
ENTERPRISE DATABASE
PERFORMANCE AND TUNING

NYU
Britt Ewen, Rob Mancuso

Agenda

 “Real World” Performance Tuning
 Steps to get to the root cause of a problem

 Platform Overview
 Relational Databases

 HBase

 MongoDB

 Case Studies
 HBase (Part 1)

 HBase (Part 2)

 Relational Database 1

 Relational Database 2

 MongoDB

2

Database Performance Tuning

 Optimizer is the most complex part of almost any
application stack

 Addressing a sudden drop-off in performance
 Immediate impact requiring time sensitive response

 Could follow a system change – known or unknown

 Improving a system
 Known issue which can be addressed proactively

 Increase in volume, number of users, …

 System could be degrading slowly over time

 A reproducible problem is a solvable problem!

 Sometimes – often – the answers are simple
 But… getting there is the hard fun part

3

Non Relational Databases

 Not a magic bullet to address all performance
problems

 Many similarities to the relational space

 Different platforms take different approaches

 HBase != Cassandra != MongoDB != PostgreSQL != …

 What they take away more than what they add

 No Joins = No data colocation concerns

 No Transactions = No cross host coordination

 Loosened Consistency = Easier to Distribute Data
Geographically

4

Real World Performance Tuning

 “Something is Slow – Help!”

 May or may not be database performance related

 This is akin to puzzle solving – but no one yet
knows the answer

5

Real World Performance Tuning

 Try to start each new investigation with an
open mind and clean slate

 What behavior is being identified v. what
people think might of caused it

 We often see a tendency to take the last problem
solved and assume the problem has recurred

 E.g.-“Reboot!”, “Expand the Log!”, “Increase
Locks!”, “Storage Problems!”, …

 Correlation versus causation

6

Diagnosing a Performance Drop Off

 Isolating “what’s changed”

 Code migration

 Database version change

 Maintenance Job Schedules
 E.g. – statistics, reorgs, backups

 New data patterns
 E.g. – “date roll”

 Environment changes
 E.g. – hardware, network, datacenter, …

 “Nothing”
 Hint: It’s never “nothing”

7

Sample “P&T” Checklist

 What’s the level of impact of the performance issue?

 When did the issue start and is it still ongoing?

 When was performance last acceptable?

 What’s changed?

 Upgrades

 New workload

 Behavior – increased volume, usage

 Code or application deployments

 Object definitions – structure, indexes

 Host or storage migrations

 Failover

 …

 What have you looked at already?

 Have you identified a specific issue?

8

HBase Overview

 Distributed database for large to massive data sets

 Real-time access for key-based look-ups

 Tables partitioned by region
 Regions are stripes of data

 Each region owns a chunk/range of the table’s data

 Regions spread out over regionservers

 Each region has its own in-memory write cache

9

HBase Architecture - Cluster

10

Inside a Regionserver

11

HBase Table Schema

Sorted map of key/value pairs
 Key={row key, column family, column qualifier, timestamp}

Row key (rk)
 Primary key for the row (eg – employee number)

Column family (cf)
 Grouping of column qualifiers (eg – Info)

 Data stored by column family

Column qualifier (cq)
 Column name, defined at insert time (eg – fname, lname,

position)

 Cf:cq collectively known as a column

Timestamp (ts)
 Stored as a long - milliseconds since epoch (1/1/1970 UTC)

 Automatically add at insert time (eg – 1347981724589)

 Can be overridden with your own value (eg – 1, 2, …)

Rowkey CF:CQ TS Value

10000 f:instrType 13424589.. stock

10000 f:marketCode 13424589.. US

10000 f:currency 13424589.. USD

10000 F:issueDate 13424589.. 1/1/2012

productID instrTyp
e

marketCode currency issueDate

10000 stock US USD 1/1/2012

Relational
create table Product
(productID int, instrType varchar, currency varchar,
issueDate date, …)

HBase
create table Product, ‘f’

12

Case Studies

13

Case Study: HBase Key Selection

 Telemetry data stored by:
 Entity = Object (e.g.-server, host) producing metrics

 Stored as tags

 Timestamp = Snapshot of value being collected

 Stored by hour, with finer grain values on row

 Started with:
 Rowkey =

{Metric}{TimestampByHour}{Entity}{TagKey=TagValue},...

 Column Qualifier = {TimeOffsetWithinHour}

 Example:

 {PHYSICAL_IO}{1234566000}{ENTITY=DATASERVER1
}{IOSIZE=16384}

14

Case Study: HBase Key Selection

15

Case Study: HBase Key Selection

 Model is good for lookup by Metric

 Also supports pulling a range of values by time

 But… lookups are primarily by “Entity”, not
“Metric”

 E.g.- “Show me the I/O for this server”, vs. “Show me
I/O across all of my servers”

16

Case Study: What do you think?

17

Case Study: HBase Key Selection

 Store data differently:

Rowkey =

{Entity}{TimestampByHour}{Metric}{TagKey=TagValue},
…

18

Case Study: HBase Access Patterns

 What if we need to store both
representations?

 Lookups by Entity

 “CPU for DATASERVER1 From 8AM to 9AM”

 Lookups by Metric

 “Top Ten CPU Busy”

 Is it a real-time requirement or batch driven?

19

Case Study: HBase Access Patterns

 Need a “secondary index”

 But no native HBase support

 Design and maintain it ourselves

 Secondary table (like a clustered index)

 Good for low cardinality columns

 More storage, more load

 Secondary index (like a nonclustered index)

 Good for high cardinality columns

 Less storage, less load

20

Case Study: HBase Access Patterns

 How do we maintain our “index”?
 Client-side: dual posting

 Server-side: coprocessors (like triggers)

 Coprocessors abstract complexity from client

 Used asynchronous client to scale
 100k writes/sec

 Scans against metrics are now fast and light on load

Rowkey CF:CQ Value

CPU+TS+entity=dataserver1 t:60 45

CPU+TS+entity=dataserver1 t:120 42

Rowkey CF:CQ Value

dataserver1+TS+metric=CPU t:60 45

dataserver1+TS+metric=CPU t:120 42

Main Table (by entity) Secondary Table (by metric)

21

Case Study: Tuning Write Path

 Slow copy of large table from one cluster to another
 Estimated @ 30 hours for 1 billion rows

 Symptoms:
 Spikes in throughput followed by idle time

 Error messages:

 “Too many storefiles”

 “Memstore reached max size”

 What we looked at:
 System resources

 HBase metrics

22

Case Study: What do you think?

23

Case Study: Tuning Write Path

 What should we do?
 Increasing memstore or storefiles addresses symptoms but not

the problem

 What we did:
 Region Pre-Splits

 HBase splits are expensive multi-stage online operations

 Pre-splitting reduces and up-fronts work

 Result:
 1 billion rows loaded in 90 minutes

24

Case Study: Query Access Path

 Symptoms:
 “The Database is Slow”

 Jobs exceeding expected run time

 High CPU, logical (cache read), and physical (disk read) I/O

 All applications using database server are affected

 What we looked at:
 Identified queries utilizing greatest resources

 Specifically look for large I/O count relative to amount of data

 Compared CPU to prior week’s run

 Followed-up with application team regarding any changes

25

Identifying the Problem

 Table LIO PIO

 --------------------------------- ----------- ---------

 database1..testtbl 1 9751121 8

 database1..testtbl2 2991 0

select …

from testtbl 1 t1,

 testtbl2 t2

where t1.account_num = t2.account_num

and t1.batchID=1234567

and t2.period_dt="11/18/2013"

 FROM TABLE

 testtbl2

 Nested iteration.

 Index : idx3

 Positioning by key.

 Keys are:

 period_dt ASC

 FROM TABLE

 testtbl1

 Nested iteration.

 Index : idx1

 Positioning by key.

 Keys are:

 account_num ASC

26

Analyze The Query

testtbl1 (1.5 million rows)

 Nonclustered on account_num

 Nonclustered on batchID

testtbl2 (1.5 million rows)

 Nonclustered on account_num

 Nonclustered on period_dt

SARG/JOIN Selectivity

t1.account_num: 0.0008875 (1k)

t1.batchID: 0.01014 (15k)

t2.account_num: 0.0008875 (1k)

t2.period_dt: 0.000000 (0 rows?)

Incorrect! Real selectivity is 0.10 (150k rows)

Possible Access Paths

t1 (tablescan) ----> t2 (tablescan)

t1 (tablescan) ----> t2 (idx on account_num)

t1 (tablescan) ----> t2 (idx on period_dt)

t1 (idx on batchID) ----> t2 (tablescan)

t1 (idx on batchID) ----> t2 (idx on account_num)

t1 (idx on batchID) ----> t2 (idx on period_dt)

t2 (tablescan) ----> t1 (tablescan)

t2 (tablescan) ----> t1 (idx on account_num)

t2 (tablescan) ----> t1 (idx on batchID)

t2 (idx on period_dt) ----> t1 (tablescan)

t2 (idx on period_dt) ----> t1 (idx on account_num)

t2 (idx on period_dt) ----> t1 (idx on batchID)

27

Case Study: What do you think?

28

Case Study: Query Access Path

 What we did:

 Updated statistics

 What caused it?

 New index added for different workload

 Impacts all queries accessing table with SARGs for covered fields

 Long term fix

 Several options

 Drop index

 Manage stats

 Leverage optimizer ability to directly influence access plan (“force”)

 …

29

Case Study: Selective Slowdown

 Symptoms:

 No known changes to an application’s stack

 No database changes

 Performance of certain long running OLAP
(“Online Analytical Processing”) queries stalls

 Short running OLTP (“Online Transaction
Processing”) queries largely unaffected

30

Case Study: What do you think?

31

Case Study: Selective Slowdown

 Resolution:

 Storage Contention

 Migrate to a different storage “silo”

 Shared disk Storage Area Network (“SAN”)
environment

 Multiple databases leverage same subsystem

 Unrelated workloads can impact one another

32

MongoDB Overview

 Non-relational “NoSQL” Database

 Document Store

 Clusters Databases Collections Fields

 Indexing

 Query plans still exist

 Statement level read and write concerns

 Sharding for horizontal scale out

33

Horizontal Scaling via Sharding
Collections Partitioned by Document Field (Shard Key) into new

ReplicaSet (Shard) to Expand Cluster

Shard 1

MongoS
DC1

MongoS
DC2

MongoS
DC3

Shards are ReplicaSets, each RS Node has Same Data
The MongoS (router) abstracts Sharding from Application
Collection Shard Keys need to be chosen carefully

Shard 3 Shard 2

Config Server ReplicaSet + MongoS
Required For Sharded Topologies

Client Client

ReplicaSet (Shard 1)

MongoD
in DC2

MongoD
in DC3

MongoDB Architecture

High Availability via Replica Sets – Each Replica Set has
Identical Data via Async OpLog Replication

MongoD
in DC1

A majority of Replica Set (RS) nodes must be
up for a primary to be elected
Write activity is always to primary
Client connects to 1+ “mongoD” nodes

Client Client

The “MongoD” process is a standalone server process
that contains databases, collections, documents,
accepts connections, queries, etc.

Client

Shard N

…

34

Case Study: MongoDB

 Symptoms:

 Significant drop off in write performance after
migrating to a new cluster

 Old and new environments both online

35

Case Study: What do you think?

36

Case Study: MongoDB

 Resolution: journalCommitInterval

 Original cluster had setting of 10ms

 New cluster had 100ms

 Configuration settings are important!

37

MongoDB: Other Considerations

 Shard key selection

 Choosing write and read concerns

 Indexing for performance

 Geographic cluster topology

38

Other Real World Examples

 Memory Settings

 Physical I/O uptick primarily affects OLAP queries

 Increase in Short Duration Transactions

 Degrades performance across the board

 Cross Datacenter Access

 Following failover or hardware migration

 Changes to Query Optimization Time

 Version upgrade, additional indexes, …

 Greater impact to short duration queries

 Output diagnostic messages

 Can have a surprising overall impact
39

Appendix

40

SQL Relational Tuning Factors

 Query plan selection

 Join strategy

 Index selection

 Static v. dynamic plans

 Statement cache

 Stored procedures

 Statistics

 Keeping them in synch with actual data patterns

 Indexing

 Fragmentation / REORG

 Often overlooked, but can change access plans or degrade performance of a query
dramatically

 System Performance

 CPU Utilization

 I/O Throughput

 Network latency

 Configuration

 DB memory, system memory

41

Transaction Isolation and
Concurrency Semantics
 Locking, blocking, logging

 MVCC v. Lock Based Isolation

42

HBase: Other Considerations

 HBase / HDFS DFSClient “Short Circuits”

 Improves performance if affinity maintained

 Avoid running HDFS rebalancer

 Will obviate HBase’s own affinitization

43

HBase – Telemetry Data Use Case

OpenTSDB is an open source HBase application designed to store and serve time series
metrics data

Tables
tsdb-uid: metadata table that maps names to IDs

tsdb: Stores the raw data, uses a composite row key:
{ metricID, timestamp, tagkeyID, tagvalueID…tagN }

Example: Retrieve LogicalReads for dataserver from 10am to 11am…
Convert metric and entity into IDs

LogicalReads = metricID 123

Dataserver = tagkeyID 456

ENTITY= tagvalueID 789

10am = 1360854000; 11am = 1360857600

Create and run a scanner
startrow=123|1360854000 |%456789%

stoprow=123|1360857600 |%456789%

We can overload the metricID field for performance reasons
startrow=123|1360854000 (123= ENTITY/LogicalReads)

stoprow=123|1360857600

44

