Data Generation 
Philippe Bonnet, IT University of Copenhagen, http://www.itu.dk/people/phbo
Dennis Shasha, New York University, http://www.cs.nyu.edu/shasha/
DEFINITION

In the context of database systems, data generation refers to the creation of synthetic data sets that can be used to populate a database. For relational database systems, tuples are generated based on the definition of one or several tables, as well as constraints (e.g., the cardinality of an attribute and the distribution of its values). For XML databases, documents are generated based on a schema as well as constraints (e.g., cardinality constraints over XPath queries). For graph databases, many algorithms have been devised for generating graphs with given properties (e.g., diameter or density).
SCIENTIFIC FUNDAMENTALS

Data generation is the generation of basic combinatorial patterns. As Donald Knuth explained in his fascicle on “Generating all n-tuples”, the problem is to devise algorithms that systematically traverse a combinatorial space of possibilities.
The first issue is to determine the nature of that space. It is constrained by requirements about:

(i) The structure of the database (e.g., domain constraints for each attribute, functional dependencies and key integrity constraints for a relational table, or referential integrity constraints across tables);

(ii) The characteristics of the instance to be generated (e.g., cardinality constraint and distribution of values in a domain for a given attribute, correlation across attribute values within or across tables). 
These requirements can be expressed with domain specific languages (e.g., DGL proposed by Bruno and Chaudhuri) or declarative languages (e.g., QAGen proposed by C. Binnig et al., or CLPAlg proposed by A. Arasu et al.).
The second issue is to generate values for attributes for a range of different domains. While random number generators are sufficient for numerical values, they must be complemented with other forms of value generators (e.g., based on dictionary values for generating strings, based on other table instances for generating references). There may be constraints on the value domain. For key constraints, this requires the generation of values without repetitions. For referential integrity constraints, this requires values to be generated based on a dictionary populated by referenced attribute values (so random number generation cannot be used). Constraints involving attribute values in different tables might have to be enforced as a post-processing phase after tuples are generated.
The third issue is to generate a distribution of values for a given attribute. For a uniform distribution, values are generated by repeatedly applying a random number generator calibrated for the given domain. Normal or zipfian distributions require additional processing. For a normal distribution, the frequency with which a value is drawn depends on its distance from the mean of the domain and the standard deviation of the distribution. For a zipfian distribution, the frequency with which a value is drawn is inversely proportional to its rank in a frequency table. 
The fourth issue is to concatenate attribute values (as tuples, XML documents or graphs) and pretty print the result. 
KEY APPLICATIONS 

Data generation is one of the core component of any benchmark. Data generation is also used for database testing. In this case, existing database instances ore often used as a basis for data generation.
URL to CODE and DATA SETS

Link to gentable (k and python versions)
CROSS REFERENCES

Benchmarks; Benchmark Frameworks; Testing Databases; Constraint Databases; Random Number Generation (?)
RECOMMENDED READING

Nicolas Bruno and Surajit Chaudhuri. 2005. Flexible database generators. In Proceedings of the 31st international conference on Very large data bases (VLDB '05). VLDB Endowment 1097-1107.


Arvind Arasu, Raghav Kaushik, and Jian Li. 2011. Data generation using declarative constraints. InProceedings of the 2011 ACM SIGMOD International Conference on Management of data (SIGMOD '11). ACM, New York, NY, USA, 685-696. DOI=http://dx.doi.org/10.1145/1989323.1989395
Donald E. Knuth. 2005. The Art of Computer Programming, Volume 4, Fascicle 3: Generating all Combinations and Partitions. Addison-Wesley Professional.

Christopher Olston, Shubham Chopra, and Utkarsh Srivastava. 2009. Generating example data for dataflow programs. In Proceedings of the 2009 ACM SIGMOD International Conference on Management of data (SIGMOD '09), Carsten Binnig and Benoit Dageville (Eds.). ACM, New York, NY, USA, 245-256. DOI=http://dx.doi.org/10.1145/1559845.1559873

