Consensus Step: Combining Results of Different Approaches

Various techniques for gene network inference learn from different types of data, have different theoretical approaches, and use different types of statistics. For example, an algorithm using a Bayesian approach may be extracting different information from the data than one using a regression approach. The idea behind the consensus step is to enhance the inferential abilities of any single algorithm by combining the rankings of the different methods to arrive at a consensus network.  
There are many different ways to combine the inferred networks.  This introduction will briefly cover the ideas behind a few such methods. We will illustrate these ideas in the example pipelines that follow.
Voting

A quick and dirty way of building a consensus network is simply to have algorithms vote on edges.  If an edge’s score is above the cutoff threshold for an algorithm, then that edge receives a vote.  A new ranking is created, and the edges with the most votes are used to build the network.  We can also apply weights to the votes based on an inferred edge’s rank.  We may want to give only the top ranked edge for each algorithm one vote, and each edge below that some decreasing fraction of a vote.  As an example, the top edge in each algorithm gets 1 vote, the second highest ranked edge gets 0.9 votes, then 0.9*0.9 = 0.81 votes and so on. A consensus rank is then achieved by summing the votes from each algorithm.
Weighting Algorithms


Another form of voting is to weight the answers from different algorithms based on the algorithm’s successes.    There are many different ways we can weight algorithms.  For example, we can assign a weight to the entire algorithm, indicating that we trust algorithm A more than algorithm B.  We can also assign weights to each algorithm’s individual ranks.  The net effect might be that we strongly trust the top 5 edges in algorithm A and mildly trust the top 10 in algorithm B.


We determine the weights for an algorithm by testing the algorithm’s reliability on data that has a known or partially known network. Ideally, the network that we test on will be as similar as possible to the network we’d like to infer.


[Jesse: this paragraph is not appropriate here. Either it should be part of an algorithm or nowhere. Dennis: OK, I’ve moved it to the bottom just to keep the text around in case we want to use it later.] 


Resampling


We can also build consensus networks by resampling the data.  A new dataset is built by randomly sampling from the existing dataset of experiments with replacement, until a dataset of the same size is constructed.  A network inference algorithm is then run on the sampled dataset.  This procedure is repeated many times to ensure good coverage of the original data.  The justification for this approach is that sampling provides a way of looking at what happens when certain experiments drop out of the dataset (does an unrelated edge disappear?), and when certain experiments are duplicated (are some edges stronger?).  By averaging the generated networks across these datasets for a given algorithm, we reduce the amount of variance inherent in each of the inferred edges for that algorithm. 




Extra text
There are many ways to actually train the weights.  One way is using gradient descent.  The basic idea comes from thinking about the problem geometrically.  Imagine that we are sitting on a point in a graph.  We want to find the local minimum of the graph.  To do that, we can calculate the gradient of the point we are currently at, and then travel along that gradient for some distance.  We then calculate the gradient of the new point we are at, and travel along it for some shorter distance.  This process continues until eventually we end up at a local minima.  In this example, the current combination of weights is our “point” on the graph.  The dependent variable of the graph is a measure of error between the graph represented by the current weights and the gold standard.  We want to find the set of weights that minimizes that error.  Because gradient descent tends to find local minima, the algorithm is often restarted many times with random weights in order to find a good local minimum.
