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Abstract. The problem of minimizing a sum of Euclidean norms dates from the 17th century
and may be the earliest example of duality in the mathematical programming literature. This
nonsmooth optimization problem arises in many different kinds of modern scientific applications.
We derive a primal-dual interior-point algorithm for the problem, by applying Newton’s method
directly to a system of nonlinear equations characterizing primal and dual feasibility and a perturbed
complementarity condition. The main work at each step consists of solving a system of linear
equations (the Schur complement equations). This Schur complement matrix is not symmetric, unlike
in linear programming. We incorporate a Mehrotra-type predictor-corrector scheme and present
some experimental results comparing several variations of the algorithm, including, as one option,
explicit symmetrization of the Schur complement with a skew corrector term. We also present
results obtained from a code implemented to solve large sparse problems, using a symmetrized Schur
complement. This has been applied to problems arising in plastic collapse analysis, with hundreds
of thousands of variables and millions of nonzeros in the constraint matrix. The algorithm typically
finds accurate solutions in less than 50 iterations and determines physically meaningful solutions
previously unobtainable.
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1. Introduction. A problem which arises in many applications is to minimize
a sum of Euclidean vector norms, i.e.,

D : min

{
n∑

i=1

‖zi‖ : y ∈ �m; zi ∈ �d; AT
i y + zi = ci, i = 1, . . . , n

}
,

where Ai ∈ �m×d, ci ∈ �d, i = 1, . . . , n, are given. In most applications d = 2 or
d = 3 so that the terms in the sum are norms of vectors in a two or three-dimensional
Euclidean space. If d = 1, the problem D is equivalent to a linear program (LP).
The minimization objective is convex but not differentiable at any point where some
zi = 0.

The sum of norms problem, D, has a long and interesting history. The special
case d = m = 2, n = 3, Ai = I, was studied by Fermat in the 17th century. This
amounts to finding the point in �2 which minimizes the sum of distances from it
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to three given points. In the early 19th century it was realized that this particular
convex optimization problem has a natural dual maximization formulation. Kuhn
[Kuh91] regards this as the first instance of duality in the mathematical programming
literature. Further history is given in [Kuh67].

Duality theory for D is easily described using min-max theory. Let xi ∈ �d,
i = 1, . . . , n. For consistency with standard notation for LP, we refer to xi as the
primal variables and y, zi as the dual variables, even though in our experience it is
usually the dual problem D which explicitly arises in applications. We have

min
AT

i y+zi=ci

n∑
i=1

‖zi‖ = min
AT

i y+zi=ci
max

‖xi‖≤1

n∑
i=1

xT
i zi

= max
‖xi‖≤1

min
AT

i y+zi=ci

n∑
i=1

xT
i zi

= max
‖xi‖≤1

min
y

(
n∑

i=1

cTi xi − yT
n∑

i=1

Aixi

)

= max

{
n∑

i=1

cTi xi : ‖xi‖ ≤ 1;

n∑
i=1

Aixi = 0

}
.

The first equality follows from Cauchy–Schwartz, the second from min-max theory
[Roc70, Cor. 37.3.2], the third trivially, and the fourth because if

∑n
i=1 Aixi is not

zero, the minimized value would be −∞. Therefore, the dual of D is the primal
problem

P : max

{
n∑

i=1

cTi xi : xi ∈ �d, ‖xi‖ ≤ 1, i = 1, . . . , n;

n∑
i=1

Aixi = 0

}
.

This result is an easy generalization of the duality theory in [Kuh67] and is a special
case of a much more general theory of convex optimization given in [NN94]. Nonethe-
less, we are not aware of its explicit appearance in the literature earlier than [And96b].

Although the duality theory has been known in its simplest form for nearly two
centuries, it was not understood until relatively recently how to exploit duality in
algorithms for minimizing D. Iteratively reweighted least squares (Weiszfeld’s method
[Wei37]) has long been used as a robust though slowly converging method to solve
D. Another well-known approach is to replace the terms ‖zi‖ in the objective by the
differentiable quantity

√‖zi‖2 + µ2, where µ is a fixed positive number. This method
is also robust but converges arbitrarily slowly as µ → 0. Neither of these algorithms
use any aspect of duality. In both cases, the reason for the slow convergence is that,
in most interesting applications, some of the norms in the objective D have zero as
their optimal value.

Calamai and Conn [CC80,CC87] and Overton [Ove83] solved D using Newton
methods combined with an active set approach to determine which norms ‖zi‖ are
zero at an optimal solution. These methods were the first to exploit the duality
structure of the problem, as they explicitly compute both primal and dual solutions.
However, Newton’s method was derived in the y,z space only, with the x variables
computed by least-squares estimates. The methods of Calamai and Conn and Overton
are quite efficient if not many norms ‖zi‖ are zero. However, if this number is large,
the number of iterations is typically also large because the active set of zero norms
must be updated at every step.
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During the past decade, it was realized that the class of interior-point methods,
so successful for solving LP’s, could be extended to solve many convex optimization
problems; the primary reference for this important development is Nesterov and Ne-
mirovskii [NN94]. Andersen [And96b] gave a specific method for solving D which is
based on a primal interior-point method for LP. In this method the terms ‖zi‖ are
replaced by

√‖zi‖2 + µ2, but the quantity µ is treated as an extra variable, whose
value is determined by duality estimates. Using this method, Andersen was the first
to be able to solve D rapidly and accurately even when the number of variables is large
and many norms ‖zi‖ are zero at a solution point. In [AC98] it was demonstrated
how the linearly constrained problem can be reduced to the unconstrained case using
an exact l1 penalty function, while still preserving the sparsity structure.

In this paper we present a primal-dual interior-point method for solving P and
D. The basic algorithm is easy to motivate and implement. The number of iterations
needed is substantially less than that required for the primal interior-point method
used by Andersen [And96b]. This is consistent with general experience with primal-
dual versus primal interior-point methods for LP [Wri97].

The sum of norms problem is a special case of quadratically constrained quadratic
programming (QCQP), also known as optimization over the quadratic cone. Nesterov
and Todd [NT98a,NT98b] gave a theoretical discussion of algorithms for optimization
over homogeneous self-dual cones, including the quadratic cone. See also Adler and
Alizadeh [AA95] for another primal-dual algorithmic approach to QCQP. Our view is
that the sum of norms problem is sufficiently important that a specialized approach
is justified. Also taking this view, Xue and Ye [XY97] gave a complexity analysis of
the sum of norms problem, using an interior-point method and exploiting the general
theory given in [NT98a,NT98b].

Our primal-dual algorithm is derived in the next section, applying Newton’s
method to three conditions: primal and dual feasibility, and complementarity. A key
point is the derivation of the appropriate complementarity condition. The main work
at each step consists of solving a system of linear equations (the Schur complement
equations). This Schur complement matrix is not symmetric, unlike its counterpart
in linear programming.

Section 3 discusses a Mehrotra predictor-corrector enhancement to the algorithm
and considers symmetrizing the Schur complement equations, including a compen-
sating skew corrector term. Section 4 presents experimental results for some small
Steiner tree test problems.

Section 5 discusses a large-scale implementation using a symmetrized Schur com-
plement. This has been used to solve applied problems arising in plastic collapse anal-
ysis with hundreds of thousands of variables and millions of nonzeros in the constraint
matrix. The algorithm typically finds accurate solutions in less than 50 iterations and
determines physically meaningful solutions that were considered unobtainable until
now.

In fact, problem D arises in many applications. These include least-distance
problems in two or three-dimensional Euclidean space, such as the classical Steiner
tree problem. Xue and his coauthors [XLD99a,XLD99b] have investigated a wide
variety of problems of this kind; see their papers for other references. However,
problem D also arises in very different contexts. Alpert et al. [ACK+98] have recently
applied a variant of our algorithm presented in this paper to the placement of circuits
in VLSI design. Chan, Golub, and Mulet [CGM96] applied a nonlinear version of the
algorithm to some applications in image reconstruction. Ito and Kunisch [IK99] used
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an active set method to solve related image reconstruction problems. Byrnes and
Bright [BB] used iteratively reweighted least-squares to solve trajectory optimization
problems in space exploration. In fact, this method (Weiszfeld’s method) has long
been used at the Jet Propulsion Laboratory as a basic workhorse to solve problems of
the form D that arise in spacecraft missions such as the Galileo and Pioneer “fly-by’s”
of the outer planets [Mai87,Mic]. Strang [Str79] considered an isoparametric design
problem to which Overton [Ove84] applied a version of his algorithm mentioned above.
Parks [Par91] has applied related methods to solve minimal surface (soap bubble)
problems. Alexander and Maddocks [AM93] used the method of [Ove83] to solve
friction problems arising in robotics. Finally, plastic collapse analysis problems have
been mentioned already and are discussed at greater length in the final section of the
paper. A key similarity in all these applications is that some, and perhaps many, of
the norms in the sum to be minimized can be expected to have the value zero at an
optimal solution.

We believe there is great opportunity to apply the primal-dual method given in
this paper to these and many other interesting applications.

Notation. Let Id denote the d× d identity matrix. Let

x =




x1

...
xn


 ∈ �dn, z =




z1

...
zn


 ∈ �dn, c =




c1

...
cn


 ∈ �dn,

A =
[
A1 · · · An

] ∈ �m×dn.

The primal feasible region is given by

X =
{
x ∈ �dn : Ax = 0; ‖xi‖ ≤ 1, i = 1, . . . , n

}
(1)

and the dual feasible region is

Y =
{
(y,z) ∈ �m ×�dn : ATy + z = c

}
.(2)

Consequently, we may rewrite D as

D : min

{
n∑

i=1

‖zi‖ : (y,z) ∈ Y
}

and P as

P : max
{
cTx : x ∈ X} .

2. Complementarity and Newton’s method. Suppose x ∈ X and (y,z) ∈ Y
are, respectively, primal and dual feasible. Then the duality gap, i.e., difference
between the primal and dual objective functions, is

n∑
i=1

‖zi‖ −
n∑

i=1

cTi xi =

n∑
i=1

(‖zi‖ − xT
i zi

) ≥ 0.(3)

The duality gap must be zero at an optimal solution. It is zero if and only if, for each
i = 1, . . . , n, either ‖zi‖ is zero or xi = zi/‖zi‖. This complementarity condition can
be conveniently expressed as

zi − ‖zi‖xi = 0, i = 1, . . . , n.(4)
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It follows from the complementarity condition that for each i, either zi = 0 or ‖xi‖
= 1; we say that strict complementarity holds if, for each i, only one of these two
conditions holds. It may happen that no strictly complementary solution exists, unlike
in LP.

Primal-dual interior-point methods are based on Newton’s method applied to
three sets of equations: primal feasibility, dual feasibility, and an appropriate comple-
mentarity/centering condition. The feasibility equations are, respectively,

Ax = 0(5)

and

ATy + z = c.(6)

We assume from now on that the m × dn matrix A has full rank. We also assume
that m < dn, since otherwise P and D are solved by x = 0, z = 0.

The primal and dual feasibility equations consist of m + dn equations in the
m+2dn scalar variables represented by y and x, z. To make this a square system we
need another dn equations, which are available in the form of the complementarity
condition (4). This condition is not differentiable if ‖zi‖ is zero, but it may be replaced
by the centering condition

zi −
(
‖zi‖2

+ µ2
) 1

2

xi = 0, i = 1, . . . , n,(7)

where µ > 0.
The following theorem is from [And96b], showing that the centering condition (7)

is in fact the complementarity condition for the following pair of smooth optimization
problems:

Dµ : min

{
n∑

i=1

(
‖zi‖2

+ µ2
) 1

2

: (y,z) ∈ Y
}
,

Pµ : max

{
cTx + µ

n∑
i=1

(
1 − ‖xi‖2

) 1
2

: x ∈ X
}
.

Theorem 1. The problems Dµ and Pµ are a primal-dual pair. Specifically, Dµ

has the solution (y(µ),z(µ)) and Pµ has the solution x(µ), all satisfying (5), (6), and
(7).

Proof. The proof is a simple modification of the proof (given in section 1) that P
and D are a primal-dual pair. See [And96b] for details.

This theorem shows that introducing the centering parameter µ in the comple-
mentarity conditions for the original pair of problems is equivalent to smoothing the
norms in D and introducing a cost into P which moves the primal solution away from
its boundary. The solutions (x(µ),y(µ),z(µ)) of Pµ, Dµ, for µ > 0, define a sort of
central path for P , D, though not one derived from a logarithmic barrier function
and therefore not centered in the usual sense.

Let us write the centering condition (7) as

Θ(µ,z)x− z = 0, where Θ(µ,z) = Diag

((
‖zi‖2

+ µ2
) 1

2

Id

)
.(8)
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Collecting (6), (5), and (8) together, we have the nonlinear system of equations

Gµ(x,y,z) =


 ATy + z − c

Ax
Θ(µ,z)x− z


 = 0,(9)

whose solution is (x(µ),y(µ),z(µ)). Newton’s method applied to Gµ at a given point
(x,y,z) gives the following linear system defining updates to the variables:


 0 AT Idn

A 0 0
Eµ 0 −F µ




 ∆x

∆y
∆z


 =


 rd

rp
rc


 ,(10)

where

rd = c−ATy − z, rp = −Ax, rc = z −Eµx,(11)

Eµ = Diag (ωµ
i Id) , F µ = Diag

(
Id − 1

ωµ
i

xiz
T
i

)
,(12)

and

ωµ
i =
(‖zi‖2 + µ2

) 1
2 .(13)

The equation rd = 0 is maintained exactly at each step, by always defining z =
c−ATy. Although rp can be set to zero initially by setting the first iterate x = 0 or
setting x to a null vector of A, we do not assume this, since primal feasibility cannot
be maintained exactly in the presence of rounding errors.

Eliminating ∆z and using rd = 0, we have[
F−1

µ Eµ AT

A 0

] [
∆x
∆y

]
=

[
F−1

µ rc
−Ax

]
.(14)

Defining Hµ = E−1
µ F µ, and using the definition of rc in (11), we find after one more

elimination step that

AHµA
T∆y = AE−1

µ z(15)

and

∆x = E−1
µ (F µ∆z + rc) ,(16)

where (immediately from dual feasibility)

∆z = −AT∆y.(17)

The operations of multiplying vectors by F µ and E−1
µ are trivial since F µ is block

diagonal and Eµ is positive diagonal. Notice the explicit dependence of Eµ and F µ on
the centering parameter µ, in contrast to the situation in LP, where the corresponding
diagonal matrices depend only on the current variables. This is a consequence of the
more complicated nature of the complementarity condition (4).
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The main cost of this process is forming and factoring the Schur complement
AHµA

T . Except in the trivial case d = 1, the block-diagonal matrix Hµ is not
generally symmetric, since F µ is not. This presents difficulties for large sparse prob-
lems, where it is highly desirable to use sparse Cholesky techniques which apply only
to symmetric, positive definite systems. Sparse LU factorization techniques for non-
symmetric linear systems are more costly since they require pivoting for stability and
therefore are not able to exploit sparsity as effectively as Cholesky methods.

However, note that F µ is positive definite (in the sense that vTF µv > 0 for all

v = 0) as long as x ∈ X , and therefore so are Hµ and AHµA
T (since Eµ and F µ

commute). Furthermore, it follows from (7) that for (x,y,z) = (x(µ),y(µ),z(µ)) (see
Theorem 1), the matrix F µ and therefore also Hµ and AHµA

T are symmetric for all

µ > 0. Consequently, when defined sufficiently close to the “central path,” AHµA
T

is nearly symmetric. One of the issues we shall discuss in the next section is the effect
of symmetrizing Hµ by defining it to be 1

2E
−1
µ (F µ + F T

µ ) instead of E−1
µ F µ.

As µ → 0, for each i, either zi(µ) or xi(µ)− zi(µ)/‖zi(µ)‖ converges to zero. In
the latter case, the limit of the ith block of the corresponding F µ is singular, while
in the former case the limit of the ith block of the corresponding Eµ is zero.

We now discuss how to update the iterates x, y, and z after ∆x, ∆y, and ∆z
are computed. We start by observing that ∆z is a descent direction for the smoothed
dual objective function in Dµ: the gradient of this function with respect to z is easily
seen to be E−1

µ z. Using (17) and (15), we have

(∆z)
T
E−1

µ z = − (∆y)
T
AE−1

µ z

= − (∆y)
T
AHµA

T∆y

< 0

(unless z = 0), since the symmetric part of AHµA
T is positive definite. Conse-

quently, it is natural to update y and z by using a line search on the smoothed dual
function in Dµ, as follows.

Dual line search rule.

ỹ = y + β̂∆y, z̃ = z + β̂∆z,(18)

where

β̂ ≈ arg min
0≤β≤1

n∑
i=1

(
‖zi + β∆zi‖2

+ µ2
) 1

2

.(19)

The same steplength must be used for y and z to maintain dual feasibility. Of course,
the univariate minimization problem need not be solved exactly.

The direction ∆x is not necessarily an ascent direction for the penalized primal
objective function in Pµ, so a line search is not appropriate to update the primal iterate
x. We consider two possibilities: the primal scaling rule and the primal steplength
rule.

Primal scaling rule.

x̃ = γ̄ (x + ∆x) ,(20)

where

γ̄ = max {γ : γ‖xi + ∆xi‖ ≤ 1 i = 1, . . . , n} .(21)
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The scaling rule is a trivial computation.

Primal steplength rule. The step to the boundary is given by

αmax = max {α : ‖xi + α∆xi‖ ≤ 1, i = 1, . . . , n} = min
i

αi,

where αi is the positive root of a quadratic equation:

αi =

−∆xT
i xi +

√
‖∆xi‖2

(
1 − ‖xi‖2

)
+
(
∆xT

i xi

)2
‖∆xi‖2 , i = 1, . . . , n.

We choose 0 � τ < 1 and define

ᾱ = ταmax.(22)

Then the steplength rule is defined by

x̃ = x + min(1, ᾱ)∆x.(23)

Both rules preserve primal feasibility in exact arithmetic. For the steplength rule,
conventional experience with primal-dual interior-point methods dictates a choice of
τ less than 1, but not much less, for example, τ = .99 or τ = .999. For sums of norms,
however, we found that τ = 1 also works quite well. This allows iterates x to actually
reach the boundary of the feasible region, but the matrix F µ still cannot be singular
as long as µ > 0. Increased ill-conditioning of the linear systems which are solved as
convergence takes place is a standard feature of interior-point methods and generally
does not cause great difficulties except when the iterates are nearly optimal. The
reason we do not allow τ = 1 is that rounding errors may then cause the updated x
to lie just outside the feasible region.

The scaling rule always places x exactly on the boundary of the feasible region.
This is not appropriate if the solution x has all component norms ‖xi‖ < 1, but this
is a trivial case since then the dual solution must be zero by complementarity. As
far as we know, the scaling rule does not have an analogy in standard interior-point
implementations: such a rule is possible only when the primal equality constraints
are homogeneous as they are here.

Equations (15), (16), (17), and the updating rules just described define the basic
ingredients of a primal-dual interior-point method for solving P and D. To complete
the description of the algorithm we must define a rule for updating the parameter µ:
for this we introduce a predictor-corrector method.

3. Mehrotra’s predictor-corrector method and a symmetrized algo-
rithm with a skew correction term. Mehrotra’s predictor-corrector method is
a standard tool in primal-dual interior-point software for LP. The basic idea is to
first compute a predictor step defined by first-order approximations to the optimal-
ity conditions (i.e. Newton’s method), and to follow this with a corrector step which
also takes second-order terms into account. A key point is that both predictor and
corrector use the same matrix factorization; only the right-hand sides of the linear
equations defining the steps differ. Another key component is a technique for estimat-
ing the centering parameter µ. Mehrotra’s method was originally given in [Meh92];
an excellent discussion may be found in [Wri97, Chapter 10].
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We now discuss how to adapt Mehrotra’s method to our problem. Let us replace
x, y, and z in the centering condition (8) by x+∆x, y+∆y, and z+∆z, respectively,
obtaining, for i = 1, . . . , n,

zi + ∆zi −
(
‖zi + ∆zi‖2

+ µ2
) 1

2

(xi + ∆xi) = 0,

i.e.,

zi + ∆zi − ωµ
i

(
1 + 2

zT
i ∆zi

(ωµ
i )2

+
‖∆zi‖2

(ωµ
i )2

) 1
2

(xi + ∆xi) = 0,

which gives

zi + ∆zi − ωµ
i

(
1 +

zT
i ∆zi

(ωµ
i )2

+
‖∆zi‖2

2(ωµ
i )2

− (zT
i ∆zi)

2

2(ωµ
i )4

+ · · ·
)

(xi + ∆xi) = 0.

Moving first-order terms to the left-hand side, constant and second-order terms to the
right-hand side, neglecting higher than second-order terms, and changing the sign of
the equation we obtain

(Eµ ∆x− F µ ∆z)i = (rc)i −
zT
i ∆zi

ωµ
i

∆xi − ‖∆zi‖2

2ωµ
i

xi +
(zT

i ∆zi)
2

2(ωµ
i )3

xi(24)

for i = 1, . . . , n. The idea, then, is to compute the predictor steps ∆x, ∆y, and
∆z from (15)–(17), and then use these to define the second-order terms which are
included in the right-hand side of the linear system solved to obtain the corrector
step, using the factorization of AHµA

T a second time.
As noted above, a key component of Mehrotra’s method is to exploit the result

of the predictor step to define a heuristic value for the centering parameter µ to be
used in the computation of the corrector step. This is provided by

µ̃ =
(gap(x + ∆x,z + ∆z))

3

n (gap(x,z))
2 ,(25)

where

gap(x,z) =

n∑
i=1

(‖zi‖ − xT
i zi

)
.(26)

This is a natural generalization of Mehrotra’s formula for LP. The value µ̃ may be
substituted for µ in all the terms on the right-hand side of (24), including the second-
order terms as well as the constant term, giving

h
(1)
i = zi − ωµ̃

i xi − zT
i ∆zi

ωµ̃
i

∆xi − ‖∆zi‖2

2ωµ̃
i

xi +
(zT

i ∆zi)
2

2(ωµ̃
i )3

xi,(27)

where

ωµ̃
i =
(‖zi‖2 + µ̃2

) 1
2 .(28)
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It is not practical to substitute µ̃ for µ on the left-hand side of (24), since the
factorization of Hµ has already been computed using the previous value for µ. Con-
sequently, we also add to the right-hand side of (24) further corrector terms of the
form

h
(2)
i =

(
ωµ
i − ωµ̃

i

)
∆xi +

(
1

ωµ
i

− 1

ωµ̃
i

)(
zT
i ∆zi

)
xi.(29)

As noted in the previous section, the nonsymmetry of Hµ is a major disad-
vantage for large sparse problems. We therefore consider here the idea of explicitly
symmetrizing Hµ, defining it to be 1

2E
−1
µ (F µ+F T

µ ) instead of E−1
µ F µ. This suggests

subtracting a skew correction term 1
2E

−1
µ (F µ−F T

µ )∆z from the right-hand side, i.e.,
adding terms

h
(3)
i =

1

2ωµ
i

(
(∆zT

i xi)zi − (∆zT
i zi)xi

)
(30)

to (24). Note the use of ωµ
i , not ωµ̃

i , in the denominator. Putting all this together,
the corrector step is defined by

Eµ ∆x− F µ ∆z = rcc,(31)

where the ith block of the “corrected centering” residual is

(rcc)i =

{
h

(1)
i + h

(2)
i if Hµ = E−1

µ F µ,

h
(1)
i + h

(2)
i + h

(3)
i if Hµ = 1

2E
−1
µ

(
F µ + F T

µ

)
,

(32)

using (27), (29), and (30).
Substituting rcc for rc in (14), we therefore compute the corrector steps from

AHµA
T∆y = A

(
E−1

µ rcc + x
)

(33)

and

∆x = E−1
µ (F µ∆z + rcc)(34)

with ∆z given by (17).
Note that by analogy with standard practice in LP, it might seem appropriate

to modify the right-hand side rc used by the predictor step by substituting 0 for µ
in its definition.1 In practice, whether or not this is done seems to have little effect,
but one reason not to make this choice is that then the dual predictor step is no
longer guaranteed to be a descent direction for the smoothed objective function in
Dµ. There is no guarantee that the dual corrector step is a descent direction for either
this function or the corresponding function defined using µ̃ instead of µ, although it
usually is. If it is a descent direction for the latter function, we update the iterates as
before, using µ̃ instead of µ in the objective function in the dual line search. Otherwise,
we abandon both primal and dual corrector steps and use the predictor steps instead.

We now summarize the algorithm. We initialize it with x = 0, y set to the
minimizer of ‖c−ATy‖, and z = c−ATy. Assume that an initial value of µ > 0 is
given, as well as a termination tolerance ε.

1In fact, this was done in the experiments reported in section 5.
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Predictor-Corrector Algorithm for Minimizing a Sum of Norms.
(1) Define ωµ

i , Eµ, and F µ by (12)–(13).

(2) Define Hµ by either E−1
µ F µ or 1

2E
−1
µ (F µ + F T

µ ) and find either the LU or

Cholesky factorization, respectively, of AHµA
T . In the former case, quit if

the LU factorization generates a zero pivot. In the latter case, either quit if the
Cholesky factorization fails, or modify the factorization, effectively redefining
Hµ by a nearby positive definite approximation.

(3) Determine the predictor steps ∆y, ∆z, and ∆x from (15), (17), and (16).
(4) Define x̃ from the primal scaling rule (see (20) and (21)) or the primal

steplength rule (see (22) and (23)), and ỹ, z̃ by the dual line search rule
(see (18) and (19)). Quit if the dual line search fails to achieve a reduction
in the smoothed dual.

(5) Define µ̃ by (25) and ωµ̃
i by (28).

(6) Determine the corrector steps ∆y, ∆z, and ∆x from (33), (17), and (34).
(7) If (E−1

µ̃ z)T∆z < 0, redetermine x̃, ỹ, and z̃ using the primal scaling or
steplength rule with µ̃ instead of µ, and the dual line search rule with µ̃
instead of µ. Quit if the dual line search rule fails to achieve a reduction in
the smoothed dual objective.

(8) Replace x, y, z, and µ by x̃, ỹ, z̃, and µ̃, respectively.
(9) If ‖Ax‖ > gap(x,z), quit. (This cannot happen in exact arithmetic and

indicates that rounding errors will dominate any further computation.)
(10) If gap(x,z) < ε and ‖c−ATy − z‖ + ‖Ax‖ < ε, quit; otherwise repeat.
There are several ways the algorithm might terminate when rounding errors pre-

vent further progress: breakdown of the factorization, failure in the line search, or
growth in the primal infeasibility ‖Ax‖ with respect to the duality gap measure
gap(x,z). The occurrence of any of these conditions essentially indicates that the
convergence tolerance ε is set too small; in any case, when they occur, the current or
previous approximation is generally quite accurate.

4. Experiments on small problems. We now report some numerical results
for this algorithm, comparing the symmetrized and nonsymmetrized versions and
other algorithmic options described above. These results were obtained using a Mat-
lab implementation run on a set of small topologically-constrained Steiner tree test
problems (for more details, see [DO98]). The sparsity in the data is determined by the
tree structure and its topological constraint, but subject to these qualifications, the
data are generated randomly. Each table shows a summary of results from many runs
with different random data on the same problem class. Sparsity was not exploited. In
all cases d = 2. The dual line search was performed using the Matlab fmin function
with its default tolerance. The machine used was a Sparc Ultra with IEEE double
precision arithmetic.

The tables show, for various cases, the number of iterations, the final values of
gap(x,z) (defined in (26)), and the infeasibility norm sum ‖Ax‖ + ‖c −ATy − z‖,
each as medians over a set of randomly generated problems in a given class. The
termination tolerance ε was set to 10−10.

In Tables 1 and 2, we consider a class of Steiner tree problems with n = 50,
m = 62, for which strict complementarity holds at the solution, and for which the
median number of indices for which ‖zi‖ = 0 at the optimal solution is 15. We
compare the nonsymmetric and symmetrized variants of the algorithm (Hµ = E−1

µ F µ

and Hµ = 1
2E

−1
µ (F µ + F T

µ ), respectively) with two choices for updating the primal
variable: the scaling rule and the steplength rule with τ = 0.999. All variants used the
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Table 1
Summary of results for the scaling rule.

Version iter gap infeas
(median) (median) (median)

Not symmetrized 8 1e− 12 1e− 12
Symmetrized 8 1e− 06 6e− 13

Symmetrized, skew corr 7 1e− 08 7e− 13
Symmetrized, mod Chol 15 5e− 11 1e− 12

Symmetrized, skew corr, mod Chol 9 2e− 11 4e− 12

Table 2
Summary of results for the steplength rule.

Version iter gap infeas
(median) (median) (median)

Not symmetrized 9 4e− 12 6e− 13
Symmetrized 11 8e− 08 2e− 13

Symmetrized, skew corr 9 4e− 09 1e− 14
Symmetrized, mod Chol 15 4e− 11 8e− 13

Symmetrized, skew corr, mod Chol 10 1e− 11 4e− 13

dual line search rule. For the symmetrized algorithm, we tested both a version which
quits if the Cholesky factorization of Hµ fails and one that modifies the factorization
and continues iterating: the latter is standard practice in LP [Wri97, p. 219]. We
also tested a variant of the symmetrized version which omits the skew correction

h
(3)
i . Finally, we also tested the effect of omitting the correction h

(2)
i , but this had

essentially no effect in any case.
Table 1 shows the results for the primal scaling rule and Table 2 shows the re-

sults using the primal steplength rule. The notations “skew corr” and “mod Chol”
refer to the use of the skew correction term and the modified Cholesky factorization,
respectively.

The results clearly confirm three remarkable properties of primal-dual predictor-
corrector algorithms now well known for linear programming:

• Robust convergence to an optimal solution in all cases tested.
• Rapid local convergence so a consistently small number of iterations is re-

quired despite the demand for high accuracy.
• Highly accurate solutions achieved despite the extremely ill-conditioned linear

systems being solved toward the end of the solution process.
We now comment in more detail on the results in Tables 1 and 2. First, notice

the high accuracy achieved by the nonsymmetric version of the algorithm; the sym-
metrized version without the modified Cholesky factorization cannot reach the same
level of accuracy. With modified Cholesky, high accuracy is achievable, but more

iterations are required. The inclusion of the skew correction term h
(3)
i substantially

improves the performance of the symmetrized version of the algorithm whether or not
the Cholesky factorization is modified.

For both the nonsymmetric and symmetrized versions the primal scaling rule has
a slightly lower iteration count than the primal steplength rule, apparently because
this version of the algorithm has a somewhat faster local convergence rate. However,
we note that the scaling rule has the significant disadvantage that it is not applicable
if nonhomogeneous linear constraints are added to the problem.

In Tables 3 through 6 we display results for a different class of topologically
constrained Steiner tree examples based on the Chung–Graham ladder problem (see
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Table 3
Results for the scaling rule on the 20 Chung–Graham ladder problems with strictly complemen-

tary solutions.

Version iter gap infeas
(median) (median) (median)

Not symmetrized 7 2e− 13 7e− 15
Symmetrized 16 6e− 11 7e− 15

Symmetrized, skew corr 10 2e− 11 8e− 15
Symmetrized, mod Chol 16 6e− 11 7e− 15

Symmetrized, skew corr, mod Chol 10 2e− 11 8e− 15

Table 4
Results for the steplength rule on the 20 Chung–Graham ladder problems with strictly comple-

mentary solutions.

Version iter gap infeas
(median) (median) (median)

Not symmetrized 9 2e− 12 7e− 15
Symmetrized 16 6e− 11 8e− 15

Symmetrized, skew corr 10 7e− 12 8e− 15
Symmetrized, mod Chol 16 6e− 11 8e− 15

Symmetrized, skew corr, mod Chol 10 7e− 12 8e− 15

[DO98]). For these examples, n = 85, m = 84, and the median number of indices for
which ‖zi‖ equals 0 at the optimal solution is 10. For most of these problems, no
strictly complementary (SC) solution exists. (Recall from section 2 that a solution
is said to be strictly complementary if, for each i, exactly one of the two conditions
‖zi‖ = 0 and ‖xi‖ = 1 holds.)

Tables 3 and 4 show results for the 20 cases out of 200 generated where an SC
solution is found (using the primal scaling and primal steplength rules, respectively),
while Tables 5 and 6 show results for the other 180 cases where no SC solution is
found, presumably because such a solution does not exist. The algorithm achieves
the same accuracy (by the duality gap and feasibility measures) on the SC and non-
SC problems, but the iteration count is markedly higher in the non-SC case, and the
rate of convergence of the algorithm was observed to be slower in the non-SC case.
For the non-SC problems, the residuals ‖zi‖ are not reduced nearly as close to zero
for indices i for which SC does not hold. The reason for this is that the duality gap
tolerance requires the products zT

i (zi/‖zi‖ − xi) to be small and both factors in the
product for such an index i converge to zero as the solution is approached.

For these problems, the modified Cholesky factorization is not needed: the results
are identical whether or not it is used.

On the basis of the experiments reported in this section, we recommend the
symmetrized version of the algorithm with the skew correction term and the modified
Cholesky factorization, using the dual line search and either the primal scaling or
the primal steplength rule. The choice of the symmetrized version is based on the
substantial advantage of being able to use the Cholesky factorization instead of the
LU factorization.

5. Large sparse problems arising in plastic collapse analysis. A variant
of the algorithm described above has been used to solve some challenging large sparse
problems arising in plastic collapse analysis. We used a symmetrized version of the
algorithm, with Hµ = 1

2E
−1
µ (F µ +F T

µ ), so that the Schur complement AHµA
T can

be factored by Cholesky decomposition, modified to ensure positive definiteness as
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Table 5
Results for the scaling rule on the 180 Chung–Graham ladder problems with NO strictly com-

plementary solution.

Version iter gap infeas
(median) (median) (median)

Not symmetrized 14 3e− 11 8e− 15
Symmetrized 16 5e− 11 8e− 15

Symmetrized, skew corr 14 4e− 11 8e− 15
Symmetrized, mod Chol 16 5e− 11 8e− 15

Symmetrized, skew corr, mod Chol 14 4e− 11 8e− 15

Table 6
Results for the steplength rule on the 180 Chung–Graham ladder problems with NO strictly

complementary solution.

Version iter gap infeas
(median) (median) (median)

Not symmetrized 16 3e− 11 8e− 15
Symmetrized 22 5e− 11 8e− 15

Symmetrized, skew corr 17 3e− 11 8e− 15
Symmetrized, mod Chol 22 5e− 11 8e− 15

Symmetrized, skew corr, mod Chol 17 3e− 11 8e− 15

discussed earlier. This is the primary cost of the algorithm. Details of this and other
numerical linear algebra issues are available in [AA97,AY97,And96a]. The primal
steplength rule was used, with τ = 0.99 in (22).

This sparse implementation was developed over several years with large-scale
applications in mind. There are two primary differences from the algorithm discussed
in section 3. The first is that a different generalization of Mehrotra’s method was
used, based on differentiating a form of the centering condition which incorporates
the symmetrization of F µ directly, and therefore does not require a skew correction
term. The second is that individual centering parameters were used instead of one
parameter, namely,

µ̃i =




µ̃ if 0.25 <
(
1 − ‖x̃i‖2

)
,

µ̃
(
1 − ‖x̃i‖2

)− 1
2

if µ ≤
(
1 − ‖x̃i‖2

)
≤ 0.25,

√
µ̃ if

(
1 − ‖x̃i‖2

)
< µ

for i = 1, . . . , n. This modification was found to give significant improvements in
performance for the large-scale problems.

The first three classes of test problems are taken from [And96b], where a pri-
mal barrier method was used. We are unaware of any other published results for
large sparse problems of the form (D). These test problems are finite-dimensional
discretizations of collapse problems in rigid plasticity. The discretization step and the
physical interpretation of the results can be found in [Chr96,ACO98]. The discrete
optimization problems are the same as in [And96b]. The m× dn matrix A is a typi-
cal finite element matrix which in plastic analysis is not square since the equilibrium
equation for the continuum is underdetermined. As earlier, Hµ is block diagonal with
block size d× d. In the cases reported here d is either 2 or 3. The runs were made on
the same Convex 3240 vector machine (using IEEE-compatible double precision) as
in [And96b] so comparisons of accuracy and CPU time are meaningful.



A PRIMAL-DUAL METHOD FOR MINIMIZING A SUM OF NORMS 257

In Tables 7–11, n and m specify the problem dimensions, while |A|, |AHµA
T |,

and |L|, respectively, denote the number of nonzeros in A, the upper triangle of
AHµA

T , and the Cholesky factor L of AHµA
T . These numbers are the same

as in [And96b], except for small variations in sparsity due to improvements in the
implementation. The iteration count is denoted by “iter” and “cpu” is the CPU
time in seconds. The heading “‖zi‖ = 0” indicates the number of norms in the dual
objective that are zero at the optimal solution. More precisely, ‖zi‖ is interpreted as
being zero if it is less than the tolerance 10−10. The heading “relgap” denotes the
relative duality gap ∣∣∑n

i=1 ‖zi‖ − cTx
∣∣∑n

i=1 ‖zi‖ + 1
.

In addition to being scaled this expression is the left-hand side of (3) rather than the
right-hand side used in (26): if Ax = 0 exactly we have

cTx = (ATy + z)Tx = xTz.

Hence the difference is dominated by the primal infeasibility ‖Ax‖ indicated in the
last column.

Table 7
Problem and solution characteristics for sspN .

N n m |A| |AHµAT | |L|
4 25 15 224 97 105

10 121 99 1760 1010 1785
50 2601 2499 48800 31010 171083

100 10201 9999 197600 127010 929515
300 90601 89999 1792800 1161010 13203975
400 160801 159999 3190400 2068010 31011299

N iter cpu ‖zi‖ = 0 relgap ‖Ax‖
4 7 0 0 2e− 10 2e− 14

10 8 1 0 2e− 10 7e− 15
50 9 65 0 2e− 09 4e− 13

100 10 354 0 1e− 09 9e− 14
300 11 6709 0 1e− 09 2e− 13
400 12 22139 0 2e− 10 2e− 13

Table 7 summarizes the results for the first set of problems, denoted sspN (simply
supported plate with a point load solved on an N ×N grid). They all have the same
structure but vary in size, depending on the grid in the finite element analysis. In
this problem d = 3. This set of problems is characterized by having no zero norms in
the solution, i.e., they are, in fact, smooth optimization problems. In [And96b] the
constraints ‖xi‖ ≤ 1 are satisfied within a tolerance of order 10−9. These constraints
are satisfied exactly in the primal-dual method. Except for this small improvement in
accuracy, the primal-dual method shows no significant difference, for these problems,
compared to the primal barrier method in [And96b]. There is a small reduction in
the iteration count but not in the CPU time. This is a consequence of the fact that
these problems are smooth. We shall see below that the primal-dual method handles
the presence of zero norms more efficiently than the primal method.



258 K. ANDERSEN, E. CHRISTIANSEN, A. CONN, AND M. OVERTON

For this problem, as well as for the other results reported below, there is no
significant difference in the final duality gap and primal infeasibility achieved by the
two algorithms. They are, in all cases, about 10−8 or less.

The second set of problems, denoted by lNa13, arises in the plane strain model in
plasticity. Again N indicates the grid size. In these problems d = 2. Characteristics
and results are given in Table 8.

Table 8
Problem and solution characteristics for lNa13.

N n m |A| |AHµAT | |L|
3 49 52 1390 1142 1207

12 625 640 21331 26406 57421
21 1849 1876 64762 84384 278691
30 3721 3760 131683 175086 726046
60 14641 14720 524403 713766 4337857
99 39601 39732 1425134 1957631 14693151

120 58081 58240 2092843 2881926 24202413

N iter cpu ‖zi‖ = 0 relgap ‖Ax‖
3 14 1 12 5e− 10 2e− 12

12 19 34 179 2e− 09 4e− 12
21 24 200 958 4e− 10 4e− 12
30 24 461 2315 7e− 09 3e− 11
60 28 4710 11265 4e− 09 1e− 10
99 30 17937 33503 7e− 09 9e− 10

120 34 44144 50548 8e− 09 4e− 10

In this problem set, the number of zero norms varies from 25 percent for N = 3
to 87 percent for N = 120. Compared with the primal barrier method in [And96b]
there is a significant reduction in the number of iterations and in CPU time. This
is shown in Table 9. The primal-dual algorithm also obtains significantly more zero
norms in the optimal solution. From our physical understanding of the solution we
believe this is correct. It is one of several indications that the primal-dual method is
more accurate than the primal barrier method.

Table 9
Comparison of the primal barrier method and the primal-dual method for lNa13.

Primal barrier Primal-dual
N n ‖zi‖ = 0 iter cpu ‖zi‖ = 0 iter cpu
3 49 0 26 2 12 14 1

12 625 179 33 68 179 19 34
30 3721 1756 52 1313 2315 24 461
60 14641 9843 80 15246 11265 28 4710

120 58081 47602 176 284378 50548 34 44144

There is an important physical interpretation of the complementarity condition
(4) in the plasticity problems considered in this section: the vectors zi represent the
deformation (strain) tensor at discrete points in the continuum while the xi represent
the stresses. Thus, if there is any deformation at a point, then the stresses at that
point are on their bounds (have norm one) and their directions are determined by the
complementarity condition. With this interpretation the complementarity condition
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is the so-called “flow rule” for the material.
In the third set of test problems, only a small part of the material undergoes

deformation; therefore a very large number of the norms are expected to be zero in
the optimal solution. As shown in Table 10, the number of zero norms varies from
62 to 96 percent of the total number of terms. Comparison with [And96b] confirms
the observations from Table 9: for the primal-dual method the iteration count is
significantly reduced and increases very slowly with the problem size. The CPU time
is reduced by a factor 4 or more, and we are able to solve larger instances of the
problem.

Table 10
Problem and solution characteristics for lNa20.

N n m |A| |AHµAT | |L|
20 1681 1718 59054 76945 246012
40 6561 6636 234145 315504 1511239
60 14641 14754 525236 715653 4433304
80 25921 26072 932327 1277402 8645485

120 58081 58308 2094509 2885699 24240011

N iter cpu ‖zi‖ = 0 relgap ‖Ax‖
20 20 134 1224 9e− 09 4e− 11
40 32 1416 6156 6e− 09 3e− 11
60 32 4937 14181 7e− 09 5e− 11
80 32 12133 25359 8e− 09 4e− 11

120 29 36516 57127 7e− 09 3e− 11

The last class of test problems is taken from [AC98]. These are problems of the
form (D) with additional linear equality constraints:

min

{
n∑

i=1

‖zi‖ , such that AT
i y + zi = ci, i = 1, . . . , n, and ETy = d

}
,(35)

where E ∈ �m×l and d ∈ �l, i.e., l is the number of linear constraints. In [AC98],
it is shown how the �1 penalty function approach makes it possible to transform the
linearly constrained problem to the unconstrained form (D) in section 1, and the
physical interpretation and setup of the test problems are described. This class of
problems is denoted clN13.

Characteristics and results for these constrained problems are seen in Table 11.
In addition to the number l of linear constraints, there is a new column, “constr”,
indicating the relative infeasibility of these constraints measured by the expression∥∥∥ETy − d

∥∥∥
‖d‖ + 1

.

For the primal barrier method in [AC98], the number of iterations varies from 30
(for N = 3 and N = 12) to 201 (for N = 300). For the primal-dual method the
variation is from 11 (for N = 3) to 24 (for N = 201) and 35 (for N = 399). For the
case N = 201 the CPU time is reduced from 36,371 seconds in [AC98] to 6,179 using
the primal-dual method. However, we can do even better: in the clN13 problems
there is one column that is relatively dense, resulting in considerable fill-in during the
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Table 11
Problem and solution characteristics for clN13.

N n m l |A| |AHµAT | |L|
3 9 26 10 163 168 198

12 144 320 145 2818 2790 7402
30 900 1880 901 17848 17511 78128
60 3600 7360 3601 71698 70126 413267
99 9801 19866 9802 195523 191000 1859559

120 14400 29120 14401 287398 280656 2047512
201 40401 81338 40402 807013 787580 9919534
399 159201 319466 159202 3182023 3103949 30001436

N iter cpu ‖zi‖ = 0 relgap ‖Ax‖ constr
3 11 0 1 1.6e− 08 4.4e− 09 1.0e− 15
12 13 4 95 6.7e− 09 2.1e− 13 1.1e− 13
30 16 31 651 4.0e− 09 2.3e− 13 3.4e− 12
60 20 180 2878 7.4e− 09 1.3e− 13 7.8e− 11
99 24 890 8234 1.2e− 08 1.0e− 13 7.0e− 13
120 25 1238 12311 1.2e− 08 1.0e− 11 2.0e− 13
201 24 6179 35803 3.1e− 08 1.0e− 13 5.1e− 13

399∗ 35 34776 146326 7.8e− 14 2.0e− 13 6.3e− 13

factorization. Using the technique described in [And96a] for handling dense columns
these problems can be solved more efficiently, making it possible to solve for larger
values of N . The asterisk in the table indicates that the result for N = 399 was
obtained by this method. Using the same technique, the case N = 201 required 4,293
CPU seconds, and there were 6,367,553 nonzero elements in the L factor.

We conclude that for nonsmooth problems the primal-dual method is significantly
more efficient than the primal barrier method applied in [And96b,ACO98,AC98]. The
number of iterations increases slowly with the size of the problem. Finally, the primal-
dual method appears to be less vulnerable to ill-conditioning near the optimal solution.
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