Mutual Information
Entropy

	Jesse: Your style is reasonably clear, but you need to increase the information density, i.e. each sentence must say more. Also, we have to give a solid intuition before we get technical. The intuition should be as close as possible to the real concept (that’s why I didn’t like the colleagues talking to one another). Also, at some point we should mention the relationship between MI and correlation and also how well MI captures combinatorial settings (e.g. need A and B together).

Mutual Information measures how much each of two variables tells us about the other. For example, you may have no idea whether I’m sick or whether I have a temperature above the normal, but if you know one then you’ll have a good guess about the other. Sickness and high temperature have a high mutual information. On the other hand, sickness and the color of my kitchen cupboards have very low mutual information.

Technically, the uncertainty about a variable is measured by entropy. can be expressed in terms of the entropy of each random variable (genes, in our case).  Entropy can be thought of as the amount of uncertainty associated with a random variable.  Say we wanted, given some gene’s expression value at some point in a time series $G$ where we have $n$ replicates, to calculate its expected value.  With this data, we can do this by simply calculating the mean of the expression values.  Now, if these expression values are all relatively close together, we have nothing to worry about, and we can have some confidence that the mean is representative of the data.  In other words, we can say that there is low entropy in $G$.  However, if the values are spread rather far apart from each other, we should be concerned that the mean may not be representative of the actual value of the gene, and we have high entropy.  We can think of entropy in this way: how certain we are that the mean of the data is representative of the actual mean of the data, including data that is unobserved.  In essence, the noisier the data, the higher the entropy, and the more uncertain we are in how representative our observed data is. To 
	In order to calculate the entropy of a random variable $X$, we must knowfind the probability mass function of $X$, .  All the probability mass function is a function representing the probability of obtaining any given value $x$ in $X$.  For continuous random variables, the probability density function (discussed in Section XX {this should be discussed in the Bayes section}) is used instead.  As an example of a probability mass function, imagine rolling a fair die.  The probability of getting each value is $frac{1}{6}$, and so, the probability mass function is $frac{1}{6}$ for the each values $x \in (1 ... 6)$, and $0$ everywhere else. (For continuous random variables, the probability density function (discussed in Section XX {this should be discussed in the Bayes section}) is used instead.)   We then calculate the entropy of $X$, written as $H\left(X\right)$ in the following way,

$H\left(X\right) = - \sum{n}{i=1}{p \left( x_i \right) log_b p\left(x_i\right)}$

where $p\left(x_i\right)$ is the probability mass function’s value when $X=x_i$ and $b$ is a chosen base of the log, usually $2$, $e$, or $10$.  So, if we were to calculate the entropy of a fair die roll use log base $2$, we would end up with

$H\left(X\right) = - \sum{6}{i=1}{\frac{1}{6} log_2 \left(\frac{1}{6}\right)}$
$H\left(X\right) = - 6 * (frac{1}{6} log_2 (\frac{1}{6}))$
$H\left(X\right) = 2.585$

So, theThe entropy of a fair die roll is about $2.585$ bits.  Bits are the unit of entropy obtained by when using log base $2$.  Other units can be nits (log base $e$), and dits (log base $10$).  The number obtained above can be interpreted as being the amount of information each toss of the die gives us.  Because this is a fair die, this is the highest possible entropy for this problem, because it is the most random.  If we used a die that was weighted so $2$ appeared more likely often than the other numbers, we would have a lower entropy value. For example
	This entropy value can also be read as the average expected value of the information content for each roll.  That is, we can also break this apart and look at the amount of information each particular roll gives us.  In the case of a fair die, we get equal amounts of information from each roll.  However, if we modify the probability of $2$ with a weight, so there is a $0.5$ probability of $x = 2$, and keeping all other values at equal probability ($0.1$), we obtain

$H\left(X\right) = - 5 * (frac{1}{10} log_2 (\frac{1}{10})) + 1 * (frac{1}{2} log_2 (\frac{1}{2}) $H\left(X\right) = 1.161$

Now, each roll of the die is giving us less information. If the die always fell on 2, then we would learn nothing from a roll of the die and the entropy would be zero., because when $x=2$ has a higher probability of being rolled, we are more likely to obtain $2$, which gives more redundant information than a fair die roll.

Mutual Entropy
	An important part of calculating the MI Mutual Information in genomic applications is calculating the conditional entropy between two genes, or $H \left(Y | X \right)$ where $X$ and $Y$ are two different genes, each with expression values at $n$ time points.  What is meant by conditional entropy is, given the entropy of $X$, how much does $X$ not say about $Y$.  In other wordsIntuitively, the conditional entropy of $Y$ given $X$ is the amount of entropy left over in $Y$ once $X$’s entropy is taken into account.
	As an example of conditional entropy, imagine that we want to see if the club that an undergraduate student belongs to affects whether or not they plan to vote in an upcoming electionsuppose we have information about club membership and voting patterns among undergraduates.  We can set up possible values for $ClubX$ and $Votes?Y$ as such,
	$ClubX \in \left( Debate Team \\
		       Computer Club \\
		       History Club \right)$
	$ Votes?Y \in \left( Yes \\
		        No \right) $
	Below is our data from the survey.
	
	ClubX
	Votes?Y

	Debate Team
	Yes

	Debate Team
	Yes

	Computer Club
	No

	Computer Club
	No

	History Club
	Yes

	History Club
	No


	
	We can see from the table that both of the people from the Debate Team said that they planned to vote, wheras no one from the Computer Club said that they would vote, and the History Club is was perfectly split.  Thus, the club determines voting for any member of the Computer or Debate Clubs, but not for the History Club. If this is rephrased, it could be said that, given only this data, whether or not a Computer Club or Debate Team member votes is completely determined by which club they are in, whereas for the History Club it is not at all determined.  We can see, given our extremely limited data set, that there is no entropy in the Debate Team or Computer Club’s answers, and maximum entropy in the History Club, because it is perfectly random.  Or, more formally,We calculate these specific conditional entropies as follows: 

	$ H \left( Y | X = “Debate Team” \right) = 0 $
	$ H \left( Y | X = “Computer Club” \right) = 0$
	$ H \left( Y | X = “History Club” \right) = 1$

	This value above is the specific conditional entropy, because it is given only for one value of $X$ at a time.  We can the full calculate the conditional entropy by summing over all values of $H \left( Y | X = v_i \right)$, weighted by the probability of that $v_i$ occurringoccurs.  Formally, 

	$ H \left( Y | X \right) = \sum{i = 1,...,n}{P \left( X = v_i \right) * H \left( Y | X = v_i \right) }$
	If we work this out, we get:
	$ H \left( Y | X \right) = 0.33 * 0 + 0.33 * 0 + 0.33 * 1 $
	$ H \left( Y | X \right) = 0.33 $

	So the conditional entropy $H \left( Y | X \right)$ is $0.33$.  Calculating entropy and conditional entropy for continuous variables (such as gene expression values) follows the same idea, but is instead done using the integral of the values $v_i$ and the probability density functions of $X$ and $Y$.

Calculating the Mutual Information
The Mutual Information value can be calculated by combining the above two values.  So, the MI between two random variables $X$ and $Y$ is defined as

$I(X;Y)=H(X) – H(X|Y)$

It should be noted that MI can also be formulated in terms of the probability density functions of $X$ and $Y$.

$I(X;Y) = \integral{_Y\integral{_X p(x,y) log_b \left( frac{p(x,y)}{p_1(x)p_2(y)}\right)}dx}dy

Where the base $b$ of the log is $2$, $e$, or $10$, $p(x,y)$ is the joint probability distribution function of $X$ and $Y$, $p_1(x)$ is the marginal probability density function of $X$, and $p_2(y)$ is the marginal probability density function of $Y$.  For a more in-depth discussion of probability density functions, please see the section on Bayesian approaches.  When approached from this angle, we can see that the MI is a measure of the overlap of the distribution functions.  If $p(x)$ and $p(y)$ are independent of each other, then $p(x,y) = p(x)p(y)$, which will make the quotient in equation XX equal to $1$, which turns to $0$ when we take the log of it, dropping the MI value to $0$.  Intuitively, this makes sense: if $x$ and $y$ are independent, then knowing one doesn’t give any information about knowing the other and so they have zero mutual information.
shows that if the probability density functions do not overlap, then there is no MI shared between them.
	Mutual-Information can be thought of as a phone call between two colleagues working on two separate problems.  Suppose colleague $X$ calls colleague $Y$ to discuss their problems.  After each of the colleagues finishes discussing their problems, information has been shared between them.  If the problems are disparate, it is likely that none of the shared information helped each colleague better understand their own problem.  However, if the problems are similar, they may well share, or overlap, information that helps to further explain parts of each of their own problems.
	In terms of genes, we can think of it in terms of regulations in the network.  Specifically,genomics applications, we are interested in what the values of gene $X$ tell us about the values of gene $Y$.  Does gene $X$ give us information about what gene $Y$ is doing, or are they changing independently from each other?  How much does gene $X$ tell us about gene $Y$?  and if so how much? If a lot, we may want to connect them with an edge. If it is only a small amount, perhaps it is only extremely loosely related or simply a spurious relation between the two genes and can be safely ignored.  If one gene tells us a large amount about the behavior of another gene though, then perhaps there should be an edge between them in the network.
[bookmark: _GoBack]-- Add an example using the small gene network example
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