Aim 2: Trait-to-network module discovery
Rationale: We propose to build gene networks from co-expression data on multiple crop species to identify genes that are potentially central to a particular trait of interest. We will then test those candidates by altering them (over-expression, knock-outs, and knock-ins) on  Arabidopsis. We call this approach the “trait-to-network module” discovery pipeline. Dennis thinks this should be called the trait-network-gene discovery pipeline.
Novelty:  The trait-to-network module approach follows the spirit of Aranet and … in using multiple species to identify functionality. What is novel here is: (i) we use expression data from multiple crop species to vote on and identify sets of genes associated with a trait [Dennis asks how this is different from Aranet. Perhaps we should emphasize that we first identify experiments that are relevant to a trait and construct a network based on all experiments], (ii) we identify orthologous genes that are relevant to a trait but missing in Arabidopsis, and (iii) our experimental strategy is based on a medium throughput validation testing in an inducible expression system.

Agronomic Traits and phylogenomic context: Traits of agronomic importance have been improved by selection/breeding in a wide range of crop species. because the genomes of many crop and non-crop species have been sequenced, genes associated with these traits can now be identified. Fig. X shows a phylogenetic tree built based on the whole genome sequences of 21 species including 9 crop species.  From a phylogenetic perspective, these diverse crop species lie at great phylogenetic distances of hundred million years or more from the common ancestor [Chaw et.al. 2004]. Yet, the availability of complete genome sequences has provided evidence for conservation of specific gene functions across these species, sometimes at large phylogenetic distances [Irish and Yamamoto 1995]. Thus, the heavily and independently selected agronomic traits in many crop species are likely to share similar underlying genetic mechanisms.

Important agronomic traits, such as seed development, seed composition, root architecture, flowering time etc. are complex and likely the result of small to medium sized conserved networks of genes rather than single gene controlled characteristics [Espinosa-soto et al., The Plant Cell Nov 2004, To et al., The Plant Cell July 2006]. These networks, often manifested as modules of spatio-temporally correlated gene expression, are likely to be conserved across most seed-bearing plants. Arabidopsis, through its amenability to mutational and transformational studies has provided the vast majority of knowledge about these traits.  Examples of agronomic trait genes identified in Arabidopsis include flowering time [Espinosa-soto et al., The Plant Cell Nov 2004], seed development [To et al., The Plant Cell July 2006] and root architecture [Péret et. Al., Trends in Plant Science July 2009].  However, the Arabidopsis plant has a relatively small size and somewhat limited tolerance to extreme conditions. Therefore, data about tissue-specific responses and environment-specific responses of genes is significantly easier to obtain in other species [Li et al. 2011, Tuteja et al. 2010].  For example, data-rich expression datasets of such conditions, for example drought resistance [Shen Y, Venu RC, Nobuta K, Wu X et al. 2011] and early seed development [http://www.ncbi.nlm.nih.gov/geo/ : GSE29163]. In addition, expression atlases exist in several crop species [Severin et al. BMC Plant Biology2010]. 
Approach/Method: 

For a given trait of interest, all pertinent gene expression studies from multiple fully sequenced plant species (S1, S2 …Sn) will be obtained from public databases [NCBI GEO]. Additionally, genes known to be associated with the trait will be identified from Arabidopsis and/or other species based on mutant studies in Arabidopsis and/or in other species based on literature analysis using Geneways [Rzhetsky et al. 2004] to mine literature for the trait of interest. This trait-associated gene list will constitute the set Tintial and can be used to initialize the discovery of the associated network module. In the absence of known trait-associated genes our method will identify candidate gene sets relevant to the trait as follows:
Step 1: Identify trait related datasets: Datasets relevant to the trait of interest are identified and pre-processed to allow comparisons across diverse experiments.

1.1 In each crop species, a set of experiments that investigate the trait of interest is chosen for correlation analysis. 

1.2 A second set of experiments that measure gene expression in unrelated conditions are then chosen to serve as background. 

1.3 Genes that do not show variation, as determined by a one-way ANOVA or a minimum variance cut-off, across this second experiment set are deemed as constitutively expressed (“housekeeping”) and removed from further analysis. This step is important to remove non trait-specific gene associations in the test data set. 

1.4 To allow reliable comparison of expression levels across experiments, filters to remove low quality data are applied to the data sets. 
1.5 The raw counts are normalized using a full quantile normalization method as this method has been shown to improve detection of expression changes relative to standard scaling by lane counts (eg., RPKM) especially in the low-expression genes [Bullard et.al. BMC Bioinformatics 2010]. 

Step 2: Compute gene correlations: Gene correlation networks are then built independently in species S1…Sn. 
2.1
Correlation (with associated p-values) will be calculated as a Pearson correlation coefficient but multiple metrics for co-expression will be supported as discussed in the Data types section of Aim 1.  
2.2
A gene correlation network (CNi) between all genes with at least a single edge (nodes) is then constructed by assigning edges between any pair of genes deemed to be correlated having a p-value <= 0.05.

Step 3. Consensus through voting: A “Voted” network is constructed by incorporating information from several species.

3.1
For every gene in each CNi, orthologs are identified in every other species compared, through sequence orthology (BLAST, OrthologID, Gene families).  
3.2
Nodes (genes) are collated by sequentially adding nodes from CNi. If orthologous node exists, it will receive a vote from Si. Similarly if an ortholog is missing from current list it will be added. If multiple orthologs exist (BLAST matches above a e-value cut-off) each orthologous node will receive a vote. The sum of votes provides a measure of importance of gene to trait.

3.3
Every edge between the nodes receives a vote from edges connecting two orthologous nodes in some crop species. Multiple ortholog pairs will result in duplication of edges. The sum of votes is assigned as the weight of this edge.

3.4
Experimentally validated edges from Arabidopsis provide additional votes.

3.5
Final network including nodes and edges, with assigned weights forms the Treturn.

Kranthi: This is an attempt to try to say what we want more directly: 
Each gene g from a  specific species networks that passes an orthology cutoff [We have to say how this will be identified, e.g. what does Aranet use] with respect to some Arabidopsis gene g’ will give g’ a “vote”. Thus g’ may receive votes from several genes in each network and from multiple networks. Further the gene g in one network may vote for several genes in Arabidopsis as shown in the figure. Finally, if g is not orthologous enough to any gene in Arabidopsis, but is is orthologous enough to genes in other crop species, then we consider that gene to be a candidate for a knock-in experiment.
If there is an edge between g1 and g2 in a species specific network and g1 exceeds the orthology cutoff to g1’ in Arabidopsis as does g2 with respect to g2’, then add a vote to the edge between g1’ and g2’ in Arabidopsis.

3.4 and 3.5 as above

Step 4: Identify conserved network modules: Conserved modules of expression are identified by applying a clustering approach to Treturn.

4.1
The reciprocal of the weights of the edges  form a measure of distance, thus assigning the more connected nodes as closer to each other.

4.2
Use this measure of distance to perform k-means clustering or possibly affinity propagation clustering [Frey and Dueck, Science 2007] will also be explored to identify the method that produces relatively small, tight clusters.

4.3
Candidate clusters are ranked based on the median vote count for the nodes and the mean thickness of edges. Other network measures such as edge density or hubbiness of nodes will also be explored.

Step 5: Annotate network module: [Dennis is not terribly excited about this step, but defers to the biologists. Even if we include it, can it be shortened] A conserved network module Treturn,i is then annotated.
5.1
GO terms are assigned for each of the nodes in Treturn,i and overexpressed GO terms are identified using all genes in Treturn as the background model in a hypergeometric test.

5.2
Nodes in Treturn,i are annotated against PFAM to identify conserved domains, and KEGG to identify metabolic genes. If the node has an Arabidopsis gene assigned to it, existing annotation is used as is. 

5.3
Clusters are reported with the associated GO terms and gene annotations.

Step 6: Mutant studies in Arabidopsis: Candidate genes are mutagenized to study phenotypic effects in Arabidopsis.


6.1
Identify genes central to each module constructed from the steps above.

6.2
Give preference to genes that are poorly characterized in Arabidopsis and hence good candidates for mutant analysis. For these genes, phenotypic changes affecting the trait can be assayed in knock-out mutants and by creating over-expression lines.


6.3 
Genes relevant to the trait but lacking an ortholog in Arabidopsis are prime candidates for “knock-in” studies where the ortholog from the closest related species is inserted into Arabidopsis and the resulting transformant is phenotyped.


6.4
An estimate of the role of gene as suppressor or enhancer is made from the node vicinity neighborhood [reference] and the direction of correlation across the coexpression networks from all species.


6.5
Quantitative assays of expression for sentinel genes in a transient Dexamethosone induced system will be developed to provide a medium-throughput model to test the candidate genes. This system can be used to perform knock-down, over-expression and knock-in assays depending on the anticipated affect on phenotype.

Alternate approach: [Dennis doesn’t think we will have room for this discussion. I would go directly to preliminary valuation]
An alternate approach is possible when genes are known to be associated with the trait of interest. In the simplest case, the trait is relatively well studied in Arabidopsis, or some other model species (eg., seed development in Arabidopsis, drought tolerance in Rice etc.) and has one-to-many known gene associations. These genes then form the initializing gene set. A single gene known to be related to a trait from other species could also serve as starting gene (eg., Fungal resistance in Glycine max [Meyer et.al. Plant Physiology 150:295-307 (2009)]. Orthologs for these genes are identified in the other species, through a combination of orthology and expression as described previously [Meinel et al. BMC Genomics 2011, 12:483]. In this case the algorithm will extract nodes in the vicinity of the starting genes at a pre-specified number of network hops and use the voting and clustering strategy described above. 

The confounding effect of varying number of paralogs across species on the “voted” network is dealt with implicitly in our strategy. By collecting votes on nodes and edges from multiple species the network implicitly includes all paralogs irrespective of their conservation in any single species. The caveat is that the propogation of edges between all pairs of orthologs may inflate the weight assigned to some pairs of paralogs. We anticipate that the copies that are relevant to the trait will still receive higher votes in the species where subfunctionalization has occurred because in them only the edges between genes relevant to this trait will receive a vote. Further, we will explore methods to prioritize genes for phenotypic assays by ranking the genes within a module based on the average number of paralogs and/or gene family members across the species.

The genes identified as tightly associated with the trait, as identified in Step 5, are anticipated to be good candidates for manipulating the trait. To confirm their role, existing mutants in these genes will be scored for phenotypic changes in the trait. Where available, phenotype descriptions for mutants in Arabidopsis [TAIR (http://www.arabidopsis.org/), RAPID (http://rarge.psc.riken.jp/phenome/)] will be used.  If no phenotypes were reported, T-DNA mutant lines [ABRC (http://abrc.osu.edu/)] and/or over-expression lines (to be developed) will be evaluated in our lab to study the effect on the trait using a relevant experimental design.

Fig. X. Trait-to-gene [Is this the correct name?] networks:  The trait-to-gene subnetwork, including genes known to be associated with the trait is shown. Some or all of these genes form the Tinitial set.  In this example, gene correlation networks are independently built in Soybean (S) and Maize (M) from early seed expression sets [REFS]. A union network is constructed from the S and M networks and orthologs of these genes identified in Arabidopsis to form the Treturn set. All edges between the Treturn set are retrieved from the Arabidopsis multinetwork [REF] with the addition of new edges, if any, generated from the union network. Analysis of network properties (e.g. hubbiness and strength of correlation) on this derived Arabidopsis network reveals genes that are particularly relevant to the trait.

Preliminary analysis: To test this approach, we use seed development as the trait of interest [Baud and Lepiniec, Progress in lipid research, 2010]. In Arabidopsis, LEC1, LEC2, FUS3, ABI3 and ABI5 are known master regulators of seed development and likely exert important influence on early stages of seed nutrient accumulation [Santos-Mendoza et. al.]. For the preliminary analysis we chose this trait because it has been studied in multiple species and mutant phenotype information is available for in silico validation [Meinke D et. al., Trends in plant sciences 2008]. For this preliminary analysis, we use deep transcriptome data sets from early seed tissue samples of Soybean and Maize to perform this analysis [NCBI GEO]. 

Construction of gene correlation networks: Gene expression values, computed as raw read counts for each gene, were normalized using full quantile normalization [Bullard et al., 2010] and then adjusted to account for gene length. 
A matching number of experiments that investigate non-seed tissues in Soybean and Maize were chosen to build a background expression data set. Genes that show low variance in expression, as determined by a variance lower than the mean for this set were removed from further analysis. This step serves as an important filter to remove constitutively expressed genes that are not relevant to the trait of interest.

A simple Pearson Correlation Coefficient (PCC) [Usadel et. al., Plant, cell and environment, 2009] is calculated for all gene pairs. Other measures of correlation, such as cosine coefficient (CoP) [Ogata et. al., Bioinformatics 2010] and Mutual rank (ATTEDII, PlaNet) [Obayashi et.al., NAR 2008; Mutwil et.al., Plant cell, 2011] will be used in later work. Table XX lists the size of correlation networks built using Soybean and Maize seed development expression sets. PCC for each gene pair was tested for significance using a t-test. All correlations with a p-value less than 0.05 were retained. 

Remaining nodes from the CNsoybean and CNmaize were assigned orthologs in Arabidopsis and each other. For this preliminary work orthology was assigned based on best reciprocal BLAST matches. More sophisticated approaches to orthology assignment will be used in the final work as discussed above. This unified network contains XX nodes (YY genes) and ZZ edges. 
Distance between nodes, computed as the reciprocal of edge weight, was used to cluster the nodes. This distance matrix was subjected to k-means clustering to identify conserved clusters of co-expression.

REST OF THE PRELIMINARY RESULTS WILL DEPEND ON THE RESULTS OBTAINED AT THIS STAGE. WE ANTICIPATE THAT LEC1, LEC2, FUS3, ABI3 AND ABI5 GENES WILL BE REDISCOVERED IN ADDITION TO OTHER GENES THAT INTERACT WITH THEM. 
IF ANY UNANNOTATED GENES APPEAR IN THE NETWORK WE CAN FOCUS ON THOSE FOR CAREFUL ANNOTATION TO IDENTIFY POSSIBLE ROLES. ANY GENES MISSING INARABIDOPSIS ARE OBVIOUS CANDIDATES FOR KNOCK-IN STUDIES. SUCH “MISSING” GENES WILL BE RANKED BY AVERAGE NUMBER OF PARALOGS ACROSS SPECIES.

Aim 2B: EXPERIMENTAL VALIDATION

