GraphGrep: A Fast and Universal Method for Querying Graphs

Rosalba Giugno Dennis Shasha
Department of Mathematics and Computer ScienceCourant Institute of Mathematical Sciences
University of Catania New York University
viale A. Doria 6, 95125 Catania, Italy 251 Mercer Street, New York, NY 10012
giugno@dmi.unict.it shasha@cs.nyu.edu
Abstract searched by evaluating recursion functions or by formulat-

ing complex queries. To avoid unnecessary traversals of the
GraphGrep is an application-independent method for database during the evaluation of a path expression, index-

querying graphs, finding all the occurrences of a sub- ing methods are introduced in [7] and [9].

graph in a database of graphs. The interface to Graph- Daylight[6] proposes a searching system for a database

Grep is a regular expression graph query language Glide of molecular graphs. It finds all the molecules that contain,

that combines features from XPath and Smart. Glide in- as a subgraph, at least one occurrence of the query. Day-

corporates both single node and variable-length wildcards. light uses fingerprints consisting of bit vectors, where each

Our algorithm uses hash-based fingerprinting to represent position represents a small path. It also provides a graph

the graphs in an abstract form and to filter the database. expression language based on the Smiles [15] molecule rep-

GraphGrep has been tested on databases of size up tagesentation to formulate queries.

16,000 molecules and performs well in this entire range. Messmer and Bunke[8] propose an application indepen-
dent method. The method indexes the graphs in a database
and computes a graph isomorphism. Both indexing and
matching are based on all possible permutations of the ad-

1. Introduction jacent matrices of the graphs. This algorithm works ex-
tremely well on small graphs, but doesn't scale well to

Many applications in industry, science, and engineering 12r9€r graphs or large databases of graphs.
share the same problem: given a subgraph, find its oc- In this article we present an appllc_athn—mdependent
currences in a database of graphs. The increasing size off€thod to performexactsubgraph queries in a database
application databases requires efficient structure searchin@f 9raphs. Our systerGraphGrep finds all the occur-
algorithms. Examples of such database and substructuré€NCes of a graph in a database of graphs. To formulate

searching methods can be found in computational chemistryqu_eri‘t"’S we introduce a graph query language which we term
[6],[14], vision [3], and web exchange data (XML)[7][1]. Glide: Graph Linear DEscription language. Glide descends

Finding occurrences of a subgraph in a set of graphs isfrom two query languages Xpath [1] for XML qocuments
known to be NP complete [5]. Although graph-to-graph and Smart_[6] for molecules. In Xpath, queries are ex-
matching algorithms [2], [13] can be used, efficiency con- pressed using complex path expressions where the filter and

siderations suggest the use of special techniques to reduc'® matching conditions are included in the notation of the
the search space and the time complexity. nodes. Glide uses graph expressions instead of path expres-

There is an extensive literature on graph (or substruc-Sions- Smiles is a language designed to code molecules
ture) searching. For a review see [14], [12]. Most of the @nd Smart is a query language to discover components in
existing methods however, are designed for specific applica® SMiles databases. Glide borrows the cycle notation from
tions. For example several querying methods for semistruc->Miles and generalizes it to any graph application.
tured databases, and in particular for XML databases, have
been proposed ([7],[1],[11], [4], [12], [10]). These meth- 2. GraphGrep description
ods use different data models, query languages and index-
ing strategies. The data objects used in XML databases are GraphGrep assumes that the nodes of the database
viewed as rooted labeled graphs. Regular path expressiongraphs have an identification numbat-fiodg and a label
are used to address substructures in the database. Cycles aflabel-nodg. Edges are undirected and unlabeled (for pur-

poses of this paper). We define idhpathof lengthn to be query is parsed to build its fingerprint (hashed set of paths)
a list of n id-nodes with an edge between any two consecu- and the branches in the depth-first tree are decomposed into
tive nodes. Similarly &abel-pathof lengthn is definedasa sequences of overlapping label-paths, which we also call
list of n label-nodes. For example in Fig. 1, (C,A) is a label patterns of lengthl, or less (see Fig. 3).
path in graphy,, and (3,1) is an id-path corresponding to it. These overlaps may appear in the following cases: (1)
for consecutive label-paths, the last node of a pattern coin-
cides with the first node of the next pattern (e.g. A/B/C/B/,
with [, = 3 is decomposed into two patterns: ABC and
B CB); (2) if a node has branchesi it is included in the first pat-
' tern of every branch (see node C in Fig. 3d); (3) The first
All node visited in a cycle appears twice: in the beginning of
the first pattern of the cycle and at the end the last pattern
of the cycle (the first and last pattern can be identical, as in
Figure 1. A database containing 3 graphs. The labels can be ~ Fig- 3d).

strings of arbitrary length. A%1/B/C%1/B/
(a) Glide graph query ql1

(a)Graph g1 (b)Graph g2 (c)Graph g3

The basic steps obraphGrep are to: (1) build the
database to represent the graphs as sets of paths (this step
is done only once), (2) filter the database based on the sub-
mitted query to reduce the search space, and (3) perform
exact matching. We discuss these steps in turn. (b) Graph queryql (c)Depthfirsttree (d) Patterns

Database construction For each graph and for each Figure 3. (a) A query graph in Glide representation. (b) The
node, find all paths that start at this node and have length graph query. (c) The depth first tree (to which Glide expression (a)
one (single node) up to a (small, e.g. 10) constant vjlue corresponds to). (d) A set of patterns obtained Wjth= 4. Inthis
(lp nodes). We use the sanl})e‘or all graphs in the database. _example (I)ver_l'f;]pphlng labels arlf marked WItI:1 asterisks or underlin-
Because several paths may contain the same label sequence, ing. L.abels with the same mark represent the same node.
we group the id-paths associated with the same label-path Filtering the database To avoid visiting all the graphs
in a set. The “path-representation” of a graph is the set ofin the database during a query the search space is reduced
label-paths in the graph, where each label-path has a set oY discarding graphs that clearly do not contain any occur-
id-paths (see Fig. 2a). rences of the query. The remaining grapfesycontain one

The keys of the hash table are the hash values of the labePr more subgraphs matching the query.
paths. Each row contains the number of id-paths associated We filter the database by comparing the fingerprint of
with a key (hash value) in each graph. We will refer to the the query with the fingerprint of the database. A graph, for

hash table as the fingerprint of the database (see Fig. 2b). Which at least one value in its fingerprint is less than the
corresponding value in the fingerprint of the query, is dis-

carded. For example, for the graph query in Fig. 3 with

(a) Pathrepresentation of graph gl

A={(1)} AB={(1,0), (1,2)} AC ={(1, 3)} ACBA={...} [, = 4, graphsy, andgs are filtered out because they do not

ABCA={(1,03,1),(1, 2, 3, 1)} CB={(3,0),(3,2)} C={(3)} contain the label-path ABCA.

gf@?gfﬁz’f’é’f}j}f AZB’Cl ;?21’83_’{(()())’)’((f)g’z)?ﬁ_c{é%{ll).’.(}z‘l)} Finding subgraphs matching vyith queries Aftgr fil-

ABCB={...} BC={...} BAC={...} BCB={...} CBA={...} tering, we look for all the matching subgraphs in the re-

BABC={...}CBAC={...} CABC={...} CAB={(3,1,0), (3,1,2)} maining graphs. We use the path representation of the

BACB={...)BCBAS{(...}BCABH(...} BCAR{...} CAX{(B.1)} graphs to look for occurrences of the query. Only the parts
Key % |o | of each (candidate) graph whose id-path sets correspond to
h(CA) 1 |0 |1 | (Fingerprintof database the patterns of the query are selected and compared with

------ the query. Here is how. After the id-path sets are selected,
nAsce) 2 |2]° we identify overlapping id-path lists and concatenate them
(removing overlaps) to build a matching subgraph. For the
overlapping case (1) and (2) a pair of lists is combined if
the two lists contain theameid-node in the overlapping
Parsing a query graph A query graph is given in the position. In the overlapping case (3), a list is removed if it
Glide language (see Sec. 3 and Fig. 3); it can be seen asloesnot contain thesameid node in the overlapping posi-
a linear representation of a tree generated in a depth firstions; finally, lists are removed if the id-nodes which ao¢
search (DFS) traversal of the query graph (see Fig. 3). Theplaced in overlapping positions are equal.

Figure 2. (a) The path representation gf with [, = 4. (b)
The fingerprint of the database showing only part of rows.

Example Let us consider the steps to match the query the database after the filtering. For a query containing
(Fig. 3) and the graph, (Fig. 2). pairs of nodes connected with wildcards the complexity for

1. Select the set of paths in matching the patterns the matching i€)(S2 127! (ri;ml)P + we;)).
of the query (withl, = 4): ABCA= {(1,0,3,1),
(1,2,3,1)} CB= {(3,0), (3,2)}.

2. Combine any listl; from ABCA with any list
I, of CB if the third id-node inl; is equal
to the first id-node ofl, and the first id-node
in I, is equal to the fourth id-node off;:
ABCACB= {((1,0,3,1), (3,0)), ((1,0,3,1),(3,2)),
((1,2,3,1),(3,0)), ((1,2,3,1), (3,2))}.

3. Remove lists from ABCACB if they contain equal id-
nodes in non-overlapping positions (the positions in
the each list not involved above). The two substruc-
tures ing; whose composition yields ABCACB are
((1,0,3,1),(3,2)) and((1,2,3,1),(3,0)). . .

Graph queries with wildcards are treated by consid- by alist of % and mteg(_ars. .

ering the parts of the query graph between wildcards as.For 'exampk_a th% (§I|de r%presintaflor) Of. the gfaph

disconnected components. (For example, the disconnecte{:l1 Fig. 1a is "A%1%2/B/C%2/B%1/", n F'|g. 1b 1S
R A%3/B%1%2%3/(E/)C%2/D%1/” and in Fig. 1c is

components of the graph in Fig. 4 are the path AB and the“B/C/A/B/C/”

single node D.) The matching algorithm described above is U i ' q s h d ibed usi

done for each component. A cartesian product between the . nspe(3| ,u,a) ,co,mpor);a’n s [N @ graph are described using

sets that match each component constitutes the candidaﬂéylldcards x/ .+ and o The wildcards represent smglg

matches. An entry in the cartesian product is a valid match nod,e? or paths. The wildcard rnatchgs any single node;

if, in one graph that contains the entry, there is a path (of (2) "+" matches zero or more nodes; (Jjraiches zero

length equal to the wildcard’s value) between nodes that are2r On€ hode; and (3 matches one or more nodes (see

3. Glide: a graph linear query language

The main idea of Glide (coming from Smiles) is to repre-
sent a graph and its branches in linear notation where each
node is presented only once. Nodes are represented using
their labels and they are separated using slashes; branches
are grouped using nested parentheses (" and ’)’ and cycles
are broken by cutting an edge and labeling it with an integer.
The vertices of the cut edge are represented by their labels
followed by %, the integer and '/’. If the same node is a
vertex of several cut edges the label of the node is followed

connected with wildcards. The paths in the candidate graphF'g' 4 5

are checked with a DFS traversal of the graph. This step is .

optimized by maintaining the transitive closure matrices of :

the database graphs and searching in the candidate graph o]

only if the wildcard's value is greater than or equal to the Figure 4. This Glide expression Tatches a graph with specific

shortest path between the nodes. properties: (1) there exist a path between a node with label B and
a node with label D; (2) there is an edge between the node with

Complexity. Here is a description of the worst case com- label B and a node with label A and (3) there is an edge between

plexity for GraphGrep. LetD| be the number of graphs in the node with label B and a node with any label.

a databasé). Letn, e andm be the number of nodes,

the number of edges and the maximum valence (degree)4 Results
of the nodes in a database graph, respectively. The worst

case complexity of building a path representation for the

database i@(ELD|(nim2p))' whereas the memory cost To assess the practical efficiency GfaphGrep we

performed a set of numerical experiments on NCI databases

i ‘D‘ lp H i

is 02, (lpnimi')). Given a query W't_hnq nodes,e, up to 16,000 molecules. The graphs in these databases have
edges andn, maximum valence, finding its pattern? takes o average number of 20 nodes: several graphs have up to
O(nq + e,4) time; building its fingerprint take®(n,my’). 270 nodes. We used an old Sun workstation equipped with

Filtering the database takes linear time in the size of thethe 650MHz Ultra80 processor.

database. The matching algorithm depends on the num- |n our experiments we varied query size (5, 13, to 66
ber of query graph patterns that need to be combined; nodes), database sizes (1,000 - 16,000 graphs),,aral-

p is somewhat difficult to determine for the average case. yes (4, 6, and 10) (Fig. 5). The left diagram gives prepro-
Roughly speaking, it is directly proportional to the query cessing times (on a logarithmic scale). The running time
size and to the maximum valence of the nodes in the queryis exponential irl,, and is linear in the size of the database.
The larget,,, the smallep, though this relationship is data- The right diagram reports query times (also on a logarithmic
dependent. In generaliifis the maximum number of nodes scale) for the three different query lengths and four differ-
having the same label, the worst case time complexity for ent 1, values (see Fig 5). Different values bf influence
the matching iiQ(ELDf‘((ﬂimﬁ”)l’)) with |Dy¢| the size of the running of the queries: for th@3 query the matching

1000 +

100 +

time [sec]

10 +

database size
1

1000
22.38
11.48
10.04

2000
42.81
22.29
19.53

4000

86.01

43.62
38

8000
170.4
89.65
76.98

16000
386.06
222.29
196.47

Ip 10
Ip6
Ip4

Figure 5.
scale).

time [sec]

1000 1

Qllp10 — - - —Qllp4 — — —Q2Ip10

Q3lp10 == ==Q3Ip4

100 -

104

0.1

1000 2000 4000 8000 16000

Q1lp 10

0.29 0.35 0.37 0.57 1.02

Qllp4

0.33 041 0.46 0.64 12

Q21p 10

3.85 7.82 16.63 38.71 153.19

Q2lp4

3.15 6.54 13.71 3174 124

Q3Ip 10

0.34 0.71 1.4 3.78 7.03

Q3lp4

18 3.9 7.02 16.98 40.03

The abscissa gives the size of the database and the ordinate the CPU time measured in seconds (both in logarithmic
The left diagram gives preprocessing times (database construction times) and the right diagram gives querying times.

Query Q1 is

“c%1/clclcl(clc%ll)Plc%2/c/cicicic%2/”. Query Q2 is “c/(./cl)c/(*/S/)cl”. Query Q3 is a molecule with 66 nodes, 72 undirected edges and its
max valence per node is 6. For the Q1 and Q3 queries, 99% of the database was discarded, whereas for the Q2 query, 81% was discarded. In this
experiment, changing thg value didn’t change the effectiveness of filtering. For the 16,000 molecules database 640 subgraphs are found for Q1,

10,496 for Q2 and 564 for Q3.

algorithm performs better witf, = 10 than withl, = 4
(which is consistent with the time complexity analysis). In
addition, in these examples we verify that the querying time
is linear in the size of the database, and exponentjakif,.
Recall thatp (the number of paths within sizg that have

to be tested) is proportional to the query size. As expected,
p decreases substantially with lardgi(e.g. for paths), but

(5]

(6]

not always. Note that there is no exponential dependency 7]

on the data graph size.

5. Conclusion and Further Work

We have presented a search algoritBraphGrep and

(8]

a graph query language for database of graphs. We have

shown that it performs well for small query graphs on

(9]

large graph databases (in the thousands) and large size (270

nodes). We are extendir@@raphGrep to compute inexact
subgraph matching. A software implementation is freely
available at www.cs.nyu.edu/shasha/papers/graphgrep/.

References

[1] J. Clark and S. DeRose. Xml Path Language (Xpath)
http://www.w3.org/TR/xpath, 1999.

L. Cordella, P. Foggia, C. Sansone, and M. Vento. An effi-
cient algorithm for the inexact matching of arg graphs using
a contextual transformational model. lim proceedings of
the 13th ICPRvolume 3, pages 180-184. IEEE Computer
Society Press, 1996.

[3] S. Dickinson, M. Pelillo, and R. Zabih. Introduction to
the special section on graph algorithms in computer vision.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 23(10), October 2001.

L. Galanis, E. Viglas, D. J. DeWitt, J. F. Naughton, and
D. Maier. Following the paths of xml data: An algebraic

(2]

(4]

[10]

[11]

[12]

[13]

[14]

[15]

framework for xml query evaluation. Submit for pubblica-
tion, 2001.

M. Garey and D. JohnsonComputers and Intractability:

A Guide to the Theory of NP-Completene$gseeman and
Company, 1979.

C. A. James, D. Weininger, and J. Delanfpaylight the-

ory manual-Daylight 4.71 Daylight Chemical Information
Systems, www.daylight.com, 2000.

J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and
J. Widom. Lore: A database management system for
semistructured data. BIGMOD Recordvolume 26, pages
54-66, September 1997.

B. T. Messmer and H. Bunke. Subgraph isomorphism detec-
tion in polynominal time on preprocessed model graphs. In
ACCV, Lecture Notes in Computer Science, pages 383—392.
Springer, 1996.

T. Milo and D. Suciu. Index structures for path expressions.
In ICDT, pages 277-295, 1999.

J. Shanmugasundaram, H. Gang, K. Tufte, C. Zhang, D. De-
Witt, and J. F. Naughton. Relational databases for querying
xml documents: Limitations and opportunities. W.DB
Journal, 1999.

L. Sheng, Z. M. Ozsoyoglu, and G. Ozsoyoglu. A graph
query language and its query processing.|GDE, pages
572-581, 1999.

D. Suciu. An overview of semistructured dat8IGACTN:
SIGACT News (ACM Special Interest Group on Automata
and Computability Theoryp9, 1998.

J. Ullmann. An algorithm for subgraph isomorphisgour-

nal of the Association for Computing Machine®8:31-42,
1976.

J. Wang, B. Shapiro, and D. Shash@attern Discovery in
Biomolecular Data New York Oxford, oxford university
press edition, 1999.

D. Weininger. Smiles. introduction and encoding rules.
Journal Chemical Information in Computer Scien28(31),
1988.

