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Abstract Let W (A) denote the field of values (numerical range) of a matrix A.
For any polynomial p and matrix A, define the Crouzeix ratio to have numerator
max {|p(ζ)| : ζ ∈ W (A)} and denominator ‖p(A)‖2. M. Crouzeix’s 2004 conjecture
postulates that the globally minimal value of the Crouzeix ratio is 1/2, over all
polynomials p of any degree and matrices A of any order. We derive the subdif-
ferential of this ratio at pairs (p,A) for which the largest singular value of p(A)
is simple. In particular, we show that at certain candidate minimizers (p,A), the
Crouzeix ratio is (Clarke) regular and satisfies a first-order nonsmooth optimality
condition, and hence that its directional derivative is nonnegative there in every
direction in polynomial-matrix space. We also show that pairs (p,A) exist at which
the Crouzeix ratio is not regular.

1 Crouzeix’s Conjecture

Let MN denote the space of N × N complex matrices, let PM denote the space
of polynomials with complex coefficients and degree ≤ M , and let ‖ · ‖ denote the
vector or matrix 2-norm. Michel Crouzeix’s 2004 conjecture [Cro04] states that for
all A ∈ MN and all p ∈ PM , the following inequality holds regardless of the values
of N and M :

‖p(A)‖ ≤ 2‖p‖W (A) (1)
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where W (A) is the field of values (or numerical range) of A,

W (A) = {v∗Av : v ∈ C
N , ‖v‖ = 1},

and
‖p‖W (A) = max

ζ∈W (A)
|p(ζ)| = max

‖v‖=1
|p(v∗Av)|.

Here ∗ denotes complex conjugate transpose. The set W (A) is a convex, compact
subset of the complex plane [HJ91, Ch. 1]. Clearly, the conjecture holds for N = 1
or if p is a constant polynomial (with the factor 2 replaced by 1) so we assume
that N ≥ 2 and p is not constant.

This conjecture, which seeks to bound the spectral norm of the polynomial
of a matrix by the norm of the polynomial on the field of values of the matrix
in a remarkably simple way, has been open for more than a decade. Crouzeix’s
2007 theorem [Cro07] states that the inequality (1) holds if the 2 on the right-
hand side is replaced by 11.08. The conjecture postulates that the Crouzeix ratio

‖p‖W (A)/‖p(A)‖ is bounded below by 1/2, while the theorem states that it is
bounded below by 1/11.08. The Crouzeix ratio is locally Lipschitz continuous on
the set of all pairs (p,A) for which p(A) 6= 0. It is neither smooth nor convex, but
it is semialgebraic.

The conjecture is known to hold for certain restricted classes of polynomials p
or matrices A:

– p(ζ) = ζM (from the power inequality, Berger [Ber65] and Pearcy [Pea66])
– W (A) is a disk (Badea [Cro04, p.462], based on von Neumann’s inequality

[vN51] and work of Okubo and Ando [OA75])
– N = 2 (Crouzeix [Cro04], and, more generally, if the minimum polynomial of

A has degree 2 (applying results in [TW99])
– N = 3 and A3 = 0 (Crouzeix [Cro13])
– A is an upper Jordan block with a perturbation in the bottom left corner

(Greenbaum and Choi [GC12]) or any diagonal scaling of such A (Choi [Cho13])
– A is diagonalizable with an eigenvector matrix having condition number less

than or equal to 2 (easy)
– AA∗ = A∗A (then the constant 2 can be improved to 1).

Extensive numerical experiments by Crouzeix (summarized in [Cro15]) and Green-
baum and Overton (to be reported in a forthcoming paper) strongly support the
conjecture.

Pairs (p,A) for which the Crouzeix ratio is 0.5 are known. Given an integer n

with 2 ≤ n ≤ max(N,M + 1), set m = n− 1, define the polynomial p ∈ Pm ⊂ PM

by p(ζ) = ζm, set the matrix Ã ∈ Mn to

[

0 2
0 0

]

if n = 2, or
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





if n > 2, (2)

and set A = diag
(

Ã, 0
)

∈ MN . It was independently observed by Choi [Cho13] and
Crouzeix [Cro15] that W (A) is the unit disk D, so the numerator of the Crouzeix
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ratio for (p,A) is one, and that p(A) = An−1 is a matrix with just one nonzero,
namely a two in the (1, n) position, so the denominator of the Crouzeix ratio is
two and hence the ratio is 0.5. In fact, the experiments of Greenbaum and Overton
suggest that this is essentially the only pair for which the Crouzeix ratio is 0.5.1

Crouzeix’s conjecture is equivalent to saying that the pair (p,A) given above is
a global minimizer of the Crouzeix ratio on PM ×MN . The main theorem in this
paper, established in Section 5, is that a first-order nonsmooth necessary condition
for (p,A) to be a local minimizer holds, and furthermore that the directional
derivative of the Crouzeix ratio at (p,A) is nonnegative in every direction in PM ×
MN .

2 Variational Analysis

We will use the following standard notions from variational analysis. Let h map
a Euclidean space E to R. We say that h is smooth on an open set X ⊂ E if it is
continuously differentiable there and that h is directionally differentiable on X if,
for all x ∈ X, the directional derivative

h′(x; d) ≡ lim
t↓0

(h(x+ td)− h(x)

t

exists and is finite for all d ∈ E. If h is locally Lipschitz and directionally differen-
tiable on X, we say that h is (Clarke) regular on X when its directional derivative
x 7→ h′(x; d) is upper semicontinuous (usc) on X for every fixed direction d [RW98,
Thm. 9.16]. It is well known that for regular functions, various different notions of
subgradients [RW98, Ch. 9] or generalized gradients [Cla83] all coincide. We use
∂h(x) to denote the set of such subgradients, or subdifferential, of h at x ∈ X. In
the case we are considering (when h is locally Lipschitz, directionally differentiable
and regular), the subdifferential ∂h(x) is a nonempty compact convex set consist-
ing of those vectors y for which the inner product 〈y, d〉 is no greater than h′(x; d)
for all directions d ∈ E; furthermore

h′(x; d) = max
y∈∂h(x)

〈y, d〉. (3)

Note that the map d 7→ h′(x; d) is sublinear [RW98, Def. 3.18]. Hence, the nons-
mooth stationarity condition 0 ∈ ∂h(x) is equivalent to the first-order optimality
condition h′(x, d) ≥ 0 for all directions d ∈ E. Convex functions and smooth func-
tions are globally regular, but nonsmooth concave functions are not.

The following nonsmooth quotient rule will be useful.

Proposition 1 Let ν : E → R be locally Lipschitz, directionally differentiable and

regular on an open set X ∈ E and let δ : E → R be smooth on X with gradient ∇δ.

1 By this we mean, apart from making the following transformations: scaling p, scaling A,
shifting the root of the monomial p and the diagonal of the matrix A by the same scalar,
applying a unitary similarity transformation to A, or replacing the zero block in A by any
matrix whose field of values is contained in D. Note, however, that if the condition that p is
a polynomial is relaxed to allow it to be analytic, there are many choices for (p,A) for which
the ratio 0.5 is attained; for the case N = 3, see [Cro16, Sec. 10].
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Define the quotient h by x 7→ ν(x)/δ(x), assuming δ(x) 6= 0 for x ∈ X. Then h is

regular on X with subdifferential

∂h(x) =
δ(x)∂ν(x)− ν(x)∇δ(x)

δ(x)2
.

Proof Fix d ∈ E. Applying the ordinary quotient rule to the function t 7→ h(x+td),
which maps R to R, we find

δ(x)2h′(x; d) =δ(x)ν′(x; d)− ν(x)δ′(x; d)

=δ(x) max
y∈∂ν(x)

〈y, d〉 − ν(x)
〈

∇δ(x), d
〉

= max
y∈∂ν(x)

〈

δ(x)y − ν(x)∇δ(x),d
〉

.

Since ν′(·; d) is usc on X and ∇δ(·) is continuous on X, it follows that h′(·; d) is
also usc on X and hence that h is regular there. The result now follows from (3).
�

Although we don’t know an explicit reference for this result, it can alternatively
be proved using a standard nonsmooth chain rule [RW98, Thm. 10.6] following the
derivation of the sum rule in [RW98, Cor. 10.9], extending it from sums to products
and therefore quotients.

3 Parametrizing the Boundary of W (A)

By the maximummodulus principle, |p(ζ)|must attain its maximum over ζ ∈ W (A)
on a nonempty subset of the boundary of W (A), and since p is not constant, the
maximum is attained only on the boundary. The following fundamental proposition
goes back to [Kip51] and is also well known from [Joh78,HJ91], but the usual proof
is less succinct than ours.

Proposition 2 For θ ∈ [0,2π), define the Hermitian matrix

Hθ =
1

2

(

eiθA+ e−iθA∗
)

. (4)

A point z is a boundary point of W (A) if and only if z = v∗Av where v is a unit

eigenvector of Hθ corresponding to λmax(Hθ), the largest eigenvalue of Hθ, for some

θ ∈ [0,2π).

Proof We use the real inner product on C defined by 〈ξ, η〉 = Re(ξ∗η). Since
W (A) is closed and convex, z is a boundary point of W (A) if and only if it lies on a
supporting hyperplane, namely, a line Lθ described by the conditions 〈e−iθ, y−z〉 =
0 for y ∈ Lθ and 〈e−iθ, y − z〉 ≤ 0 for y ∈ W (A), for some θ ∈ [0,2π). Such a
boundary point satisfies z = zθ ≡ v∗θAvθ where vθ maximizes, over all unit vectors
v ∈ C

N ,
〈

e−iθ, v∗Av
〉

= Re
(

v∗(eiθA)v
)

= v∗Hθv.

Hence, vθ is a unit eigenvector corresponding to λmax(Hθ). �

Note that if λmax(Hθ) is simple, then vθ is uniquely defined up to a unimodular
scalar, so zθ is uniquely defined.
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4 The Subdifferential of the Crouzeix Ratio

Let us identify p ∈ PM with its coefficient vector c = [c0, c1, . . . , cM ]T ∈ C
M+1, with

cj 6= 0 for at least one j ∈ {1, . . . ,M}, and define the function q : CM+1 × C → C

by

q(c, ζ) =
M
∑

j=0

cjζ
j .

Depending on the context, we will also interpret q as a function mapping CM+1 ×
MN to MN , defined by substituting A ∈ MN for ζ ∈ C above. We write the
Crouzeix ratio as

f(c, A) =
τ(c,A)

β(c,A)

where
τ(c,A) = max

{

|q(c, z)| : z ∈ W (A)
}

, (5)

and
β(c,A) = ‖p(A)‖ = σmax

(

q(c,A)
)

, (6)

the largest singular value of
∑M

j=0 cjA
j. Thus f maps the Euclidean space CM+1×

MN , with real inner product

〈(c,A), (d,B)〉 = Re
(

c∗d+ tr(A∗B)
)

,

to R. We address the case where the denominator is zero below. The notations τ

and β were chosen to indicate the “top” and “bottom” components of the ratio.
We begin our analysis with the numerator. We can rewrite τ as

τ(c,A) = max
{

φ(c,A, ω, v) : |ω| = 1, ‖v‖ = 1
}

, (7)

where the function φ : CM+1 ×Mn × C× C
N → R is defined by

φ(c,A, ω, v) = Re
(

ω∗q(c, v∗Av)
)

.

Let Z(c, A) denote the set of points z ∈ W (A) attaining the maximum in (5) and
let Ω(c,A) denote the set of pairs (ω, v) attaining the max in (7). Clearly

Ω(c,A) =
{

(ω, v) : |ω| = 1, ‖v‖ = 1, z ∈ Z(c,A), v∗Av = z, ω∗z = |q(c, z)|
}

.

By [RW98, Thm. 10.31], τ is everywhere locally Lipschitz, directionally differen-
tiable and regular, with subdifferential

∂τ(c,A) = conv
{

∇(c,A)φ(c,A, ω, v) : (ω, v) ∈ Ω(c,A)
}

. (8)

By definition, the gradient vector satisfies

φ(c+ δc,A+ δA, ω, v)− φ(c,A, ω, v) =
〈

∇(c,A)φ(c,A, ω, v), (δc, δA)
〉

+ o(δc, δA).

The left-hand side is

Re
(

ω∗(q(c+ δc, v∗(A+ δA)v)− q(c, v∗Av)
)

)

= Re
(

ω∗(〈∇q(c, v∗Av),
(

δc, v∗(δA)v
)

〉
)

)

+ o(δc, δA).
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The gradient of q at the pair (c, ζ) is defined by

〈∇q(c, ζ), (δc, δζ)〉 = (δc)0 +
M
∑

j=1

(

(δc)jζ
j + jcjζ

j−1(δζ)
)

which for conciseness in the argument below we write as

M
∑

j=0

(

(δc)jζ
j + jcjζ

j−1(δζ)
)

interpreting 00 = 1 and 0/0 = 0 if ζ = 0. Setting z = v∗Av, we deduce

〈

∇(c,A)φ(c,A, ω, v),(δc, δA)
〉

= Re
(

ω∗
M
∑

j=0

(

(δc)jz
j + jcjz

j−1v∗(δA)v
)

)

=
〈

ω
(

(z∗)j
)M

j=0
, δc

〉

+
〈

ω

M
∑

j=0

jc∗j (z
∗)j−1vv∗ , δA

〉

,

so

∇(c,A)φ(c,A, ω, v) =
(

ω
(

(z∗)j
)M

j=0
, ω

M
∑

j=0

jc∗j (z
∗)j−1vv∗

)

.

Assuming τ(c,A) 6= 0 and applying (8), we find that

∂τ(c,A) = conv

{

q(c, z)

|q(c, z)|
(

(

(z∗)j
)M

j=0
,

M
∑

j=0

jc∗j (z
∗)j−1vv∗

)

:

z = v∗Av ∈ Z(c,A), ‖v‖ = 1

}

. (9)

Recall from Section 3 that, exploiting the maximum modulus principle together
with Proposition 2, we know an explicit formula for the unit vectors v satisfying
v∗Av ∈ Z(c,A): they are eigenvectors corresponding to the maximum eigenvalue
of Hθ for some θ ∈ [0,2π).

Now we turn to the denominator β(c,A) = σmax

(

q(c,A)
)

. The largest singular
value of a matrix X is characterized by

σmax(X) = max
{

Re
(

u∗Xw
)

: ‖u‖ = ‖w‖ = 1
}

= max
{

〈

X, uw∗〉 : ‖u‖ = ‖w‖ = 1
}

.

Assume that σmax

(

q(c,A)
)

is simple, with corresponding left and right unit singu-

lar vectors u,w ∈ C
N , so that the denominator is smooth with gradient

∇β(c,A) = uw∗.
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It follows that

β(c+ δc, A+ δA)− β(c,A)

= σmax

(

q(c+ δc,A+ δA)
)

− σmax

(

q(c,A)
)

= Re
(

u∗
(

q(c+ δc,A+ δA)− q(c,A)
)

w
)

+ o(δc, δA)

= Re
(

u∗
M
∑

j=0

(

(cj + δcj)(A+ δA)j − cjA
j)w

)

+ o(δc, δA)

= Re
M
∑

j=0

(δcj)(u
∗Ajw) + Re tr

(

M
∑

j=0

j−1
∑

l=0

cjA
l(δA)Aj−l−1

)

wu∗ + o(δc, δA)

= Re
M
∑

j=0

(δcj)(u
∗Ajw) + Re tr

(

M
∑

j=0

j−1
∑

l=0

cjA
j−l−1wu∗Al

)

δA + o(δc, δA),

and hence

∇β(c,A) =
(

(

w∗A∗ju
)M

j=0
,

M
∑

j=0

j−1
∑

l=0

c∗jA
∗luw∗A∗(j−l−1)

)

. (10)

Since N ≥ 2, it follows from the assumption on the simplicity of the maximum
singular value of q(c,A) that β(c,A) is nonzero, and therefore that τ(c,A) is nonzero
(because if it were zero, W (A) would consist of a single point λ with

∑

cjλ
j = 0,

and this would imply that A = λI and hence β(c,A) = 0).
This discussion leads to the following result.

Theorem 3 Let c = [c0, c1, . . . , cM ]T , with cj nonzero for at least one j > 0, and A ∈
MN be given, with N ≥ 2. Assume that the largest singular value of

∑

j cjA
j is simple.

Then the Crouzeix ratio f is regular on a neighborhood of (c,A) with subdifferential

∂f(c,A) =
β(c,A)∂τ(c,A)− τ(c,A)∇β(c,A)

β(c,A)2
, (11)

where ∂τ(c,A) and ∇β(c,A) are given by (9) and (10) respectively.

Proof The proof follows from the analysis above, using the nonsmooth quotient
rule in Proposition 1. �

5 Local Optimality Conditions at Candidate Minimizers

We are now in a position to study nonsmooth stationarity of our candidate mini-
mizers. As at the end of Section 1, given an integer n with 2 ≤ n ≤ max(N,M+1),
set m = n−1 and define the polynomial p as the monomial ζ 7→ ζm with coefficients

c = [0, . . . , 0, 1, 0, . . . 0]T ∈ C
M+1. (12)

Let
A = diag

(

Ã, 0
)

∈ MN (13)
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where Ã ∈ Mn is given in (2). Then, as observed following (2), W (A) is the unit
disk D, and p(A) = An−1, which has norm two, so τ(c,A) = 1, β(c,A) = 2 and the
Crouzeix ratio f(c,A) = 0.5. Hence, the pair (c,A) is a candidate minimizer of f ,
and is a global minimizer if Crouzeix’s conjecture is true.

Theorem 4 Let c, A be given by (12), (13). The subdifferential of the Crouzeix ratio

at (c,A) is

∂f(c,A) = convθ∈[0,2π)

{

(

yθ, Yθ
)

}

where

yθ =
1

2

[

zm, zm−1, . . . , z, 0, z−1, z−2, . . . , zm−M
]T

and Yθ is the block diagonal matrix diag
(

Ỹθ, 0
)

, where Ỹθ is the n× n matrix

Ỹθ =
1

4



















z 0
√
2z−1

√
2z−2 · · ·

√
2z3−n z2−n

√
2z2 2z 0 2z−1 · · · 2z4−n

√
2z3−n

...
...√

2zn−2 2zn−3 2zn−4 2zn−5 · · · 0
√
2z√

2zn−1 2zn−2 2zn−3 2zn−4 · · · 2z 0

zn
√
2zn−1

√
2zn−2

√
2zn−3 · · ·

√
2z2 z



















with z = e−iθ. When n = 2, these should be interpreted as

yθ =
[

z, 0, z−1, . . . , z1−M
]T

and Ỹθ =
1

4

[

z 0
z2 z

]

.

Corollary 5 Let c,A be given by (12), (13). Then

0 ∈ ∂f(c,A).

This says that for any n and m satisfying 2 ≤ n ≤ N and m = n− 1 ≤ M , the pair
(c,A) is a nonsmooth stationary point of f . As explained in Section 2, together
with regularity this implies that the directional derivative of the Crouzeix ratio is
nonnegative in every direction — a new result for N > 2. It was implicitly already
known for N = n = 2, because Crouzeix’s conjecture is known to hold for 2 × 2
matrices. It was also implicitly known previously that, for fixed c given in (12),
0 ∈ ∂f(c, ·)(A), since Crouzeix’s conjecture is known to hold when p is a fixed
monomial.

The proof of Corollary 5 is immediate, as the convex combination

1

N + 1

N
∑

k=0

(

y2kπ/(N+1), Y2kπ/(N+1)

)

is zero. Alternatively, note that the integral

1

2π

∫ 2π

0

(

yθ, Yθ
)

dθ

is zero.
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Proof of Theorem 4 Since W (A) = D and
∑

j cjζ
j = ζm, we have that Z(c, A)

is the unit circle
{

eiθ : θ ∈ [0,2π)
}

. The Hermitian matrix defined in (4) is Hθ =

diag(H̃θ, 0), where

H̃θ =
1

2

(

eiθA+ e−iθA∗
)

=
1

2





















0
√
2eiθ√

2e−iθ 0 eiθ

e−iθ 0 eiθ

. . .
. . .

. . .

e−iθ 0
√
2eiθ√

2e−iθ 0





















.

Some calculations show that, for all θ, its largest eigenvalue is simple with unit
eigenvector

vθ =
1√

n− 1

[

x̃θ
0

]

where x̃θ =

[

e(n−1)iθ

√
2

, e(n−2)iθ, . . . , eiθ,
1√
2

]T

(14)

and with v∗θAvθ = e−iθ. Hence in what follows we write z as an abbreviation for
zθ = e−iθ.

Let us consider the numerator τ . Equation (9) gives

∂τ(c,A) = convθ∈[0,2π)

{

(

sθ, Sθ

)

}

where

sθ = zm
[

1, z−1, . . . , z−M
]T

=
[

zm, . . . , 1, . . . , zm−M
]T

and, using (12) and noting that m = n− 1,

Sθ = zn−1(n− 1)z2−nvθv
∗
θ = (n− 1)zvθv

∗
θ .

Using (14) we find that Sθ = diag
(

S̃θ, 0
)

where, if n = 2,

S̃θ =
1

2

[

z 1
z2 z

]

and otherwise

S̃θ =
1

2



















z
√
2

√
2z−1

√
2z−2 · · ·

√
2z3−n z2−n

√
2 z2 2z 2 2z−1 · · · 2z2−n

√
2z3−n

...
...√

2zn−2 2zn−3 2zn−4 2zn−5 · · · 2
√
2z√

2zn−1 2zn−2 2zn−3 2zn−4 · · · 2z
√
2

zn
√
2zn−1

√
2zn−2

√
2zn−3 · · ·

√
2z2 z



















.

Now we turn to the denominator. Let ej denote the jth coordinate vector. Since
p(A) = diag(2e1e

∗
n, 0), its maximum singular value is simple, with corresponding

left and right singular vectors u = [e1; 0] and v = [en; 0]. Hence, using (10), we
have

∇β(c, A) = (rθ, Rθ)
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where

rθ = [0, . . . , 0, 2, 0, . . . , 0]T

since u∗Akw = 0 for k = 0, . . . ,m − 1, u∗Amw = 2, and Ak = 0 for k > m, and,
using (12) and (13), Rθ = diag

(

R̃θ, 0
)

, where R̃θ = e1e
∗
2 if n = 2, and otherwise

R̃θ =
n−2
∑

ℓ=0

Ã∗ℓe1e
∗
nÃ

∗(n−2−ℓ) =
√
2e1e

∗
2 + 2

n−2
∑

l=2

eℓe
∗
ℓ+1 +

√
2en−1e

∗
n

=





















0
√
2
· 2

· ·
· ·
· 2
·
√
2
0





















.

Finally, since the assumptions of Theorem 3 hold, we obtain from (11) that

∂f(c,A) = convθ∈[0,2π)

{

(

yθ, Yθ
)

}

where, since τ(c,A) = 1 and β(c,A) = 2,

yθ =
1

4
(2sθ − rθ) and Yθ =

1

4
(2Sθ −Rθ) .

The proof is completed by combining the equations given above. �

A crucial point in the proof is that the twos in 2sθ and rθ cancel and the first
superdiagonals in 2Sθ and in Rθ cancel. Since these quantities are independent of
θ, Corollary 5 could not hold without their cancellation.

6 Breakdown of Regularity

In this section we show that pairs (c,A) exist at which the Crouzeix ratio f is not
regular. The numerator τ is regular everywhere, even without the assumptions
in Theorem 3. The same is true of the denominator β, as it is the composition
of a convex function (the maximum singular value) with a polynomial. However,
Proposition 1 does not apply when the denominator is not smooth. So, we focus
on the directional derivative instead.

Fix M = m = 1 and p by p(ζ) = ζ, equivalently c = [0,1]T , and write

f̌(A) = f(c,A) =
τ̌(A)

β̌(A)
=

τ(c,A)

β(c,A)
.

Then immediately from the definition,

f̌(A) =
max‖v‖=1 |v∗Av|

max‖u‖=‖w‖=1 |u∗Aw| .
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−2 −1 0 1 2
0.5

1

1.5

2

2.5

t

Lack of Regularity of Crouzeix Ratio

 

 

β
τ
f

Fig. 1 Plot of the denominator β, the numerator τ and the Crouzeix ratio f evaluated at
(c,A + tA2), where c = [0, 1]T (so p(ζ) = ζ)) and A is the 3 × 3 Jordan block scaled by

√
2,

for t ∈ [−2, 2]. This example shows that f is not regular at (c,A).

If, for some A, σmax(A) has multiplicity greater than one, β̌ is nonsmooth at A, and
hence (11) does not apply. However, by the ordinary quotient rule, the directional
derivative of f̌ at A in a direction D ∈ MN is

f̌ ′(A;D) =
β̌(A)τ̌ ′(A;D)− τ̌(A)β̌′(A;D)

β̌(A)2
. (15)

Since the numerator and denominator are both regular, we have from (3) that

τ̌ ′(A;D) = max
G∈∂τ̌(A)

〈G,D〉 and β̌′(A;D) = max
G∈∂β̌(A)

〈G,D〉. (16)

Let N = n = 3 and fix A to be given by Ã in (2), that is, a 3× 3 Jordan block
with zero on the diagonal, scaled by

√
2. Note that W (A) is the unit disk D, so

the numerator τ̌(A) = 1, but the denominator β̌(A) =
√
2, not 2 as in Theorem 4,

because now p(A) = A, not A2. So, f̌(A) = 1/
√
2.

We can derive ∂τ̌(A) using (9). We find

∂τ̌(A) = convθ∈[0,2π)

{

Tθ
}

(17)

where, noting that q(z) = z,

Tθ = zvθv
∗
θ =

1

4





z
√
2 z−1

√
2z2 2z

√
2

z3
√
2z2 z





with z = e−iθ.
Since σmax(A) has multiplicity two, the denominator is not smooth at A, but

it is convex and hence regular and its subdifferential is [Wat92]

∂β̌(A) = conv
{

uw∗ : u∗Aw = σmax(A) =
√
2, ‖u‖ = ‖w‖ = 1

}

= conv











0 |µ|2 µν

0 µν |ν|2
0 0 0



 : |µ|2 + |ν|2 = 1







. (18)
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Now, let D = A2 = 2e1e
∗
3. Then, it follows from (16), (17) and (18) that

τ̌ ′(A;D) =
2

4
max

θ∈[0,2π)
cos(θ) =

1

2
and β̌′(A;D) = 2 max

|µ|2+|ν|2=1
Re(µν) = 1.

So, using (15), we find

f̌ ′(A;D) =

√
2
2 − 1

2
< 0.

A similar argument shows that f̌ ′(A;−D) = f̌ ′(A;D) < 0, so the directional deriva-
tive f̌ ′(A; ·) is not sublinear: if it were, we would arrive at the contradiction

0 > f̌ ′(A;D) + f̌ ′(A;−D) ≥ f̌ ′(A; 0) = 0.

Hence, it follows from the discussion in Section 2 that f̌ is not regular at A, and
so f is not regular at (c,A). Figure 1 shows plots of β̌, τ̌ and f̌ evaluated at A+ tD

for t ∈ [−2,2].

7 Concluding Remarks

If the polynomial-matrix pair (c,A) described by equations (12) and (13) is indeed
a global minimizer of the Crouzeix ratio, as numerical evidence strongly suggests,
then Crouzeix’s conjecture is true. In this work we have shown, in contrast, just a
local stationarity property of (c,A): the ratio has nonnegative directional derivative
in every direction. Even in classical smooth optimization, this property does not
certify a local minimizer, let alone a global one.

However, perhaps we have somewhat understated our progress towards proving
that the pair(c,A) is at least a local minimizer. One variational analytic approach
to establishing local optimality [LZ13, Cor. 4.13] would need three properties of
the Crouzeix ratio f at (c,A):

– prox-regularity of f [RW98, Def. 13.27]
– zero lying in the relative interior [RW98, Sec. 2.H] of the subdifferential ∂f(c,A)
– when f is restricted to a certain “active” manifold, on which it is smooth, (c,A)

is a local minimizer.

The first two properties follow from the results established above, as we now
explain.

Theorem 3 gives conditions under which the ratio f is (Clarke) regular, and
Theorem 4 confirms that f is regular at (c,A) given by (12) and (13). However,
under the same conditions, it follows from the representation (7) of the numerator
and the smoothness of the denominator that the ratio has the stronger property
of prox-regularity at (c,A). Indeed, it can be written locally as the sum of a
continuous convex function and a C2 smooth function [RW98, Thm. 10.33].

The second property follows from our second proof of Corollary 5 and the
following observation: for any continuous map F from the unit interval into a
Euclidean space, the integral of F lies in the relative interior of the convex hull of
its range. To see this, denote the integral by x, and consider any normal vector
y to the convex hull at x. By definition, the inner product of y with F (·) − x is
everywhere nonnegative, but its integral is zero, so it must be identically zero.
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Hence −y is also a normal vector. The result then follows from the definition of
relative interior [Roc70, Cor. 11.6.2].

The third property mentioned above would need a second-order analysis be-
yond our current scope. Nonetheless, the progress we have presented is a striking
showcase of the variational-analytic toolkit for investigating local optimality condi-
tions for nonsmooth functions, as well as a reassuring test of Crouzeix’s conjecture.
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