Network Identification by Multiple Regression (NIR)

What it Does


Network Identification by Multiple Regression (NIR) uses multiple regression to infer networks from steady state expression data resulting from a known initial perturbation.  The basic assumption is that a network of genes can be approximated by a system of linear equations:

\begin{equation}


dX/dt = AX + U

\end{equation}

where \[X] is a \[n] by \[m] matrix of steady-state expression data.  In \[X], each column represents an experiment and the rows represent genes. \[A] is a \[n] by \[n] matrix representing the network model.  This matrix representation implies that each gene’s expression is a linear sum of a row of coefficients from \[A] and gene values from \[X]. \[U] is an \[n] by \[m] matrix representing how much each gene was [initially?] perturbed in each experiment. \[dX/dt] represents how much the expression data is changing per unit of time. Since NIR is used with steady-state data (that is, assumed to change little over time), \[dX/dt] is assumed to be \[0].  Thus, the above equation reduces to: 
\begin{equation}


-U = AX

\end{equation}

Multiple regression is used to select the best answer for the network model \[A].


[The Data]: NIR infers networks from (non-knockout) steady-state data.  Each gene is assumed to have been perturbed in at least one experiment. [Why are knockouts excluded? Isn’t that a form of perturbation? Jesse: my question still stands]  NIR can use a dataset of \[n] genes and \[m] experiments, where in each experiment [\i] gene \[i] was over- or under-expressed.  These perturbations must be relatively “small”.  \cite{Gardner:2003ig} defines “small” as being an experiment that does not knock the network out of its steady-state basin of attraction.  Intuitively, this means that the perturbed gene \[g’] and the genes it has an edge to may have perturbed expression values, but other genes are unaffected. What this means is that a perturbation that affects genes that do not have a direct or an indirect edge to or from the perturbed gene is considered to be “too large”.  This begs the question of knowing the network before we begin. Operationally, one could detect if a perturbation was too large by measuring the steady state experiment against a control.  If a larger-than-expected number of genes appear perturbed, than the network was probably knocked out of the basin of attraction. Jesse: does the literature really not tell us something better?


[The Strategy]:  


The \[U] matrix is an \[n] by \[m] matrix that marks which genes were perturbed [initially?] in each experiment.  In the simplest case, \[U] is a binary matrix, where a \[1] at position \[i,j] indicates that gene \[i] was perturbed in experiment \[j].  The \[A] matrix is an \[n] by \[n] matrix that holds the network estimation. This is the matrix we are trying to solve for.  \[X] is the \[n] by \[m] matrix of expression values, where there are \[n] genes and \[m] experiments.  We can think about the above equation more concretely by taking just one row \[a_i] from \[A] and one column \[x_j] from \[X], solving for \[u_{i,j}] of \[U].  We want to find a combination of values in \[a_i] that, when multiplied by \[x_j] and added together, equals \[u_{i,j}] (shouldn’t this be -\[u_(i,j)] ?) Since there are an extremely large number of possible solutions, we need some way to select the “best” answer.  


NIR picks the solution by creating a multiple linear regression model.  A multiple regression is a regression model that can account for more than one independent (predictor) variable.  For example, consider estimating the price of a house.  Example independent variables that a house price model might include are: number of bedrooms, number of bathrooms, age of the house, and size.  We can then build a multiple regression model from housing data.  Building this model gives an estimate of how much each of these predictor variables influence the price.  It also allows us to estimate the price of a new home, given the predictor variables.  NIR applies this to each experiment.  The independent variables are each possible set of \[k] out of \[n] genes.  \[k] is a user-defined parameter that enforces sparsity in \[A] by restricting the maximum number of edges each gene can have to other genes.  The dependent variable is the negative perturbation value for the current gene/experiment.  These steps are repeated for each gene/experiment combination.  The network matrix \[A] is built from the model weights that best predict each gene.


Specifically, NIR uses least squares regression.  Least squares regression attempts to minimize the sum of squares cost function:

\begin{equation}


SSE^k_i = \sum^M_{l=1}(y_{il}-\grave{b}^T_i * z_l)^2

\end{equation}

where \[k] represents the set of genes being examined, \[i] is the current gene, \[l] is the current experiment, \[y_{il}] is the negative perturbation value for gene \[i] in experiment \[l], \[\grave{b}^T_i are the model weights for gene \[i], and \[z_l] are the expression values for each experiment \[l].  The basic idea is to choose the weights \[\grave{b}] that minimize the sum of squared errors.  Intuitively, the squared error measures the difference between how much each gene was perturbed and the perturbation that the current model represents. For example, if the gene and the experiment that are currently being analyzed have a perturbation value in \[U] of 1, then ideally we’d like to find a set of \[k] weights \[\grave{b}] (where at least one weight is non-zero) whose dot product with the current experiment’s expression values is equal to -1 (since \[y_{il} = -u_{il}]), making the error 0.  The source nodes of the edges having  non-zero weights correspond to the genes that regulate the current gene \[i].


For each gene, the model with the smallest sum of squared error is then tested for significance using a F-Test:

\begin{equation}


F = \dfrac{SSE_0 – SSE_k) / k}{SSE_k / (M-k)}

\end{equation}

where SSE_0 is the sum of squared errors when the weights \[\grave{b}] are set to 0.  The F-test is comparing the error in the inferred model to the error from the null hypothesis (where the model is set to 0).  If the F-Score is higher than a threshold F*, our model fits the data significantly better than the null hypothesis.  The F* threshold is the value of an F-distribution with \[k] and \[M-k] [Jesse: please be careful about the case of n and m. I think they should be lower case.] degrees of freedom at a desired confidence level.  Finally, we can use the model weights to fill in the current gene’s connections in the network matrix \[A], giving us our network.

A practical limitation of NIR is its runtime.  \[(N choose k)NM] multiple regressions must be run to exhaustively cover all possible solutions.  This severely limits the usefulness of NIR for even relatively small networks.  Recently, \cite{Gregoretti:2010wu} implemented a parallelized and optimized form of NIR to alleviate this problem.  The major speedup comes from running the multiple regressions in parallel with each other across multiple processors.  Since each regression can be run independently of all of the others, the overall runtime of NIR can be cut in proportion to the number of processors available to run it.


[I suggest we remove this paragraph.] Another practical consideration is whether or not the \[U] matrix is known.  The algorithm NIRest \cite{Lauria:2009wg} addresses this by estimating \[A] using a simple Pearson correlation.  The algorithm then solves \[U = -A_{set}X] and uses the calculated \[U] matrix as a best guess in the normal NIR algorithm.

	Parameter Name
	What it does
	Default value

	k
	Maximum number of edges any gene can have to others
	\cite{Gardner:2003ig} uses 5 as the default after exploring other values.


�Added this to explain how to detect operationally.





