JOSH SPIRO!

COMP THOUGHT!

SCRIBE NOTES 10/26/09!
1) Psychologist Program (Eliza Program)

a) Ingredients for program

b) Basic Interaction:

i) You ask a question.

ii) You get a response.

iii) Ask another question. Basing it off the person’s response.
c) Keep state about the conversation.

i) Try to detect the person’s mood with respect to some other person.(i.e. like, dislike, need, avoid, etc.)

ii) Questions should be tailored to that.

iii) E.g. put in the emotional state vector (see zoo.py) something about the person, e.g. person doesn’t like Johnny.

iv) If the last question has something to do with Johnny, then you can ask something like “when did you start disliking Johnny?”

v) For using the state, you might do something like:
(a) pick out proper nouns (capitalized)

(b) Also pick out interesting nouns, e.g. family relationships, friendship,
lovers, teachers
d) Want the conversation to move forward.

e) General control structure can be a big while loop as in the ten question assignment where you tell the patient that if he/she wants to stop, then he/she should answer a question with stop.

f) While (answer!=”stop”):

g) Nov. 2: first version of your program that you will then test.

h) Nov. 9: second version (hopefully)

2) We then went over two English to German translation programs and Professor Shasha sends it to us. Programs are as follows:

a) #!/usr/bin/env python
#
translating from english to german
e.g. Accusative a good book
should return ein gutes Buch
Accusative a good man
should return einen guten Mann

translations ={"Accusative a good book" : "ein gutes Buch", "Accusative a good man" : "einen guten Mann", "Accusative a good woman" : "eine gute Frau"}

ineng = raw_input ("Please give me a noun phrase in form 'Accusative a good man'. ")
print "English:'", ineng, "' is translated to German:", translations[ineng]
b) #!/usr/bin/env python
#
Good site: http://german.about.com/library/blcase_sum.htm
translating from english to german
e.g. Accusative a good book
should return ein gutes Buch
Accusative a good man
should return einen guten Mann

Data flow is this: take English and find gender, number and gloss of noun.
Use that plus the case to get article and adjective.
Combine together.

cases = {"AccusativeSingularIndefiniteMasculine" : "einen guten", "AccusativeSingularIndefiniteFeminine" : "eine gute", "AccusativeSingularIndefiniteNeuter" : "ein gutes", "AccusativeSingularDefiniteMasculine" : "den guten", "AccusativeSingularDefiniteFeminine" : "die gute", "AccusativeSingularDefiniteNeuter" : "das gute", "NominativeSingularIndefiniteMasculine" : "ein guter", "NominativeSingularIndefiniteFeminine" : "eine gute", "NominativeSingularIndefiniteNeuter" : "ein gutes", "NominativeSingularDefiniteMasculine" : "der gute", "NominativeSingularDefiniteFeminine" : "die gute", "NominativeSingularDefiniteNeuter" : "das gute"}

minidict = {"book" : ["Singular", "Neuter", "Buch"], "man" : ["Singular", "Masculine", "Mann"], "woman" : ["Singular", "Feminine", "Frau"]}

ineng = raw_input ("Please give me a case followed by a noun phrase, e.g., 'Accusative a good man'. ")
mywords = ineng.split(" ")
print mywords # all the words
noun = mywords[len(mywords) - 1]
print noun # print just the noun

numbergenderword = minidict[noun]
print numbergenderword # print number, gender, word

determiner = 'Indefinite' # a or an
if mywords[1] == 'the':
determiner = 'Definite' # definite article the

prenoun = mywords[0] + numbergenderword[0] + determiner + numbergenderword[1]
print prenoun
print ineng
print "is translated to: "
print cases[prenoun] + (" ") + numbergenderword[2]

3) We then went over how to read and print a file.
a) We first went over how to print text using this program:
#!/usr/bin/env python

#

Program to read and print a file

#

name = raw_input("Please give me a file name ")

file = open(name,"r")

text = file.readlines()

file.close()

print text[0]

for line in text:

print line

b) We then added to the program by making it show the length of each line as well. So the program now appeared like this:

i) #!/usr/bin/env python
#
Program to read and print a file
#

name = raw_input("Please give me a file name ")
file = open(name,"r")
text = file.readlines()
file.close()

print text[0]

for line in text:
 print len(line), line
print

4) We then went over the Ten Questions homework from the previous class.
a) Yury came up to present his solution, which went as follows:

#!/usr/bin/env python

Comp = “”

Upper = 1000

Lower = 0

While comp != “=”:

Guess= (upper + lower)/2

Print “is your number greater, equal, or lower than “, guess, “ “

Print “(Enter >, =, or < accordingly)”

Comp = raw_input()

If comp == “>”:

Lower = (upper + lower)/2

If comp == “<”:

Upper = (upper + lower)/2

If comp == “=”:

Print “I win!”
b) Justin presented his solution to check for lies, which went as follows:
low = 0
high = 1000
status=0
prev=0
while status!="right":
 mid=(high+low)/2
 if prev!=mid:
 print "I guess your number is ",mid,"."
 status=raw_input("Is this guess low, high, or right? ")
 if status=="low":
 low=mid
 prev=mid
 elif status=="high":
 high=mid
 prev=mid
 elif status=="right":
 print "Your number is ",mid,". I WIN!!!!! Better luck next time :P"

 else:
 print "I didn't understand your input please try again"
 else:
 print "You are lying to me. Stop cheating and try again. -__-"
 status="right"
5) Class then concluded in sadness over our departure, but with the knowledge that we would meet once again. And the woodland creatures would frolic and scamper at the reunion of this most lovely of classes.
