
GraphGrep: A Fast and Universal Method for Querying Graphs

Rosalba Giugno
Department of Mathematics and Computer Science

University of Catania
viale A. Doria 6, 95125 Catania, Italy

giugno@dmi.unict.it

Dennis Shasha
Courant Institute of Mathematical Sciences

New York University
251 Mercer Street, New York, NY 10012

shasha@cs.nyu.edu

Abstract

GraphGrep is an application-independent method for
querying graphs, finding all the occurrences of a sub-
graph in a database of graphs. The interface to Graph-
Grep is a regular expression graph query language Glide
that combines features from XPath and Smart. Glide in-
corporates both single node and variable-length wildcards.
Our algorithm uses hash-based fingerprinting to represent
the graphs in an abstract form and to filter the database.
GraphGrep has been tested on databases of size up to
16,000 molecules and performs well in this entire range.

1. Introduction

Many applications in industry, science, and engineering
share the same problem: given a subgraph, find its oc-
currences in a database of graphs. The increasing size of
application databases requires efficient structure searching
algorithms. Examples of such database and substructure
searching methods can be found in computational chemistry
[6],[14], vision [3], and web exchange data (XML)[7][1].

Finding occurrences of a subgraph in a set of graphs is
known to be NP complete [5]. Although graph-to-graph
matching algorithms [2], [13] can be used, efficiency con-
siderations suggest the use of special techniques to reduce
the search space and the time complexity.

There is an extensive literature on graph (or substruc-
ture) searching. For a review see [14], [12]. Most of the
existing methods however, are designed for specific applica-
tions. For example several querying methods for semistruc-
tured databases, and in particular for XML databases, have
been proposed ([7],[1],[11], [4], [12], [10]). These meth-
ods use different data models, query languages and index-
ing strategies. The data objects used in XML databases are
viewed as rooted labeled graphs. Regular path expressions
are used to address substructures in the database. Cycles are

searched by evaluating recursion functions or by formulat-
ing complex queries. To avoid unnecessary traversals of the
database during the evaluation of a path expression, index-
ing methods are introduced in [7] and [9].

Daylight[6] proposes a searching system for a database
of molecular graphs. It finds all the molecules that contain,
as a subgraph, at least one occurrence of the query. Day-
light uses fingerprints consisting of bit vectors, where each
position represents a small path. It also provides a graph
expression language based on the Smiles [15] molecule rep-
resentation to formulate queries.

Messmer and Bunke[8] propose an application indepen-
dent method. The method indexes the graphs in a database
and computes a graph isomorphism. Both indexing and
matching are based on all possible permutations of the ad-
jacent matrices of the graphs. This algorithm works ex-
tremely well on small graphs, but doesn’t scale well to
larger graphs or large databases of graphs.

In this article we present an application-independent
method to performexact subgraph queries in a database
of graphs. Our systemGraphGrep finds all the occur-
rences of a graph in a database of graphs. To formulate
queries we introduce a graph query language which we term
Glide: Graph LInear DEscription language. Glide descends
from two query languages Xpath [1] for XML documents
and Smart [6] for molecules. In Xpath, queries are ex-
pressed using complex path expressions where the filter and
the matching conditions are included in the notation of the
nodes. Glide uses graph expressions instead of path expres-
sions. Smiles is a language designed to code molecules
and Smart is a query language to discover components in
a Smiles databases. Glide borrows the cycle notation from
Smiles and generalizes it to any graph application.

2. GraphGrep description

GraphGrep assumes that the nodes of the database
graphs have an identification number (id-node) and a label
(label-node). Edges are undirected and unlabeled (for pur-

poses of this paper). We define anid-pathof lengthn to be
a list ofn id-nodes with an edge between any two consecu-
tive nodes. Similarly alabel-pathof lengthn is defined as a
list of n label-nodes. For example in Fig. 1, (C,A) is a label
path in graphg1, and (3,1) is an id-path corresponding to it.

0 3

21

B

A B

C

(a)Graph g1

1

2 3

654

D

B

A
B

C

E

(b)Graph g2

0

321

B

A

B
C

(c)Graph g3

4
C

Figure 1. A database containing 3 graphs. The labels can be
strings of arbitrary length.

The basic steps ofGraphGrep are to: (1) build the
database to represent the graphs as sets of paths (this step
is done only once), (2) filter the database based on the sub-
mitted query to reduce the search space, and (3) perform
exact matching. We discuss these steps in turn.

Database construction. For each graph and for each
node, find all paths that start at this node and have length
one (single node) up to a (small, e.g. 10) constant valuelp
(lp nodes). We use the samelp for all graphs in the database.
Because several paths may contain the same label sequence,
we group the id-paths associated with the same label-path
in a set. The “path-representation” of a graph is the set of
label-paths in the graph, where each label-path has a set of
id-paths (see Fig. 2a).

The keys of the hash table are the hash values of the label
paths. Each row contains the number of id-paths associated
with a key (hash value) in each graph. We will refer to the
hash table as the fingerprint of the database (see Fig. 2b).

A={(1)} AB={(1, 0), (1,2)} AC ={(1, 3)} ACBA={…}
ABCA={(1 ,0 ,3 ,1),(1, 2, 3, 1)} CB={(3,0),(3,2)} C={(3)}
CBAB={((3, 0, 1 ,2),(3 ,2 ,1 ,0)} B={(0),(2)} BA={(0,1),(2,1)}
BAB={(0,1,2), (2,1,0)} ABC ={(1, 3, 0), (1,3,2)} ACB={…}
ABCB={…} BC={…} BAC={…} BCB={…} CBA={…}
BABC={…}CBAC={…} CABC={…} CAB={(3,1,0), (3,1,2)}
BACB={…}BCBA={…}BCAB={…} BCA={…} CA={(3,1)}

2

0

g2

02h(ABCB)

……

11h(CA)

g3g1Key

(a) Path representation of graph g1

(b) Fingerprint of database

Figure 2. (a) The path representation ofg1 with lp = 4. (b)
The fingerprint of the database showing only part of rows.

Parsing a query graph. A query graph is given in the
Glide language (see Sec. 3 and Fig. 3); it can be seen as
a linear representation of a tree generated in a depth first
search (DFS) traversal of the query graph (see Fig. 3). The

query is parsed to build its fingerprint (hashed set of paths)
and the branches in the depth-first tree are decomposed into
sequences of overlapping label-paths, which we also call
patterns, of lengthlp or less (see Fig. 3).

These overlaps may appear in the following cases: (1)
for consecutive label-paths, the last node of a pattern coin-
cides with the first node of the next pattern (e.g. A/B/C/B/,
with lp = 3 is decomposed into two patterns: ABC and
CB); (2) if a node has branches it is included in the first pat-
tern of every branch (see node C in Fig. 3d); (3) The first
node visited in a cycle appears twice: in the beginning of
the first pattern of the cycle and at the end the last pattern
of the cycle (the first and last pattern can be identical, as in
Fig. 3d).

0

2 3

A B

A%1/B/C%1/B/

1
CB

(b) Graph query q1 (c) Depth first tree (d) Patterns

0

2

3

1

A

B

C

B

(a) Glide graph query q1

A*BCA*

CB

lp=4

Figure 3. (a) A query graph in Glide representation. (b) The
graph query. (c) The depth first tree (to which Glide expression (a)
corresponds to). (d) A set of patterns obtained withlp = 4. In this
example overlapping labels are marked with asterisks or underlin-
ing. Labels with the same mark represent the same node.

Filtering the database. To avoid visiting all the graphs
in the database during a query the search space is reduced
by discarding graphs that clearly do not contain any occur-
rences of the query. The remaining graphsmaycontain one
or more subgraphs matching the query.

We filter the database by comparing the fingerprint of
the query with the fingerprint of the database. A graph, for
which at least one value in its fingerprint is less than the
corresponding value in the fingerprint of the query, is dis-
carded. For example, for the graph query in Fig. 3 with
lp = 4, graphsg2 andg3 are filtered out because they do not
contain the label-path ABCA.

Finding subgraphs matching with queries. After fil-
tering, we look for all the matching subgraphs in the re-
maining graphs. We use the path representation of the
graphs to look for occurrences of the query. Only the parts
of each (candidate) graph whose id-path sets correspond to
the patterns of the query are selected and compared with
the query. Here is how. After the id-path sets are selected,
we identify overlapping id-path lists and concatenate them
(removing overlaps) to build a matching subgraph. For the
overlapping case (1) and (2) a pair of lists is combined if
the two lists contain thesameid-node in the overlapping
position. In the overlapping case (3), a list is removed if it
doesnot contain thesameid node in the overlapping posi-
tions; finally, lists are removed if the id-nodes which arenot
placed in overlapping positions are equal.

Example Let us consider the steps to match the query
(Fig. 3) and the graphg1 (Fig. 2).

1. Select the set of paths ing1 matching the patterns
of the query (withlp = 4): ABCA= f(1; 0; 3; 1);
(1; 2; 3; 1)g CB= f(3; 0); (3; 2)g.

2. Combine any list l1 from ABCA with any list
l2 of CB if the third id-node in l1 is equal
to the first id-node of l2 and the first id-node
in l1 is equal to the fourth id-node ofl1:
ABCACB= f((1; 0; 3; 1); (3; 0)); ((1; 0; 3; 1); (3; 2));
((1; 2; 3; 1); (3; 0)); ((1; 2; 3; 1); (3; 2))g.

3. Remove lists from ABCACB if they contain equal id-
nodes in non-overlapping positions (the positions in
the each list not involved above). The two substruc-
tures ing1 whose composition yields ABCACB are
((1; 0; 3; 1); (3; 2)) and((1; 2; 3; 1); (3; 0)).

Graph queries with wildcards are treated by consid-
ering the parts of the query graph between wildcards as
disconnected components. (For example, the disconnected
components of the graph in Fig. 4 are the path AB and the
single node D.) The matching algorithm described above is
done for each component. A cartesian product between the
sets that match each component constitutes the candidate
matches. An entry in the cartesian product is a valid match
if, in one graph that contains the entry, there is a path (of
length equal to the wildcard’s value) between nodes that are
connected with wildcards. The paths in the candidate graph
are checked with a DFS traversal of the graph. This step is
optimized by maintaining the transitive closure matrices of
the database graphs and searching in the candidate graph
only if the wildcard’s value is greater than or equal to the
shortest path between the nodes.

Complexity. Here is a description of the worst case com-
plexity for GraphGrep. LetjDj be the number of graphs in
a databaseD. Let n, e andm be the number of nodes,
the number of edges and the maximum valence (degree)
of the nodes in a database graph, respectively. The worst
case complexity of building a path representation for the
database isO(

PjDj
i (nim

lp
i)), whereas the memory cost

is O(
PjDj

i (lpnim
lp
i)). Given a query withnq nodes,eq

edges andmq maximum valence, finding its patterns takes

O(nq + eq) time; building its fingerprint takesO(nqm
lp
q).

Filtering the database takes linear time in the size of the
database. The matching algorithm depends on the num-
ber of query graph patternsp, that need to be combined;
p is somewhat difficult to determine for the average case.
Roughly speaking, it is directly proportional to the query
size and to the maximum valence of the nodes in the query.
The largerlp, the smallerp, though this relationship is data-
dependent. In general if~n is the maximum number of nodes
having the same label, the worst case time complexity for
the matching isO(

PjDf j
i ((~nim

lp
i)

p)) with jDf j the size of

the database after the filtering. For a query containingw

pairs of nodes connected with wildcards the complexity for
the matching isO(

PjDf j
i ((~nim

lp
i)

p + wei)).

3. Glide: a graph linear query language

The main idea of Glide (coming from Smiles) is to repre-
sent a graph and its branches in linear notation where each
node is presented only once. Nodes are represented using
their labels and they are separated using slashes; branches
are grouped using nested parentheses ’(’ and ’)’ and cycles
are broken by cutting an edge and labeling it with an integer.
The vertices of the cut edge are represented by their labels
followed by %, the integer and ’/’. If the same node is a
vertex of several cut edges the label of the node is followed
by a list of % and integers.
For example the Glide representation of the graph
in Fig. 1a is “A%1%2/B/C%2/B%1/”, in Fig. 1b is
“A%3/B%1%2%3/(E/)C%2/D%1/” and in Fig. 1c is
“B/C/A/B/C/”.

Unspecified components in a graph are described using
wildcards ’�’,’ :’,’+’ and ’?’. The wildcards represent single
nodes or paths. The wildcard ’:’ matches any single node;
(2) ’�’ matches zero or more nodes; (3) ’?’matches zero
or one node; and (3) ’+’ matches one or more nodes (see
Fig. 4).

2

310

D

A B

A/ B / (./) */ D/

Figure 4. This Glide expression matches a graph with specific
properties: (1) there exist a path between a node with label B and
a node with label D; (2) there is an edge between the node with
label B and a node with label A and (3) there is an edge between
the node with label B and a node with any label.

4 Results

To assess the practical efficiency ofGraphGrep we
performed a set of numerical experiments on NCI databases
up to 16,000 molecules. The graphs in these databases have
an average number of 20 nodes; several graphs have up to
270 nodes. We used an old Sun workstation equipped with
the 650MHz Ultra80 processor.

In our experiments we varied query size (5, 13, to 66
nodes), database sizes (1,000 - 16,000 graphs), andlp val-
ues (4, 6, and 10) (Fig. 5). The left diagram gives prepro-
cessing times (on a logarithmic scale). The running time
is exponential inlp and is linear in the size of the database.
The right diagram reports query times (also on a logarithmic
scale) for the three different query lengths and four differ-
ent lp values (see Fig 5). Different values oflp influence
the running of the queries: for theQ3 query the matching

1

10

100

1000

database size

tim
e

[s
ec

]

lp 10

lp 6

lp 4

lp 10 22.38 42.81 86.01 170.4 386.06

lp 6 11.48 22.29 43.62 89.65 222.29

lp 4 10.04 19.53 38 76.98 196.47

1000 2000 4000 8000 16000

0.1

1

10

100

1000

databse size

tim
e

[s
ec

]

Q1 lp 10 Q1 lp 4 Q2 lp 10 Q2 lp 4

Q3 lp 10 Q3 lp 4

Q1 lp 10 0.29 0.35 0.37 0.57 1.02

Q1 lp 4 0.33 0.41 0.46 0.64 1.2

Q2 lp 10 3.85 7.82 16.63 38.71 153.19

Q2 lp 4 3.15 6.54 13.71 31.74 124

Q3 lp 10 0.34 0.71 1.4 3.78 7.03

Q3 lp 4 1.8 3.9 7.02 16.98 40.03

1000 2000 4000 8000 16000

Figure 5. The abscissa gives the size of the database and the ordinate the CPU time measured in seconds (both in logarithmic
scale). The left diagram gives preprocessing times (database construction times) and the right diagram gives querying times. Query Q1 is
“c%1/c/c/c/(c/c%1/)P/c%2/c/c/c/c/c%2/”. Query Q2 is “c/(./c/)c/(*/S/)c/”. Query Q3 is a molecule with 66 nodes, 72 undirected edges and its
max valence per node is 6. For the Q1 and Q3 queries, 99% of the database was discarded, whereas for the Q2 query, 81% was discarded. In this
experiment, changing thelp value didn’t change the effectiveness of filtering. For the 16,000 molecules database 640 subgraphs are found for Q1,
10,496 for Q2 and 564 for Q3.

algorithm performs better withlp = 10 than with lp = 4
(which is consistent with the time complexity analysis). In
addition, in these examples we verify that the querying time
is linear in the size of the database, and exponential inp�lp.
Recall thatp (the number of paths within sizelp that have
to be tested) is proportional to the query size. As expected,
p decreases substantially with largerlp (e.g. for paths), but
not always. Note that there is no exponential dependency
on the data graph size.

5. Conclusion and Further Work

We have presented a search algorithmGraphGrep and
a graph query language for database of graphs. We have
shown that it performs well for small query graphs on
large graph databases (in the thousands) and large size (270
nodes). We are extendingGraphGrep to compute inexact
subgraph matching. A software implementation is freely
available at www.cs.nyu.edu/shasha/papers/graphgrep/.

References

[1] J. Clark and S. DeRose. Xml Path Language (Xpath).
http://www.w3.org/TR/xpath, 1999.

[2] L. Cordella, P. Foggia, C. Sansone, and M. Vento. An effi-
cient algorithm for the inexact matching of arg graphs using
a contextual transformational model. InIn proceedings of
the 13th ICPR, volume 3, pages 180–184. IEEE Computer
Society Press, 1996.

[3] S. Dickinson, M. Pelillo, and R. Zabih. Introduction to
the special section on graph algorithms in computer vision.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 23(10), October 2001.

[4] L. Galanis, E. Viglas, D. J. DeWitt, J. F. Naughton, and
D. Maier. Following the paths of xml data: An algebraic

framework for xml query evaluation. Submit for pubblica-
tion, 2001.

[5] M. Garey and D. Johnson.Computers and Intractability:
A Guide to the Theory of NP-Completeness. Freeman and
Company, 1979.

[6] C. A. James, D. Weininger, and J. Delany.Daylight the-
ory manual-Daylight 4.71. Daylight Chemical Information
Systems, www.daylight.com, 2000.

[7] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and
J. Widom. Lore: A database management system for
semistructured data. InSIGMOD Record, volume 26, pages
54–66, September 1997.

[8] B. T. Messmer and H. Bunke. Subgraph isomorphism detec-
tion in polynominal time on preprocessed model graphs. In
ACCV, Lecture Notes in Computer Science, pages 383–392.
Springer, 1996.

[9] T. Milo and D. Suciu. Index structures for path expressions.
In ICDT, pages 277–295, 1999.

[10] J. Shanmugasundaram, H. Gang, K. Tufte, C. Zhang, D. De-
Witt, and J. F. Naughton. Relational databases for querying
xml documents: Limitations and opportunities. InVLDB
Journal, 1999.

[11] L. Sheng, Z. M. Ozsoyoglu, and G. Ozsoyoglu. A graph
query language and its query processing. InICDE, pages
572–581, 1999.

[12] D. Suciu. An overview of semistructured data.SIGACTN:
SIGACT News (ACM Special Interest Group on Automata
and Computability Theory), 29, 1998.

[13] J. Ullmann. An algorithm for subgraph isomorphism.Jour-
nal of the Association for Computing Machinery, 23:31–42,
1976.

[14] J. Wang, B. Shapiro, and D. Shasha.Pattern Discovery in
Biomolecular Data. New York Oxford, oxford university
press edition, 1999.

[15] D. Weininger. Smiles. introduction and encoding rules.
Journal Chemical Information in Computer Science, 28(31),
1988.

