9%)
	6 (66.7%)
	1.0%

	All
	875
	407 (46.5%)
	491 (56.1%)
	324 (66.0%)
	
	333 (38.1%)
	259 (77.8%)
	


(b) protein domains < 100aa length

	SCOP class
	Total (%)
	Total correct (%)
	MedConf (%)*
	MedConf correct (%)*
	Yield MedConf*
	HighConf (%)**
	HighConf correct (%)**
	Yield HighConf**

	A
	129 (37.4%)
	28 (21.7%)
	64 (49.6%)
	23 (35.9%)
	18.6%
	40 (31.0%)
	17 (42.5%)
	11.6%

	B
	48 (13.9%)
	21 (43.8%)
	18 (37.5%)
	11 (61.1%)
	5.2%
	10 (20.8%)
	9 (90.0%)
	2.9%

	C
	19 (5.5%)
	2 (10.5%)
	11 (57.9%)
	2 (18.2%)
	3.2%
	3 (15.8%)
	2 (66.7%)
	0.9%

	D
	133 (38.6%)
	78 (58.6%)
	79 (59.4%)
	60 (75.9%)
	22.9%
	44 (33.1%)
	35 (79.5%)
	12.8%

	Other
	16 (4.6%)
	7 (43.8%)
	8 (50.0%)
	6 (75.0%)
	2.3%
	8 (50.0%)
	6 (75.0%)
	2.3%

	All
	345
	136 (39.4%)
	180 (52.2%)
	102 (56.7%)
	
	105 (30.4%)
	69 (65.7%)
	


  (c) protein domains  >= 100aa length 

	SCOP class
	Total (%)
	Total correct (%)
	MedConf (%)*
	MedConf correct (%) *
	Yield MedConf *
	HighConf (%)**
	HighConf correct (%)**
	Yield HighConf**

	A
	174 (32.8%)
	94 (54.0%)
	122 (70.1%)
	83 (68.0%)
	23.0%
	98 (56.3%)
	78 (79.6%)
	18.5%

	B
	49 (9.2%)
	20 (40.8%)
	9 (18.4%)
	1 (11.1%)
	1.7%
	1 (2.0%)
	0 (0.0%)
	0.2%

	C
	94 (17.7%)
	33 (35.1%)
	48 (51.1%)
	28 (58.3%)
	9.1%
	30 (31.9%)
	22 (73.3%)
	5.7%

	D
	207 (39.1%)
	124 (59.9%)
	130 (62.8%)
	110 (84.6%)
	24.5%
	98 (47.3%)
	90 (91.8%)
	18.5%

	Other
	6 (1.1%)
	0 (0.0%)
	2 (33.3%)
	0 (0.0%)
	0.4%
	1 (16.7%)
	0 (0.0%)
	0.2%

	All
	530
	271 (51.1%)
	311 (58.7%)
	222 (71.4%)
	
	228 (43.0%)
	190 (83.3%)
	


*MCM score > 0.8

**MCM score > 0.9
Table 2: Superfamily classifications for SAP structures. (a) All results in SAP set. (b) Protein domains in SAP < 100 amino acids. (c) Protein domains in SAP >= 100 amino acids. Comparison of (b) and (c) show in general a higher accuracy of superfamily prediction when protein domains are >= 100 amino acids. 

	(a) D. radiodurans

	Rank
	SCOP id
	Enrichment Score
	Number of domains
	Superfamily name

	1
	b.1.5
	3.774
	10
	Transglutaminase, two C-terminal domains

	2
	d.110.7
	3.418
	7
	Roadblock/LC7 domain

	3
	d.111.1
	3.081
	5
	PR-1-like

	4
	c.41.1
	1.654
	6
	Subtilisin-like

	5
	a.3.1
	1.523
	10
	Cytochrome c

	6
	h.1.5
	1.472
	6
	Tropomyosin

	7
	d.159.1
	1.472
	17
	Metallo-dependent phosphatases

	8
	b.1.18
	1.317
	12
	E set domains

	9
	d.185.1
	1.271
	9
	LuxS/MPP-like metallohydrolase

	10
	c.58.1
	1.220
	7
	Aminoacid dehydrogenase-like, N-terminal domain

	

	(b) P. vivax

	Rank
	SCOP id
	Enrichment Score
	Number of domains
	Superfamily name

	1
	h.4.2
	5.756
	120
	Clostridium neurotoxins, "coiled-coil" domain

	2
	b.6.2
	5.245
	8
	Major surface antigen p30, SAG1

	3
	b.42.4
	5.208
	131
	STI-like

	4
	a.264.1
	5.158
	22
	Duffy binding domain-like

	5
	b.61.5
	3.348
	6
	Dipeptidyl peptidase I (cathepsin C), exclusion domain

	6
	a.24.7
	3.166
	5
	FKBP12-rapamycin-binding domain of FKBP-rapamycin-associated protein (FRAP)

	7
	a.118.11
	3.166
	11
	Cytochrome c oxidase subunit E

	8
	b.81.3
	2.878
	6
	Adhesin YadA, collagen-binding domain

	9
	a.56.1
	2.809
	7
	CO dehydrogenase ISP C-domain like

	10
	a.24.26
	2.809
	7
	YppE-like


Table 3: Top enriched folds of (a) D. radiodurans and (b) P. vivax


