Waterfall Models: Conceptual Model and SEC Python Code Proposal


Logical and Conceptual Modeling of Waterfall Terms
Mike Bennett, EDM Council

06 December 2010
Executive Summary
This paper is a summary technical note identifying how the application of business "Conceptual Modeling" may be used to address the SEC proposals for representation of ABS Waterfall structures in Python code. It describes what is meant by a Conceptual Model in the context of mature technology development approaches, and how we may potentially combine the benefits of formal logic notation, with the requirements for business readability of conceptual models. The conclusion given here is that it is both desirable and possible to specify the concepts within an ABS Waterfall model using some logical notation which is more abstract than Python or other program code, is well grounded in logical formalism, and is comprehensible to business stakeholders. 

CONTENTS

1Executive Summary


2Background


2The Issue


2References


3Model Driven Architecture Concepts


4Conceptual Model Requirements


5Logical Formalisms


5Propositional Logic


5First Order Logic


6Second Order Logic


6Modal Logic


6Deontic Logic


7Other Modal Logics


7Epistemic Logic


7Temporal Logic


7Logic Conclusions


8Business readability


8EDM Council Approach


8Semantic Web Rules


8Semantics of Business Vocabulary and Rules (SBVR)


10Proposal


11Appendix 1: SEC Proposal 33-1234 (Part)


11Section B. Flow of Funds


111. Waterfall Computer Program


172. Presentation of the Narrative Description of the Waterfall




Background

The models of payout for different tranches of a mortgage backed or asset backed security (so called Waterfall models) may be very complex. 

These are defined primarily as legal, contractual terms saying who get to receive what payment in what order, under given circumstances. 

However these are so complex that there is talk of mandating the provision of a model of this Waterfall cashflow arrangement in a programming language, "Python". See:

http://www.sec.gov/rules/proposed/2010/33-9117.pdf
There are really two sides to this:

· Conceptual versus Logical and Physical modeling of cashflows

· Nature of the Conceptual Model (grounding in formal logic etc.)
The Issue
Python is a programming language and not a legal notation. This makes the content of the waterfall itself inscrutable other than by inspection of the code or by (as intended) running the code in some application to see what the cashflows look like. 

We should recognize that the Python programs are not intended to replace and supersede the legal terms that set out who has a right to what money when, but to reiterate that information in a more dynamic format. This means that a filing would now contain the same information in two formats: The formal "legalese" of the Waterfall precedence rules as at present, and the same (we hope) rules expressed in Python. 
This raises questions about the existence of two parallel structures expressing the same information. The use of a formal program is in many ways a step forward in providing a logically tractable expression of the rules of waterfall precedence. However it should be possible to achieve what the Python code proposal sets out to achieve, in a more satisfactory, and semantically tractable manner. 

That is what this brief note sets out to explain. 

References

1. SEC Proposals

2. EDM Council Semantics Repository: www.hypercube.co.uk/edmcouncil

3. SVBR: http://www.omg.org/spec/SBVR/Current/
4. RIF Working Group: http://www.w3.org/2005/rules/wiki/RIF_Working_Group

5. Wikipedia first Order Logic (and linked articles) http://en.wikipedia.org/wiki/First-order_logic

Model Driven Architecture Concepts

This is really fundamental to all engineering, in any discipline, but software technologists are most familiar with it under the label of "Model Driven Architecture" or MDA. This is defined as follows:

· Conceptual Model - defines the business view or requirement, in technology neutral terms

· Logical Model - encapsulates some design of some solution to the problem, in a way which is neutral to the specific physical implementation

· Physical Model -the actual physical implementation itself. 

The idea of a "Conceptual Model" is new to many people outside of the more formal world of software development, even among those specifying software or data models. However, these are a vital component of any exercise which has, on the one hand, business people who know what they want a program to do, and on the other hand technical people who know how to create a program to do that thing but do not own the business problems that their code is to solve. 

A similar relationship applies around data models, with the technical development being that of a database structure or message schema. In the case of program specification, the business conceptual model consists of behavioral requirements descriptions (often referred to as "Use Cases"). In the specification of data schemas, the appropriate conceptual model would take the form of formal semantic models (ontologies) of the items that the data is to be about.
Thus any technical development which is to be specified initially by business, should have one or a range of business conceptual models defining what the business stakeholders want to see from that development. This may take a number of forms depending on the nature of the requirements. 

This note will develop something of what sort of conceptual model may be required. 
Aside: Note that in some development paradigms (principally the Object Oriented one), there are some who define a "Conceptual Model" as part of the technical architecture, as a more "abstracted" picture of the solution rather than a picture of the problem. This is a separate concept having the same name, and can be ignored here. We are concerned only with ways in which business views of the world may be constructed which are suitably formal to drive IT design efforts, and suitably business-facing to be validated by the business in the first place.

Conceptual Model Requirements
A business conceptual model may be a model of the behavioral requirements of a program (use cases, functional requirements etc.) or it may be a model of the concepts that are to be reflected in a data model (semantics). In essence it is a model of the business problem not a model of the design solution. In each case a conceptual model must obey the following rules: 

· It must be formal

· It must be unambiguous

· It must be implementable

· It must be understandable to business stakeholders (subject matter experts)

· It must be maintained as a formal development artifact

This means that for conceptual models we must square the circle between two conflicting aims: it must be formal enough to unambiguously define what developers need to know to develop their thing; and it must be presented in such a way that business (which owns the problem) can validate, review and sign off. 

This means that for all business conceptual models we need: 

· Some formalism which is rigorous and unambiguous

· Some way of presenting this formalism which business domain experts can understand

For the former, we should think in terms of defining formalisms which are grounded in formal logic. For the latter, we need to display or present this logic in ways which are free of difficult "Language" including the language of software or data models, and the language which logicians use to present formal logic. 

In the case of models for a Waterfall specification, we need to present not only "what is" (as per formal ontologies), but also what "should be". This requires the use of a special class of logic. The same applies to the modeling of financial regulatory requirements. 

First, let's look at Logic...

Logical Formalisms

Propositional Logic
This deals with the basic concepts of truth and causation - "If P then Q" and so on.
Key elements:

· Logical Connectives: 

· Negation

· Conjunction

· Disjunction

· Material condition (If A then B)

· Biconditional (A if and only if B)
First Order Logic

This adds quantifiers ("There exists", "For all") and the facility to name items in the universe of discourse (the problem domain). 

Key elements:

· Existential: There exists

· Universal: for all

· Logical Connectives: 

· Conjunction

· Disjunction

· Implication (If A then B)

· Biconditional (A if and only if B)

· Negation

· Predicates (relations), Functions, Constants and Variables

This forms the basis of most ontology and computational logic. 

Ontology uses part of FOL, to specify what is ("There exists") and to assert facts about those things. This uses set theory concepts that are included in FOL such as "OR" and "AND" i.e. intersections and unions of sets (conjunction and Disjunction in the above). 

So we have essentially "static" Things and Properties (facts about those things). 

Other features of FOL which are not defined in ontology languages cover "If .. Then" relations (the Implication connective above). These are needed to define consequences and form the basis of modeling elements of process. Also of course the features of programming languages (if then else). 

So a formal ontology notation (such as OWL) uses a sub-set of First Order Logic to define things in the universe of discourse and facts about those things, but does not include the features of behavior, process flow and so on. 
Using the full features of FOL would allow us to define more than this, including the basic building blocks of a flow of activities. This would be relevant to waterfall models. 

What FOL does not cover is terms like "shall" or "must", since FOL only deals with "Truth" statements - something either is or it isn't. For that sort of thing we need further extensions to FOL to define states other than truth and falsehood. 

Second Order Logic

Second Order Logic allows one to say more about the statements in FOL and about properties of sets defined in FOL. It is not really what we are after here. 

Modal Logic

Modal Logic extends First Order Logic, to add formal notation for the concepts of "Possibility" and "Necessity". 

This allows one to go beyond models of what simply is or is not (truth values in FOL), to add assertions with equal rigor, about what may be and what must be. 

Key features:

· Defines a "Frame" (a possible world)

· Defines a binary relation ("Accessibility relation") to that world from a given state of affairs (A satisfies B)

· Possibility (Possibly p where p is some proposition)
· Necessity (Necessarily p)

· Frame Conditions

· Reflexive

· Symmetric

· Transitive

· Serial

Deontic Logic
This extends Modal Logic a step further. 

Up to now we have only dealt with what is (True or False), and what may be or has to be (Modal logic). This leaves the more human, and more legal and contractual relation of "What must be". At this point we are no longer describing the world in terms of things which are or are not, but instead wish to describe obligations and duties. 

Aside: From a strictly logical point of view, all obligations and duties can in theory be framed in terms of what might happen if you do not do that thing which it says you must do. A treatment of why this is not adequate is beyond the scope of this paper, but we will proceed on the basis that in some places in the financial world we will need to model things in terms of "What should be" or what is required of one, since the consequences often follow too late to be of relevance and may not be included in a given application or logical frame of reference. 

Deontic Logic takes its name from the Greek for Duty. It is a logic of obligations and norms. Where Modal Logic has "Necessary" and "Possible", Deontic Logic has similar terms whereby "You must do this" and "You may do this". The logic and notation are almost the same, but the implications are different - instead of modeling what must be (in the universe), one is modeling what a given party must do. 
So if we said "There is necessarily a payment to senior bondholders first" in Modal Logic, this would mean that in all universes, in all cases, this will actually happen. A program written with this in mind will take this as a simple statement of how the world is. If instead we use Deontic Logic to say "There must be a payment to senior bondholders first", it should be clear to any programmer that this does not mean it will happen, merely that it should (and that consequences will follow upon failure, rather than a simple "false" value for the world we have modeled). 
Other Modal Logics

Epistemic Logic

This deals with expression of what is known to a given party at a given time. It is not relevant to our quest to find a formalism for contractual obligations, but is relevant when semantically analyzing news sources, knowledge bases and anywhere where there are assertions about the world, as distinct from the bald "truth" of computational logic. 

Temporal Logic

This defines what has been, what will be, what always holds, and so on. 

This could also prove valuable in analysis over the life of an asset backed security issue or tranche. For example "What if" scenarios are in essence temporal logic statements and it should be possible to ground these in temporal logic. 

Note that many ontologies have terms for "Time" which define temporal terms statically as classes of "Thing", often rather messily. 

Logic Conclusions
If we select the right families of logic, it is possible to define facts about securities, including facts about the cashflows that ought to happen in a tranched ABS, in a way that is grounded in formal logic while being expressive enough to state all the things that need to be stated about the world we are looking at. 

For Waterfall models, we need as a minimum, terms and logical operators from Deontic Logic, from Modal Logic, from full First Order Logic (ontological AND conditional operators) and possibly also from Temporal Logic. 

An Ontology, using an ontology language like OWL, provides some but not all of the terms we need. What's missing is conditional events (if this then that), deontic statements (you must do this), and for what-if analysis of portfolios at a given point in time, temporal logic. 

Note that this last point is anticipated in the SEC proposals, since the Python program is intended to be used for investors to feed in information about pools and loans (either current or speculative) and perform calculations about their current positions. 

However, the notations for these logics are every bit as difficult to understand as anything we might find in a Python program listing or an XML schema. Expecting business domain experts to understand (and therefore validate or correct) formal logic using existing formal logic notations, is about the same as expecting someone to operate a desktop calculator using Reverse Polish Notation. It therefore won't do for our conceptual models. 

So to the second part of "squaring the circle" - we may have the formal notation but how do we display this? 

Business readability
This is an area that needs to be looked into further. The following notations are generally regarded as accessible to business domain experts: 

· Spreadsheets (these can be quite complex in their structure)

· Block diagrams

· Extended diagrams 
· As long as these have NO technical or metamathematical notation

· Simple process flow diagrams

· Other diagrams and "data visualization" techniques

· Natural Language

· Controlled Natural Language

EDM Council Approach

We have tackled some of these with the EDM Council Semantics Repository, which outputs spreadsheets, block diagrams and the (sometimes disorienting) extended diagrams. It also has the abiltiy to show process flow diagrams, but with these explicitly defined as ontology constructs. We achieved this by using a UML tool and turning the UML off. The only people regularly confused by this are those technical people who already know UML and think this is what they are seeing. 

The basis for the material in the EDM Council model is OWL. This means that it is grounded in First Order Logic, but does not use all the expressive features of FOL. Specifically it does not use the conditional features. It also has no modal or deontic component. It does include temporal concepts, but only as an unsatisfactory workaround in which the temporal terms are defined in terms of those same FOL constructs. 

Hence we have had some success in taking part of the formalism of First Order Logic. Can this be extended to other logical notations? 

Semantic Web Rules

Meanwhile the Semantic Web has a widely accepted approach to rules in the form of "Rules Interface Language" (RIF). 

This is grounded in full FOL. It includes data integrity rules. It also includes what are really process descriptions not rules, i.e. "If then else" conditional statements which are essential to any programming language. 

RIF does not make a noticeably clear distinction between models of the application (which by definition is reducible to FOL since it is a computer program), and models of the problem domain. For this we need something where the underlying model theory is more explicit about what exactly are the things being operated upon. 

Semantics of Business Vocabulary and Rules (SBVR)

This is the OMG's specification for business vocabulary and rules. It includes a static component for a vocabulary of business terms, and a rules component. 

SBVR can be thought of as a dialect of RIF, in other words it should be possible to define SBVR constructs in terms of RIF constructs. Unlike basic RIF specifications, SBVR explicitly defines business rules. That is, it is explicitly and only a model of the business conceptual domain, not of the application. This is exactly what we need. 
The OMG and the EDM Council are actively looking into how to bring together formal OWL based ontology models and the business rules which operate on things defined in those models, essentially aligning the "Vocabulary" element and the formal (FOL based) ontology. 
As part of this, we expect to establish where SBVR is grounded in the universe of logic families. 
Another thing to look at here is exactly how best to express the content of a model in SBVR and / or SBVR plus OWL, in a way that fits within our list of things we think the business domain can review and validate (and specify changes in). 
Proposal

The SEC proposes that it mandate a Python code implementation of waterfall structures within tranched asset backed security issues. This would be in addition to, and hopefully identical to, the legal, word-based descriptions of those waterfall cash flows. 

It should be appreciated that legal terms are themselves rigorous, unambiguous and formal. Although law uses words rather than numbers, legal descriptions give a solid semantic grounding to terms, and therefore it should be safe to assume that these terms can be reduced to statements in full First Order Logic, with of course Deontic Logic features (law is essentially deontic). 

At the same time, it should be clear that any program that can be written in any programming language, can be expressed in full First Order Logic. Since programs are made of nothing but logic, this is a trivially true statement. 

In good engineering terms, programs are specified before hand as to what they should do. Those specifications are scrutable to business in a way that source code (even in an interpreted language like Python) are not. 

That is, 

· everything that can be expressed in Python can be expressed in formal logic

· Any program that is written should be specified in some readable formalism anyway (this is good engineering, and necessary for test, for review and for change control). 

Therefore:

· It should be possible to specify the content of the proposed Python programs, in some formalism which is grounded in FOL but is independent of the programming language

· It is good practice to do so, and gives greater oversight of the content

· If we can find a way to display the FOL (and deontic logic) formalisms to business then they have direct oversight of the program content
A further opportunity out of this, is that since legal terms are also so grounded, it should be possible to specify the Waterfall at a single source, and automatically generate both the Python script and the legal descriptions. If this were done, then 

a) There would not be the issue of two representations of the same "stuff"; and

b) The legalese could remain as the "business" view for validation, though 

c) Other means of displaying and therefore understanding the implications of a given Waterfall structure would become feasible. 

Appendix 1: SEC Proposal 33-1234 (Part)

Footnote references refer to page footnotes in the original document which have been removed for readability. 
Section B. Flow of Funds 

1. Waterfall Computer Program 

We are proposing to require that most ABS issuers file a computer program that gives effect to the flow of funds, or “waterfall,” provisions of the transaction. We are proposing that the computer program be filed on EDGAR in the form of downloadable source code in Python. Python, as we will discuss further below, is an open source interpreted programming language.335 Under our proposal, an investor would be able to download the source code for the waterfall computer program and run the program on the investor’s own computer (properly configured with a Python interpreter).336 The waterfall computer program would be required to allow use of the asset data files that we are also proposing today.337 This proposed requirement is designed to make it easier for an investor to conduct a thorough investment analysis of the ABS offering at the time of its initial investment decision. In addition, an investor may monitor ongoing performance of purchased ABS by updating its investment analysis from time to time to reflect updated asset performance.338 In this way, market participants would be able to conduct their own evaluations of ABS and may be less dependent on the analysis of third parties such as credit rating agencies. 

The waterfall is a critical component of an ABS. Currently investors receive only a textual description of this information in the prospectus, which may make it difficult for them to perform a rigorous quantitative analysis of the ABS.339 In a typical ABS, the waterfall governs the application of cash collected on pool assets. Using the waterfall, cash collections are applied to distributions to the holders of various classes of ABS backed by the pool assets. Depending on the level of prepayments, defaults and losses-given-default340 that occur on the pool assets, the waterfall may redirect the application of cash to or away from a particular class of securities; may allocate cash to a reserve account or require the release of reserve account cash; 341 may change the allocation of cash to the classes in an ABS transaction from sequential pay to pro rata pay, 342 and vice versa; or may accelerate or defer the application of principal prepayments to a particular tranche. As a result, the calculation of the probable amount and timing of cash distributions to an investor on a particular ABS, an essential element of valuing or pricing the security, can be complex. 

Institutional sellers and buyers of ABS typically rely on computer simulation of the results of applying the cash flows on the pool assets to the waterfall under different interest rate, prepayment, default and loss-given-default assumptions to determine the likely amount and timing of cash distributions on, and therefore the value of, the ABS. A common approach to this task is to: (a) run many separate simulations, or projections, of the cash flows for the pool assets (using randomly generated assumed interest rates, prepayment speeds, default rates and loss-given-default rates – a simulation process referred to as the Monte Carlo method); (b) pass these simulated cash flows through the waterfall structure of the ABS; and (c) observe the resulting cash flows for each separate ABS tranche. To conduct this analysis, a market participant requires: 
· loan-level information, or grouped account data, about the assets, including such fields as their coupon rates, balances, loan-to-value ratios, maturity dates, and the borrowers’ credit scores, among others; 

· a computer program that calculates the contractual cash flows for each tranche of the ABS based on the presumed cash flows of the underlying pool assets; 

· additional computer models that generate inputs for the computer simulation (such as interest rate, prepayment, loss and loss-given-default models); and 

· a computer system that combines the three elements above into a model that allows investors to calculate the values of ABS tranches based on their own assumptions about the behavior of the underlying pool assets combined with the waterfall of the ABS, and the current state and performance of the underlying pool assets. 

Without these tools, market participants must rely on third party vendors to provide quantitative analysis of the asset-backed security343 or must rely on computational materials provided by the issuer, without the opportunity to test the model or vary the assumptions used by the issuer.344 

The ABS issuer or the underwriter generally will have a computer model of the waterfall. However, the issuer or underwriter currently has no obligation to share the computer model with actual or potential ABS investors. Because prospective investors in ABS typically do not have access to the ABS issuer’s computer models, under current conditions, an investor must create its own computer program. It does this by taking the priority of payment rules stated in the trust agreement, pooling and servicing agreement, indenture, or other operative document for the ABS and described in the prospectus, converting the English language statement of those provisions into one or more algorithms, and then expressing the algorithms as computer code in a programming language. As a practical matter, it is often not possible to complete these steps before making an investment decision. This is particularly onerous for smaller institutional investors, for whom it may not be feasible to acquire the financial and technological expertise necessary to develop a computer program of the waterfall. Thus, investment decisions with respect to ABS may be made without the benefit of the investor performing its own quantitative valuation analysis. This may encourage undue reliance on the determinations of credit rating agencies. Further, there is the possibility that some investors will program the waterfall erroneously, leading to inaccurate ABS valuations. 

We believe that the proposed requirement to file the waterfall computer program would convey information to investors in a form that is both more accurate and more useful to them for data analysis than a textual description of the waterfall. By running the waterfall computer program in combination with other internally-developed or commercially available vendor interest rate, prepayment, default and loss-given-default models, cash flow engines, or computational services, investors should be able to promptly run cash flow simulations and generate present value estimates for ABS tranches. An investor should also be able to more effectively monitor the ongoing performance of the ABS by using the proposed updated asset-level performance information to be filed with each periodic distribution report on Form 10-D. 
a) Proposed Disclosure Requirements 
We are proposing to require, for offerings of asset-backed securities backed by most asset classes, that issuers file the waterfall computer program in the form of downloadable source code in the Python programming language.345 We define the disclosure requirements of the waterfall computer program in proposed Item 1113(h)(1). We are proposing that the waterfall computer program give effect to the priority of payment provisions in the transaction agreements that determine the funds available for payments or distributions to the holders of each class of securities,346 and each other person or account entitled to payments or distributions, from the pool assets, pool cash flows, credit enhancement or other support, and the timing and amount of such payments or distributions.347 
Under the proposed requirement, the filed source code, when downloaded and run by an investor, must provide the user with the ability to programmatically input the user’s own assumptions regarding the future performance and cash flows from the pool assets, including but not limited to assumptions about future interest rates, default rates, prepayment speeds, loss-given-default rates, and any other necessary assumptions required to be described under Item 1113 of Regulation AB. The waterfall computer program must also allow the use of the proposed asset-level data file that will be filed at the time of the offering and on a periodic basis thereafter.348 

We also propose to require that the waterfall computer program produce a programmatic output, in machine-readable form, of all resulting cash flows associated with the ABS, including the amount and timing of principal and interest payments payable or distributable to a holder of each class of securities, and each other person or account entitled to payments or distributions in connection with the securities, until the final legal maturity date, as a function of the inputs into the waterfall computer program. 

We are also proposing an instruction to the item requirement to make clear that the provisions captured in the waterfall computer program should include, but not be limited to, provisions that set forth the priorities of payments or distributions (and any contingencies affecting such priorities) to the holders of each class of securities and any other persons or accounts entitled to payments or distributions, and any related provisions necessary to determine the quantitative results of such provisions (including certain provisions required to be described in Item 1113 of Regulation AB). Item 1113 of Regulation AB currently requires disclosure of a plain English description of the structure of the waterfall and we believe that the provisions given effect in the proposed waterfall computer program should largely be the same as those provisions required to be described under current Item 1113. But in the event that there are any provisions that are not required to be described under Item 1113 because they are not material to the description of the waterfall in the prospectus, but those provisions are used to determine the value of the inputs to the waterfall computer program, the waterfall computer program would be required to give effect to the provisions by which those inputs are determined. 
In addition, we are proposing to require that the issuer file as part of the waterfall computer program a sample expected output for each ABS tranche based on sample inputs provided by the issuer. By using the sample inputs to run the program, the investor will be able to confirm that the program is working correctly by matching the actual outputs produced against the sample expected output provided by the issuer.349 

Lastly, so that investors may easily locate the waterfall computer program, we are proposing that the prospectus include a statement that the information provided in response to proposed Item 1113(h) is provided as a downloadable source code in the Python programming language filed on the SEC Web site. Issuers would also need to disclose the CIK and file number of the related filing. 

b) Proposed Exemptions 
We are proposing to exclude issuers of ABS backed by stranded costs from the requirement to provide the waterfall computer program. As we discuss above, we are not proposing to require such issuers to file an asset data file at the time of the offering or on a periodic basis,350 and therefore, we do not believe investors would have the necessary inputs to run the waterfall computer program. 

c) When the Waterfall Computer Program Would be Required 
Like the asset data file, the waterfall computer program would be an integral part of the prospectus so that issuers would be required to provide the waterfall computer program at the time of filing the Rule 424(h) prospectus as of the date of the filing. Similarly, as a prospectus requirement, the waterfall computer program would be filed with the final prospectus under Rule 424(b) as of the date of the filing. 

In addition, we are proposing to require credit card master trusts to report changes to the waterfall computer program on Form 8-K and file the updated waterfall computer program as an exhibit to the report. Furthermore, we are also proposing to require that registrants provide updated Schedule CC grouped account data at the same time the updated waterfall computer program is filed so that investors may evaluate the effect of the change in the flow of funds using updated underlying pool information. 

d) Filing the Waterfall Computer Program and Python 
We are proposing that the waterfall computer program be filed as an exhibit in accordance with Item 6.07 of Form 8-K. The Form 8-K would then also be incorporated by reference into the registration statement. Therefore, we are proposing changes to Item 601 of Regulation S-K, Rules 101, 201, 202 and 305 of Regulation S-T, new Rule 314 of Regulation S-T and changes to Form 8-K to accommodate the filing of the waterfall computer program. We realize that registrants may want to provide more program functionality in the waterfall computer program than would be required by proposed Item 1113(h). For example, additional program functionality could include features designed to allow interoperability with other ABS quantitative analysis software. As such, we also propose to permit the filing of an additional exhibit, a waterfall computer program related document, for registrants to disclose the additional program functionality. 
We are proposing new Rule 314 of Regulation S-T to require that the waterfall computer program be written in the Python programming language and be filed as source code that is able to be downloaded and run on a local computer properly configured with a Python interpreter. As we note above, Python is an open source interpreted programming language. Open source means that the source code is available to all users (as opposed to proprietary source code that can be viewed only by the owner or developer of the program). An interpreted language is a programming language that requires an interpreter in the target computer for program execution.351 We prohibit the inclusion of executable code in electronic submissions on EDGAR because of the computer security risks posed by accepting executable code for filing.352 Executable code results from separately compiling a computer program prior to running it.353 Since Python is an interpreted language that does not need to be compiled prior to running it, executable code would not need to be published on EDGAR, and we would not require EDGAR to establish facilities to host, run, or operate any computer program. The waterfall computer program source code would be required to be submitted as tagged XML data. The EDGAR Technical Specification would contain detailed information on how to file the waterfall computer program. 

Additionally, we are proposing a change to Rule 305 of Regulation S-T to exempt the waterfall computer program from number and character per line requirements on EDGAR. 

e) Hardship Exemptions 
We are proposing a self-executing temporary hardship exemption for filing the waterfall computer program; however, we are proposing to exclude the waterfall computer program from the continuing hardship exemption under Rule 202 of Regulation S-T.354 We are proposing the same approach to the temporary hardship exemption for the waterfall computer program as we propose for the asset-level data file. Because the disclosure requirement for the waterfall computer program is inherently electronic, the information would not be useful if provided on paper. Under our proposal, if the registrant experiences unanticipated technical difficulties preventing the timely preparation and submission of the waterfall computer program, a registrant would be considered to have made a timely filing if the waterfall computer program is posted on a Web site on the same day it was due to be filed on EDGAR, the Web site address is specified in the required exhibit, a legend is provided in the appropriate exhibit claiming the hardship exemption, and the waterfall computer program is filed on EDGAR within six business days. 

We are also proposing to exclude the waterfall computer program from the continuing hardship exemption under Rule 202 of Regulation S-T. This is the same approach for the waterfall computer program that we are proposing for asset-level data files. We do not believe a continuing hardship exemption is appropriate with respect to the waterfall computer program because, as we discuss above, the waterfall computer program will be an integral part of the prospectus. Therefore, we do not believe it would be appropriate for issuers to receive a continuing hardship exemption for the waterfall computer program. 

Request for Comment 
· Is it appropriate for us to require most ABS issuers to file the waterfall computer program? Is there an alternative form of required information filing that would be more useful to investors, subject to the limitation that executable code may not be filed on EDGAR? 

· Should we require, as proposed, that the Rule 424(h) filing include the waterfall computer program? 

· Does access to the waterfall computer program decrease the amount of time needed to analyze the information in a prospectus? If we adopt the waterfall computer program filing requirement, would less time be needed for investors to review transaction-specific information? If so, how much time would be needed after the waterfall computer program is filed? Four days? Two days? Does analysis of the waterfall computer program require more time than what we allow as proposed so that we should increase the time period for the Rule 424(h) filing? 

· Is it appropriate to require issuers to submit the waterfall computer program in a single programming language, such as Python, to give investors the benefit of a standardized process? If so, is Python the best choice or are there other open source programming language alternatives (such as PERL) that would be better suited for these purposes? 

· Should more than one programming language be allowed? If so, which ones and why? 

· Should we restrict ourselves to only open source programming languages or allow fully commercial or partly-commercial languages (such as C-Sharp or Java) to be used? If so, what factors should be considered? 

· Are there other requirements we should impose on the possible computer programming languages that are used to satisfy this requirement, other than that such languages be open source and interpreted? 

· Under our proposal, issuers would be required to file the waterfall computer program in the form of downloadable source code on EDGAR. Prior to filing, the code would not be tested by the Commission. Would downloading the code onto a local computer give rise to any significant risks for investors? If so, please identify those risks and what steps or measures we should take to address the risks, if any. 

· Are the proposed input and output requirements for the waterfall computer program appropriate? If not, what type of output and tests should be required for the waterfall computer program? Should the outputs of the waterfall computer program be specified in detail by rule, or broadly defined to afford flexibility to ABS issuers? 

· Should we require comments in the code that explain what each line does? Is this necessary given the narrative disclosure of the waterfall in the prospectus? If it is appropriate, are there any specific explanations we should require? 

· Is it appropriate to exempt issuers of ABS backed by stranded costs from the requirement to provide a waterfall computer program? If not, what types of inputs would be necessary to run the waterfall computer program? How would issuers obtain these inputs? 

· Is our proposal to require credit card master trusts to report changes to the waterfall computer program on Form 8-K and file the updated waterfall computer program as an exhibit appropriate? Would the flow of funds, and thus the waterfall computer program, change over time? If so, how and why would it change? Should we require the waterfall computer program be filed at any other time? Should we require it be filed with each Form 10-D? 

· Is the proposed requirement to provide the waterfall computer program with the proposed Rule 424(h) prospectus as of the date of filing and a final prospectus under Rule 424(b) as of the date of filing appropriate? Should the waterfall computer program be required to be filed at any other time? If so, please tell us why. As we discuss above in Section II.B.1.a., under our proposal, for material changes in information, other than offering price, which would include material changes to the waterfall computer program, a new Rule 424(h) filing would be required as well as a new five business-day waiting period. 
· Should we adopt the proposed changes to Item 601 of Regulation S-K and to Regulation S-T? 

· Is the proposed temporary hardship exemption appropriate? Should we allow a continuing hardship exemption? 

· We propose to use existing submission types in order to enable filers to attach the proposed waterfall computer program as an exhibit. Specifications that explain the requirements would be included in the EDGAR technical specifications. Are there other specifications that would be helpful that should be provided in the EDGAR Filer Manual for the waterfall computer program that are not currently included in other technical specifications? Please be specific in your response. 

· Should we provide a transition period prior to the required compliance date that would allow filers to submit only test filings? Please be specific in your response. 

· Is our proposal to permit the filing of an exhibit to disclose additional program functionality appropriate? 

· Are there any impediments that issuers would face if they are required to file the waterfall computer program on EDGAR? 

2. Presentation of the Narrative Description of the Waterfall 

The information relating to the structure of the transaction pursuant to Item 1113 of Regulation AB may be used by investors to model the cash flows for the securities. In order to facilitate this modeling, we believe that such information should be easily accessible and in a useable format. We are proposing to revise Item 1100 of Regulation AB355 to require that the information detailing the flow of funds for the transaction (and related definitions of terms) be included in one location in the prospectus. We note that the waterfall computer program and the narrative description of the waterfall would need to be accurate and the accuracy of one would not compensate for inaccuracies in the other.
Request for Comment 
· Is our proposal to require that the narrative description of the waterfall be presented in one location appropriate? Are there any reasons not to require this? 

Page 2 of 17

