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Abstract The spectral abscissa is a fundamental map from the set of com-
plex matrices to the real numbers. Denoted α and defined as the maximum of
the real parts of the eigenvalues of a matrix X, it has many applications in
stability analysis of dynamical systems. The function α is nonconvex and is
non-Lipschitz near matrices with multiple eigenvalues. Variational analysis of
this function was presented in [BO01], including a complete characterization
of its regular subgradients and necessary conditions which must be satisfied
by all its subgradients. A complete characterization of all subgradients of α at
a matrix X was also given for the case that all active eigenvalues of X (those
whose real part equals α(X)) are nonderogatory (their geometric multiplicity
is one) and also for the case that they are all nondefective (their geometric
multiplicity equals their algebraic multiplicity). However, necessary and suffi-
cient conditions for all subgradients in all cases remain unknown. In this paper
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we present necessary and sufficient conditions for the simplest example of a
matrix X with a derogatory, defective multiple eigenvalue.

1 Introduction

Let Cn×n denote the Euclidean space of n × n complex matrices. Define the
spectral abscissa α : Cn×n → R by

α(X) = max {Re λ : λ ∈ σ(X)}

where Re denotes real part and σ(X) denotes the spectrum, or set of eigenval-
ues, of X. The spectral abscissa, along with other related spectral functions
such as the spectral radius, is a fundamental concept with many applications
in stability analysis of dynamical systems. Spectral functions are nonconvex
and non-Lipschitz near matrices with multiple eigenvalues. Variational anal-
ysis for a broad class of spectral functions was presented in [BO01]. In this
paper we present some extensions of these results for the spectral abscissa.

Define an eigenvalue λ ∈ σ(X) to be active if Re λ = α(X). The algebraic
multiplicity of λ is its multiplicity as a root of the characteristic polynomial
det(X − zI) while its geometric multiplicity is the number of linearly inde-
pendent eigenvectors v satisfying Xv = λv. The latter is always less than or
equal to the former. When the algebraic multiplicity is one, λ is said to be
simple and when the geometric multiplicity is one λ is said to be nonderoga-
tory. If the algebraic multiplicity equals the geometric multiplicity, λ is said
to be nondefective or semisimple. Simple eigenvalues are nonderogatory and
nondefective. A nonderogatory eigenvalue λ with multiplicity m corresponds
to a single m×m Jordan block in the Jordan normal form of X, while a non-
defective eigenvalue λ with multiplicity m corresponds to m scalar blocks in
the Jordan form of X. The set of matrices with a given Jordan block structure
defines a submanifold of Cn×n whose properties are well known [Arn71]. Given
that an eigenvalue λ has multiplicity m, the most generic Jordan structure is
a single block, meaning λ is nonderogatory.

The analysis in [BO01] included a complete characterization of all subgra-
dients of the spectral abscissa α at a matrix X for the case that all active
eigenvalues of X are nonderogatory, showing also that this is exactly the case
when α is regular at X. A complete characterization was also given for the
case that all active eigenvalues are nondefective. However, necessary and suf-
ficient conditions for all subgradients in the case of active eigenvalues that are
both derogatory and defective remain unknown. In this paper we present nec-
essary and sufficient conditions for the simplest example of a matrix X with
a derogatory, defective active eigenvalue.

The paper is organized as follows. In Section 2 we review some of the results
of Burke and Overton [BO01] for variational analysis of the spectral abscissa.
We then state our main result for the simplest derogatory, defective example
in Section 3. The proof is given in Sections 4 and 5. We discuss the horizon
subgradients in Section 6. We make some concluding remarks in Section 7.
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2 Review of Known Results

We start by defining subgradients in the sense of Mordukhovich [Mor76] as
expounded in [RW98, Chapter 10]. We treat Cn×n as a Euclidean space with
the real inner product

〈Y,Z〉 = Re tr Y ∗Z, (1)

where ∗ denotes the complex conjugate transpose operation and tr denotes
trace. Since α is a continuous function, its subgradients are defined as follows.
A matrix Y ∈ Cn×n is a regular subgradient of α at X ∈ Cn×n (written

Y ∈ ∂̂α(X)) if

lim inf
Z→0

α(X + Z)− α(X)− 〈Y,Z〉
‖Z‖

≥ 0.

A matrix Y ∈ Cn×n is a subgradient of α at X (written Y ∈ ∂α(X)) if there
exist sequences Xi and Yi in Cn×n satisfying

Xi → X, Yi ∈ ∂̂α(Xi), Yi → Y. (2)

A matrix Y ∈ Cn×n is a horizon subgradient of α at X (written Y ∈ ∂∞α(X))
if Y = 0 or (2) holds with the last condition replaced by siYi → Y , where si
is a positive real sequence converging to zero.

Let us establish notation for the Jordan normal form. A nonsingular matrix
P ∈ Cn×n transforms X ∈ Cn×n to Jordan form if

P−1XP = J =

J (1)

. . .

J (p)

 ,where J (j) =


J
(j)
1

. . .

J
(j)

q(j)

 (3)

with J
(j)
k =


µj 1
· ·
· ·
· 1
µj

 , k = 1, . . . , q(j), j = 1, . . . , p. (4)

Here µ1, . . . , µp denote the distinct eigenvalues of X. Each µj corresponds to

q(j) Jordan blocks J
(j)
k with size m

(j)
k ×m

(j)
k . Note that q(j) is the geometric

multiplicity of µj , while

m(j) =

q(j)∑
k=1

m
(j)
k .

is its algebraic multiplicity. The size of the largest Jordan block for µj is
denoted

n(j) = max
k=1,...,q(j)

m
(j)
k .

The eigenvalue µj is said to be nonderogatory if q(j) = 1 and nondefective if
n(j) = 1 (and hence q(j) = m(j)). Finally, let

A = {j | Re µj = α(X)}.
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The eigenvalue µj is said to be active if j ∈ A.

We now review several results from [BO01] that we will use. Since we need
these only for the spectral abscissa, we present them more succinctly than
they appear in [BO01]. We start with necessary conditions for subgradients
and horizon subgradients. In what follows, the structure in W imposed by
the structure in the Jordan form J arises from the commutativity condition
XY ∗ = Y ∗X derived in [BO01, Theorem 2.1].

Theorem 1 [BO01, Corollary 8.1] If Y ∈ ∂α(X) or Y ∈ ∂∞α(X), then any
P satisfying (3), (4) also satisfies

P ∗Y P−∗ = W =

W (1)

. . .

W (p)

 , (5)

with W (j) = 0 if j 6∈ A, and otherwise

W (j) =


W

(j)
11 · · · W

(j)

1q(j)

...
...

...

W
(j)

q(j)1
· · · W (j)

q(j)q(j)

 , (6)

where W
(j)
rs is a rectangular m

(j)
r ×m(j)

s lower triangular Toeplitz matrix, r =
1, . . . , q(j), s = 1, . . . , q(j), j = 1, . . . , p. By this we mean that the value of

the k, ` entry in each W
(j)
rs depends only on the difference k − ` (is constant

along the diagonals), and is zero if k < l or m
(j)
r − k > m

(j)
s − ` (is zero above

the main diagonal, drawn either from the top left of the block, or from the
bottom right). Finally, if Y ∈ ∂α(X) then the eigenvalues of Y (equivalently
of W ) are real, nonnegative, and sum to one, while if Y ∈ ∂∞α(X) , it must
be nilpotent, meaning that its eigenvalues (equivalently the eigenvalues of W )
are all zero.

See [Arn71, Sec. 4.2] or [OW88] for illustrations of the block structure in (6).

In the case of regular subgradients, necessary and sufficient conditions are
known:

Theorem 2 [BO01, Theorem 7.2] If Y ∈ ∂̂α(X) then the diagonal blocks of
W = P ∗Y P−∗ in (5) satisfy W (j) = 0 if j 6∈ A and otherwise

W (j) =


W

(j)
11

. . .

W
(j)

q(j)q(j)
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with

W
(j)
kk =


θ
(j)
1

θ
(j)
2 ·
· · ·
· · · ·

θ
(j)

m
(j)
k

· · θ(j)2 θ
(j)
1

 , k = 1, . . . , q(j), j = 1, . . . , p,

for some θ
(j)
` , ` = 1, . . . , n(j). Thus, for each j ∈ A, the block W (j) is itself

block diagonal with square lower triangular Toeplitz blocks, with the entries on
the diagonals of the Toeplitz blocks constant not only within each block, but
also across all q(j) blocks. Furthermore, in accordance with the condition on
the eigenvalues of Y , we have

θ
(j)
1 ∈ R, θ

(j)
1 ≥ 0,

∑
j∈A

m(j)θ
(j)
1 = 1

and also the additional condition

Re θ
(j)
2 ≥ 0, j ∈ A.

Finally, only those Y satisfying the conditions given above lie in ∂̂α(X).

Necessary and sufficient conditions for Y to be a subgradient are known
for the case that all active eigenvalues of X are nonderogatory. In fact, this is
exactly the case that α is regular at X: all its subgradients are regular, and
the horizon subgradients satisfy a recession cone condition.

Theorem 3 [BO01, Theorem 8.2] Suppose that Y ∈ ∂α(X) and that all active
eigenvalues of X are nonderogatory, so that the corresponding matrices J (j)

are all full Jordan blocks of order m(j), and hence the diagonal blocks of W =
P ∗Y P−∗ in (5) are all lower triangular Toeplitz, i.e.,

W (j) =


θ
(j)
1

θ
(j)
2 ·
· · ·
· · · ·

θ
(j)

m(j) · · θ
(j)
2 θ

(j)
1

 ,

for some θ
(j)
` , ` = 1, . . . ,m(j). We have W (j) = 0 if j 6∈ A, and in accordance

with the condition on the eigenvalues of Y we have

θ
(j)
1 ∈ R, θ

(j)
1 ≥ 0,

∑
j∈A

m(j)θ
(j)
1 = 1

as well as the additional condition

Re θ
(j)
2 ≥ 0, j ∈ A.
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Fig. 1 The spectral abscissa of the damped linear oscillator. Left: α(A(2 + ∆p)) for real
∆p. Right: same, for imaginary ∆p.

Only those Y satisfying the conditions given above are subgradients of α at X,
and all these subgradients are regular, so ∂̂α(X) = ∂α(X). Finally ∂∞α(X),
the set of horizon subgradients of α at X, is the recession cone of ∂α(X), that
is, horizon subgradients satisfy the same conditions as subgradients except that

θ
(j)
1 = 0, j = 1, . . . , p.

Necessary and sufficient conditions for Y to be a subgradient are also known
for the case that all active eigenvalues of X are nondefective.

Theorem 4 [BO01, Theorem 8.3] Suppose that Y ∈ ∂α(X) and that all active
eigenvalues of X are nondefective, so that the corresponding J (j) = µjI, and
hence the diagonal blocks of W = P ∗Y P−∗ in (5) have no particular structure.
We have W (j) = 0 if j 6∈ A, and the eigenvalues of Y (equivalently of W ) are
all real, nonnegative, and sum to one. Only those matrices satisfying these
conditions lie in ∂α(X). Furthermore, the set of horizon subgradients of α at
X consists of the matrices Y satisfying the same conditions, except that the
eigenvalues of Y (equivalently of W ) are all zero.

We close this section by mentioning some examples of the usefulness of
this theory. In applications, often one wants to minimize a spectral function
over a family of matrices A(p) where p is a vector of parameters. A simple but
instructive example is maximizing the asymptotic decay rate for the damped
linear oscillator u′′ + pu′ + u over a single damping parameter p [BLO01].
Although for physical reasons one would normally assume p is real, for tech-
nical reasons related to the chain rule used below we take p to be a complex
parameter. This yields the following spectral abscissa minimization problem:

min
p∈C

α(A(p)) with A(p) =

(
0 1
−1 −p

)
.

Figure 1 plots α(A(p)) for p = 2 + ∆p with ∆p in the real interval [−1, 1] in
the left panel and ∆p in the imaginary interval [−i, i] in the right panel. The
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minimizer is p̃ = 2, for which A(p̃) has the Jordan form

P−1A(p̃)P = J =

(
−1 1
0 −1

)
, with P =

(
1 0
1 1

)
.

The only active eigenvalue of A(p̃) is the double, nonderogatory eigenvalue
−1. According to Theorem 1, the subgradients of α at A(p̃) are given by

∂α(X) =

{
P−∗

(
1
2 0
θ 1

2

)
P ∗ =

(
1
2 + θ −θ
θ 1

2 − θ

)
with Re θ ≥ 0

}
while the horizon subgradients are given by

∂∞α(X) =

{
P−∗

(
0 0
θ 0

)
P ∗ =

(
θ −θ
θ −θ

)
with Re θ ≥ 0

}
.

Furthermore, α is regular at A(p̃). Noting that the only horizon subgradient
orthogonal to the Jacobian ∇pA in the inner product (1) is zero, we can apply
a chain rule from nonsmooth analysis [RW98, Theorem 10.6] to conclude that

∂(α ◦A)(p̃) = {〈∇pA, Y 〉 with Y ∈ ∂α(A(p̃))} (7)

= {θ − 1

2
with Re θ ≥ 0}.

Projecting this set onto the real and imaginary axes we obtain [− 1
2 ,∞) and

(−∞,∞)i respectively, as is consistent with the left and right panels of Fig-
ure 1. Note that the unbounded derivatives for real p > p̃ indicate a splitting
of the double eigenvalue −1 into two real eigenvalues, one of which grows as
O(p − p̃)1/2, while for real p < p̃, the double eigenvalue splits into a complex
conjugate pair for which only the imaginary part grows as O(p̃ − p)1/2. This
distinction is captured in the set of subgradients and horizon subgradients
by the condition Re θ ≥ 0. If we were to change the example to one with a
nonderogatory eigenvalue with multiplicity three, we would see non-Lipschitz
growth in every perturbation direction. Finally, since 0 is in the interior of
∂(α ◦ A)(p̃), we conclude that p̃ is in fact a sharp local minimizer [BLO01,
Prop. 4.3] of α ◦A, as is indicated by Figure 1.

In the example just discussed the matrix family depends on only one pa-
rameter. For another simple example with multiple parameters, see [BLO01,
Section 2]. For more interesting examples motivated by some long-standing
open questions in control, see [BHLO06, Section III] and [HO06]. For all of
these examples, an optimality analysis of the sort just described for the damped
linear oscillator leads to the conclusion that a certain choice of parameters p̃
gives a sharp local minimizer of the spectral abscissa of a specific matrix family.

Spectral radius optimization problems are also important in applications.
For an example of a matrix family A(p) describing the behavior of a Markov
chain, see [GO07]. In this example, the largest eigenvalue in modulus is fixed
at one and the goal is to minimize the largest of the complex moduli of the
remaining eigenvalues in order to obtain the Markov chain with fastest asymp-
totic convergence. A local optimality analysis is done at a candidate optimal
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matrix with many distinct active eigenvalues, one of them a double real non-
derogatory eigenvalue and the others simple eigenvalues occurring in complex
conjugate pairs, but all having the same modulus.

Although nonderogatory eigenvalues are the most generic, structure present
in the matrix family may lead to local optimizers p̃ for which A(p̃) has active
eigenvalues which are both derogatory and defective. Two spectral radius op-
timization problems of this sort, arising in surface subdivision schemes with
applications in computer graphics, are studied in [Gru11, Chapters 2 and 4].
In both problems several of the largest eigenvalues of a matrix family A(p)
are fixed and the largest of the moduli of the remaining eigenvalues is to be
minimized. In one of these examples, the optimal matrix A(p̃) has one ac-
tive eigenvalue associated with three Jordan blocks respectively having order
2, 1 and 1. In the second example, A(p̃) apparently has four Jordan blocks
respectively having order 5, 3, 2 and 2. Both of these optimizers were found
numerically; in the first case, the Jordan structure was then verified analyt-
ically but in the second case this was not possible given the complexity of
the problem. In both these examples the active eigenvalue is apparently zero
(definitely in the first case) so optimality conditions are not needed as no
eigenvalue can have smaller modulus than zero. However, similar problems
can be constructed for which analysis of optimality conditions is the only path
to verifying local optimality.

Returning to the spectral abscissa α, in the case of derogatory active eigen-
values one cannot expect to use a chain rule as strong as the one exploited in
(7), because α is not regular at matrices with a derogatory active eigenvalue.
However, an inclusion of the form

∂(α ◦A)(p̃) ⊂ {〈∇pA, Y 〉 for Y ∈ ∂α(A(p̃)}

still applies [RW98, Theorem 10.6]. Hence the importance of obtaining neces-
sary conditions for Y ∈ ∂α(A) in the derogatory, defective case that are as
strong as possible. This provides motivation for the analysis in the remainder
of the paper.

3 Main Result

When n = 2 the eigenvalues of X are either nonderogatory or nondefective, so
the simplest example of a matrix with an eigenvalue that is both derogatory
and defective occurs when n = 3, namely

X = J =

0 1 0
0 0 0
0 0 0

 . (8)

This matrix is in Jordan form, so P in (3) is the identity matrix, and its only

eigenvalue is µ1 = 0, with q(1) = 2 Jordan blocks of sizes m
(1)
1 = 2,m

(1)
2 = 1.
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According to Theorem 1, necessary conditions for Y to be a subgradient of α
at J are that it satisfies

Y =

a 0 0
b a c
d 0 e


and that the eigenvalues of Y are real, nonnegative and sum to one. Exchanging
the second and third rows and the second and third columns transforms Y to
triangular form, so the eigenvalues of Y are its diagonal entries a, a, and e.
Hence the necessary conditions for Y to be a subgradient reduce to

Y =

a 0 0
b a c
d 0 1− 2a

 with a ∈
[
0,

1

2

]
. (9)

Before continuing with this example, we note that this observation applies
more generally, as stated in the following lemma.

Lemma 1 Let Y be a subgradient of α at X and assume that no active eigen-
value of X has multiple Jordan blocks with the same size, that is, for each

active eigenvalue µj, the block sizes m
(j)
1 , . . . ,m

(j)

q(j)
are distinct. Then each of

the diagonal blocks of W = P ∗Y P−∗ in (5) has its eigenvalues on its diagonal,
and hence the diagonal entries of W must be real, nonnegative and sum to one.

Proof. Since W is block diagonal with zero blocks corresponding to in-
active eigenvalues, we need only prove the result for each block W (j) corre-
sponding to an active eigenvalue. Fix j, set V = W (j) and assume without

loss of generality that m
(j)
1 > m

(j)
2 > · · · > m

(j)

q(j)
. We will show that there

exists a permutation σ, that is a bijection from {1, . . . ,m(j)} to {1, . . . ,m(j)},
with the property that the permuted block U , defined by Ui,i′ = Vσ(i)σ(i′), is
lower triangular. Since U and V have the same diagonal entries (in a different
order), this will show that the eigenvalues of V are on its diagonal.

The structure of V = W (j) is shown in (6). Define the map

(b, k) : {1, . . . ,m(j)} → {1, . . . , q(j)} × {1, . . . ,m(j)
1 }

as follows: b(i) is the block number corresponding to row and column i of V
and k(i) is the corresponding index within the block. Thus, for example, for

all i we have m
(j)
1 + · · · + m

(j)
b(i)−1 + k(i) = i. We know from the comments

following (6) that Vi,i′ = 0 if either k(i) < k(i′) or m
(j)
b(i)−k(i) > m

(j)
b(i′)−k(i′).

So, we choose σ so that σ(i) < σ(i′) when k(i) < k(i′) or when k(i) = k(i′)

and m
(j)
b(i) > m

(j)
b(i′). This last inequality is equivalent to b(i) < b(i′) and hence

to i < i′. For example, if the block sizes are 4, 2 and 1, then, for i = 1, . . . , 7,
b(i) takes the values 1,1,1,1,2,2,3, k(i) takes the values 1,2,3,4,1,2,1, and σ(i)
takes the values 1,5,7,2,6,3,4. This ensures that the permuted block U is lower
triangular.
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Since this argument holds for all active eigenvalues µj , we have shown that
all the eigenvalues of W are on its diagonal. That the diagonal entries must be
real, nonnegative and sum to one then follows from the last part of Theorem 1.

Returning to the example J in (8), first note that Theorem 2 says that
necessary and sufficient conditions for Y to be a regular subgradient of α at
J are

Y =

 1
3 0 0
w 1

3 0
0 0 1

3

 with Re w ≥ 0. (10)

We now present necessary and sufficient conditions for Y to be a subgradient
of α at J :

Theorem 5 Define ga,b,c,d = Re
(
b− cd

1−3a

)
and with it the set

γ(J) =


a 0 0
b a c
d 0 1− 2a

with a ∈ [0,
1

2
] and, if a 6= 1

3
, ga,b,c,d ≥ 0

 (11)

This set is precisely the set of subgradients of α at J , i.e.,

∂α(J) = γ(J).

We break the proof into two parts, first showing that ∂α(J) ⊂ γ(J) in the
next section and then showing the reverse inclusion in the following section.

4 Proof of the Inclusion ∂α(J) ⊂ γ(J)

The method we use to prove Theorem 5 is a very direct one. We know that a
subgradient Y must have the form (9). Since subgradients are limits of regular

subgradients we study sequences Xi → J and Yi → Y with Yi ∈ ∂̂α(Xi).
The set of all such Y is the set of subgradients. There are only finitely many
possible Jordan structures for 3×3 matrices, so we assume w.l.o.g. that in each
sequence all Xi have the same Jordan structure (otherwise, we can consider a
subsequence). We will go through each of the possible Jordan structures and
discuss what limits are possible for Yi, thereby establishing the new necessary
conditions for Y given in the theorem statement. We will then prove that these
conditions are sufficient in Section 5.
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In dimension 3 there are 9 possible Jordan structures for Ji = P−1i XiPi,
assuming in what follows that Re αi ≥ Re βi ≥ Re γi, namely

J1
i =

αi 0 0
0 αi 0
0 0 αi

 J2
i =

αi 1 0
0 αi 0
0 0 αi


J3
i =

αi 0 0
0 αi 1
0 0 αi

 J4
i =

αi 1 0
0 αi 1
0 0 αi


J5
i =

αi 1 0
0 αi 0
0 0 βi

 J6
i =

αi 0 0
0 αi 0
0 0 βi


J7
i =

αi 0 0
0 βi 1
0 0 βi

 J8
i =

αi 0 0
0 βi 0
0 0 βi


J9
i =

αi 0 0
0 βi 0
0 0 γi


Let us denote by Sj(J) the set of all possible subgradient limits when Xi has

Jordan form Jji . In the following we will go through each of the 9 cases and
find necessary conditions for Y ∈ Sj(J), j = 1, . . . , 9. For each j in turn, we

write Xi = PiJ
j
i P
−1
i → J (note that Xi, Yi and Pi also depend on j but we

will suppress this dependence). Note that, in general, P−1i and Pi are not both
bounded, but the eigenvalues of Xi, namely αi, βi and γi, must converge to 0.
We will repeatedly exploit Theorem 2 which characterizes the structure of the
regular subgradients Yi ∈ ∂̂α(Xi). Note that each distinct Jordan structure
Jji imposes a different structure on W = P ∗i YiP

−∗
i .

Case 1

When the Jordan type of the sequence is J1
i we have Xi = Pi(αiI)P−1i = αiI,

so it cannot converge to J and hence

S1(J) = ∅.

Case 2

In this case we only get regular subgradients. Let

Xi → J and Yi → Y

where

Xi = Pi

αi 1 0
0 αi 0
0 0 αi

P−1i and Yi = P−∗i

 1
3 0 0
wi

1
3 0

0 0 1
3

P ∗i
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with Re wi ≥ 0. Note that the given structure for Yi is dictated by Theorem 2
since Yi ∈ ∂̂α(Xi). Now we do the following analysis:

Y ∗i = Pi

 1
3 w
∗
i 0

0 1
3 0

0 0 1
3

P−1i

= Pi

1

3
I +

 0 w∗i 0
0 0 0
0 0 0

P−1i

=
1

3
I + w∗i Pi

 0 1 0
0 0 0
0 0 0

+ αiI − αiI

P−1i

=
1

3
I + w∗i (Xi − αiI).

Because αi → 0 and Xi → J and Y ∗i = 1
3I + w∗i (Xi − αiI)→ Y ∗ we see that

wi must converge, say to w, with Re w ≥ 0 as Re wi ≥ 0. We conclude that

Y =
1

3
I + wJ =

 1
3 0 0
w 1

3 0
0 0 1

3

 ∈ ∂̂α(J).

This means Y must be a regular subgradient:

S2(J) ⊂ ∂̂α(J).

Case 3

In Case 3 the Xi satisfy

Xi = Pi

αi 0 0
0 αi 1
0 0 αi

P−1i

which can be rewritten as

Xi = Pi

 0 0 1
1 0 0
0 1 0

αi 1 0
0 αi 0
0 0 αi

 0 1 0
0 0 1
1 0 0

P−1i

so this case reduces to Case 2:

S3(J) ⊂ ∂̂α(J).
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Case 4

In this case we require
Xi → J and Yi → Y

where

Xi = Pi

αi 1 0
0 αi 1
0 0 αi

P−1i and Yi = P−∗i

 1
3 0 0
wi

1
3 0

yi wi
1
3

P ∗i .

Again the structure of Yi comes from Theorem 2, so we have Re wi ≥ 0 but
yi ∈ C is unrestricted. We know that Y satisfies (9). Since det(Yi) = 1

27 is
constant it has to be stable under the limit and that means that

det(Y ) = a2(1− 2a) =
1

27
.

The only solution for a ∈ [0, 12 ] is then a = 1
3 , so

S4(J) ⊂

Y =

 1
3 0 0
b 1

3 c
d 0 1

3

 .

Case 5

We consider two “sub-cases”.

Re αi > Re βi

Here we require
Xi → J and Yi → Y

where

Xi = Pi

αi 1 0
0 αi 0
0 0 βi

P−1i and Yi = P−∗i

 1
2 0 0
wi

1
2 0

0 0 0

P ∗i ,

with Re wi ≥ 0, so we have

XiY
∗
i = Pi

αi 1 0
0 αi 0
0 0 βi

 1
2 w
∗
i 0

0 1
2 0

0 0 0

P−1i

= Pi

 αi

2 αiw
∗
i + 1

2 0
0 αi

2 0
0 0 0

P−1i = αiY
∗
i +Hi

with Hi = Pi

 0 1
2 0

0 0 0
0 0 0

P−1i .
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We know that αi → 0 and XiY
∗
i → JY ∗ = aJ since Y satisfies (9). Therefore

Hi → aJ.

We will show that this means that a = 1
2 . Consider

Y ∗i =
1

2
I +Ki with Ki = Pi

 0 w∗i 0
0 0 0
0 0 − 1

2

P−1i .

The sequence Yi converges and therefore Ki = Y ∗i − 1
2I converges and so does

K2
i = Pi

 0 0 0
0 0 0
0 0 1

4

P−1i .

We have

Xi = αiI + 2Hi + 4(βi − αi)K2
i → 0 + 2aJ + 0

and we can conclude, since Xi → J , that J = 2aJ , and therefore a = 1
2 .

Using Ki = 2w∗iHi − 2K2
i we see that wi must converge, say to w, with

Re w ≥ 0. We get then that

Ki = Y ∗i −
1

2
I → Y ∗ − 1

2
I =

 0 b∗ d∗

0 0 0
0 c∗ − 1

2

 =: K,

So,

K2
i → K2 =

0 c∗d∗ −d
∗

2
0 0 0

0 − c
∗

2
1
4

 .

Hence,

Ki = 2w∗iHi − 2K2
i → 2w∗aJ − 2K2 =

 0 w∗ − 2c∗d∗ d∗

0 0 0
0 c∗ − 1

2

 .

It follows from the equations for K that b∗ = w∗ − 2c∗d∗. Thus,

S1
5(J) ⊂

Y =

 1
2 0 0
b 1

2 c
d 0 0

 with Re(b+ 2cd) ≥ 0

 .

Here the superscript denotes the sub-case of Case 5.
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Re αi = Re βi

The sequences
Xi → J and Yi → Y

in this case are given by

Xi = Pi

αi 1 0
0 αi 0
0 0 βi

P−1i and Yi = P−∗i

 pi 0 0
wi pi 0
0 0 1− 2pi

P ∗i

where Re wi ≥ 0 and pi ∈ [0, 12 ], so, w.l.o.g. we can assume that pi converges.
There are two “sub-sub-cases”.

1. Suppose pi → 1
3 . Then

Y ∗i − piI = Pi

 0 w∗i 0
0 0 0
0 0 1− 3pi

P−1i

→

a− 1
3 b∗ d∗

0 a− 1
3 0

0 c∗ 2
3 − 2a

 .

Since the determinant is a continuous function we conclude that a = 1
3 , so

S2,1
5 (J) ⊂

Y =

 1
3 0 0
b 1

3 c
d 0 1

3

 .

Here the notation indicates that this is the first sub-sub-case of the second
sub-case of Case 5.

2. Now assume pi → p where p 6= 1
3 . Here we will consider

Li = Y ∗i − piI = Pi

0 w∗i 0
0 0 0
0 0 1− 3pi

P−1i

→ Y ∗ − pI =

a− p b∗ d∗

0 a− p 0
0 c∗ 1− 2a− p


and therefore

L2
i = Pi

 0 0 0
0 0 0
0 0 (1− 3pi)

2

P−1i converges.

We deduce that Mi = 1
(1−3pi)2L

2
i converges. Let’s call the limit M :

M =
1

(1− 3p)2
(Y ∗ − pI)2.
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Now define

Ni = Pi

 0 1 0
0 0 0
0 0 0

P−1i = Xi − αiI − (βi − αi)Mi → J.

This implies that wi converges to a limit w with Re w ≥ 0 since

Y ∗i = piI + (1− 3pi)Mi + w∗iNi.

Now consider

XiY
∗
i = Pi

αipi αiw
∗
i + pi 0

0 αipi 0
0 0 βi(1− 2pi)

P−1i

= (αiw
∗
i + pi)Ni + αipiI + (βi(1− 2pi)− αipi)Mi

→ (0 + p)J + 0 + 0 = pJ.

Since XiY
∗
i → JY ∗ = aJ we find that p = a. So,

Y ∗i → aI + (1− 3a)M + w∗J =

a w∗ + c∗d∗

1−3a d∗

0 a 0
0 c∗ 1− 2a

 .

This means b∗ = w∗ + c∗d∗

1−3a , so we have

Re(b− cd

1− 3a
) ≥ 0

and hence

S2,2
5 (J) ⊂

Y =

a 0 0
b a c
d 0 1− 2a

 with a 6= 1

3
and Re(b− cd

1− 3a
) ≥ 0

 .

So, we write S2
5(J) = S2,1

5 (J) ∪ S2,2
5 (J) and S5(J) = S1

5(J) ∪ S2
5(J).

Case 6

We consider two sub-cases.
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Re αi > Re βi

Here the sequences
Xi → J and Yi → Y

are given by

Xi = Pi

αi 0 0
0 αi 0
0 0 βi

P−1i and Yi = P−∗i

1/2 0 0
0 1

2 0
0 0 0

P ∗i .

We easily get a contradiction which rules out this case. Assume that

Pi =

pi11 p
i
12 p

i
13

pi21 p
i
22 p

i
23

pi31 p
i
32 p

i
33

 . (12)

Then

(Xi)12 =
pi13(αi − βi)(pi11pi32 − pi12pi31)

det(Pi)
→ 1

and

(Y ∗i )12 =
1

2

pi13(pi11p
i
32 − pi12pi31)

det(Pi)
=

1

2

(Xi)12
αi − βi

which doesn’t converge. So,

S1
6(J) = ∅.

Re αi = Re βi

Now we have
Xi → J and Yi → Y

where

Xi = Pi

αi 0 0
0 αi 0
0 0 βi

P−1i and Yi = P−∗i

 qi 0 0
0 qi 0
0 0 1− 2qi

P ∗i .

Assume again that (12) holds, so

(Xi)12 =
pi13(αi − βi)(pi11pi32 − pi12pi31)

det(Pi)
→ 1

and

(Y ∗i )12 =
1

2

pi13(3qi − 1)(pi11p
i
32 − pi12pi31)

det(P )
=

1

2

3qi − 1

αi − βi
(Xi)21

which can only converge if qi → 1
3 . But this means that a = 1

3 by a determinant
argument which gives:

S6(J) = S2
6(J) ⊂

Y =

 1
3 0 0
b 1

3 c
d 0 1

3

 .
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Case 7

We consider two sub-cases.

Re αi > Re βi

Let
Xi → J and Yi → Y

where

Xi = Pi

αi 0 0
0 βi 1
0 0 βi

P−1i and Yi = P−∗i

 1 0 0
0 0 0
0 0 0

P ∗i

So

XiY
∗
i = Pi

αi 0 0
0 0 0
0 0 0

P−1i = αiY
∗
i → 0.

Since XiY
∗
i → JY ∗ = aJ we deduce that a = 0. Considering then that, since

all the Yi are rank one, the limit also has rank one, we have

Y =

 0 0 0
b 0 c
d 0 1

 with b = cd.

So,

S1
7(J) ⊂

Y =

 0 0 0
b 0 c
d 0 1

 with b = cd

 .

Re αi = Re βi

This case is analogous to the second sub-case of Case 5 since once the real
parts are the same the ordering becomes arbitrary. So, S2

7(J) = S2
5(J) and

S7(J) = S1
7(J) ∪ S2

7(J).

Case 8

We consider two sub-cases.

Re αi > Re βi

The discussion of this case is analogous to the first part of Case 7:

S1
8(J) ⊂

Y =

 0 0 0
b 0 c
d 0 1

 with b = cd

 .
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Re αi = Re βi

We have
Xi → J and Yi → Y

where

Xi = Pi

αi 0 0
0 βi 0
0 0 βi

P−1i and Yi = P−∗i

 ri 0 0
0 1

2 −
ri
2 0

0 0 1
2 −

ri
2

P ∗i

with ri ∈ [0, 12 ]. We have that XiY
∗
i → aJ and

XiY
∗
i = βiY

∗
i + riPi

αi − βi 0 0
0 0 0
0 0 0

P−1i

and

XiY
∗
i = αiY

∗
i + (

1

2
− ri

2
)Pi

0 0 0
0 βi − αi 0
0 0 βi − αi

P−1i

so since

Pi

αi − βi 0 0
0 0 0
0 0 0

P−1i = Xi − βiI → J

and

Pi

 0 0 0
0 βi − αi 0
0 0 βi − αi

P−1i = Xi − αiI → J

we obtain ri → a and 1
2 −

ri
2 → a. This means that a = 1

2 −
a
2 giving a = 1

3 .
So,

S2
8(J) ⊂

Y =

 1
3 0 0
b 1

3 c
d 0 1

3

 .

Case 9

We consider three sub-cases.

Re αi > Re βi ≥ Re γi

We follow the same argument as in the first part of Case 7. Thus

S1
9(J) ⊂

Y =

 0 0 0
b 0 c
d 0 1

 with b = cd

 .
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Re αi = Re βi > Re γi

We have Xi → J with

Xi = Pi

αi 0 0
0 βi 0
0 0 γi

P−1i and Yi = P−∗i

 ri 0 0
0 1− ri 0
0 0 0

P ∗i

Since det(Yi)=0 we conclude that det(Y ) = 0 and therefore a = 1
2 or a = 0.

Since ri ∈ [0, 12 ], w.l.o.g. we assume that ri → r.

1. We first consider the case a = 1
2 . We know that det(Yi− (1− ri)I) = 0. By

taking the limit we get that det(Y − (1− r)I) = 0 from which we deduce
that r = 1

2 . Consider (Y ∗i − riI)Y ∗i and (Xi − αiI)Y ∗i :

(Y ∗i − riI)Y ∗i = Pi

0 0 0
0 (1− 2ri)(1− ri) 0
0 0 0

P−1i

→ (Y ∗ − 1

2
I)Y ∗ =

 0 b∗

2 + c∗d∗ 0
0 0 0
0 0 0


(Xi − αiI)Y ∗i = Pi

 0 0 0
0 (βi − αi)(1− ri) 0
0 0 0

P−1i

→ JY ∗ =

0 1
2 0

0 0 0
0 0 0

 .

Defining Qi such that

(Y ∗i − riI)Y ∗i = (1− 2ri)Qi

(Xi − αiI)Y ∗i = (βi − αi)Qi

we get by looking at the quotient of the (1,2) entries that

1− 2ri
βi − αi

→ b∗/2 + c∗d∗

1/2
= b∗ + 2c∗d∗.

Since Re αi = Re βi we get that Re( 1−2ri
βi−αi

) = 0 and conclude that Re(b+

2cd) = 0. So,

S2,1
9 (J) ⊂

Y =

 1
2 0 0
b 1

2 c
d 0 0

 with Re(b+ 2cd) = 0

 .
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2. Now we consider the case a = 0. Since det(Yi − riI) = 0 and ri ∈ [0, 12 ] we
get r = 0. Consider (Y ∗i − (1− ri)I)Y ∗i and (Y ∗i − (1− ri)I)(Xi − γiI):

(Y ∗i − (1− ri)I)Y ∗i = Pi

 (2ri − 1)ri 0 0
0 0 0
0 0 0

P−1i

→ (Y ∗ − I)Y ∗ =

 0 c∗d∗ − b∗ 0
0 0 0
0 0 0


(Y ∗i − (1− ri)I)(Xi − γiI) = Pi

 (2ri − 1)(αi − γi) 0 0
0 0 0
0 0 0

P−1i

→ (Y ∗ − I)J =

0 −1 0
0 0 0
0 0 0


Following a similar argument as in the previous sub-sub-case, we get that
ri

αi−γi → b∗ − c∗d∗ and therefore Re(b− cd) ≥ 0. So,

S2,2
9 (J) ⊂

Y =

 0 0 0
b 0 c
d 0 1

 with Re(b− cd) ≥ 0


Re αi = Re βi = Re γi

Let
Xi → J and Yi → Y

where

Xi = Pi

αi 0 0
0 βi 0
0 0 γi

P−1i and Yi = P−∗i

 ri 0 0
0 qi 0
0 0 1− ri − qi

P ∗i .

We can assume that w.l.o.g ri → r and qi → q. The Cayley-Hamilton theorem
says that

0 = (Yi − riI)(Yi − qiI)(Yi − (1− qi − ri)I)

so
0 = (Y − rI)(Y − qI)(Y − (1− q − r)I).

Looking at the diagonal entries in this matrix product we see that one of the
following 4 sub-sub-cases must hold:

1. a 6= 1
3 and q = a and r = a

2. a 6= 1
3 and q = a and r = 1− 2a

3. a 6= 1
3 and q = 1− 2a and r = a

4. a = q = r = 1
3
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We consider these in turn.

1. Consider (Y ∗i − riI)(Y ∗i − (1− qi − ri)I). This gives

Pi

0 0 0
0 (qi − ri)(2qi + ri − 1) 0
0 0 0

P−1i →

 0 b∗(3a− 1) + c∗d∗ 0
0 0 0
0 0 0


Looking at (Xi − αiI)(Y ∗i − (1− ri − qi)I) we get that

Pi

 0 0 0
0 (βi − αi)(2qi + ri − 1) 0
0 0 0

P−1i →

 0 3a− 1 0
0 0 0
0 0 0

 .

Comparing the quotient as above we can deduce that

qi − ri
βi − αi

→ b∗ +
c∗d∗

3a− 1
.

Since qi and ri are real and βi − αi is imaginary we get that

Re(b+
cd

3a− 1
) = 0,

so

S3,1
9 (J) ⊂

Y =

a 0 0
b a c
d 0 1− 2a

 with Re(b− cd

1− 3a
) = 0

 .

2. Consider (Y ∗i − riI)(Y ∗i − (1− qi − ri)I). This gives

Pi

0 0 0
0 (qi − ri)(2qi + ri − 1) 0
0 0 0

P−1i →

 0 b∗(3a− 1) + c∗d∗ 0
0 0 0
0 0 0

 .

Looking at (Xi − γiI)(Y ∗i − riI) we get that

Pi

0 0 0
0 (βi − γi)(qi − ri) 0
0 0 0

P−1i →

 0 3a− 1 0
0 0 0
0 0 0

 .

Comparing the quotient again we can deduce that

2qi + ri − 1

βi − γi
→ b∗ +

c∗d∗

3a− 1
.

Since qi and ri are real and βi − γi is imaginary we get

Re(b− cd

1− 3a
) = 0,

so

S3,2
9 (J) ⊂

Y =

a 0 0
b a c
d 0 1− 2a

 with Re(b− cd

1− 3a
) = 0

 .
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3. Since qi and ri are interchangeable, this is the same as the previous sub-
sub-case.

4. Because a = 1
3 we get

S3,4
9 (J) ⊂

Y =

 1
3 0 0
b 1

3 c
d 0 1

3

 .

Finally,

S9(J) = S1
9(J) ∪ S2,1

9 (J) ∪ S2,2
9 (J) ∪ S3,1

9 (J) ∪ S3,2
9 (J) ∪ S3,4

9 (J).

Thus, after considering all possible limits we conclude that all Sj(J) ⊂ γ(J)
which proves that ∂α(J) ⊂ γ(J). In fact, we showed that Sj(J) is strictly
contained in γ(J) except when j = 5 or j = 7. Note that these are the two
cases where Xi has precisely two nonderogatory eigenvalues.

5 Proof of the inclusion ∂α(J) ⊃ γ(J)

We want to prove that any Y ∈ γ(J) is a subgradient of α at J . We will
distinguish the cases a = 1

3 and a 6= 1
3 .

The case a = 1
3 .

First suppose that c and d are nonzero. The sequences

Pt =

−c∗d∗2 − b∗d∗t c∗d∗2

t3

0 −c∗d∗2 0

0 − c
∗d∗

t
1
t3


P−1t =

− 1
c∗d∗2

b∗−c∗2d∗2
c∗2d∗3t

1
0 − 1

c∗d∗2
0

0 − t2

d∗ t3


Jt =

 t 1 0
0 t 1
0 0 t


W ∗t =

 1
3

1
t −

1
c∗d∗t3

0 1
3

1
t

0 0 1
3

 .

are such that Xt = PtJtP
−1
t , Yt = P−∗t WtP

∗
t ∈ ∂̂α(Xt),

Xt → J and Yt → Y =

a 0 0
b a c
d 0 a

 with a =
1

3
.
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Here t is real and positive and decreases to zero. If either c or d is zero, we
simply replace it where it occurs in these sequences by t. Thus, as desired,
we created a sequence for a = 1

3 and arbitrary b, c d for which Yt ∈ ∂̂α(Xt)
converges to the specified Y ∈ γ(J).

The case a 6= 1
3 .

We create a sequence for arbitrary a ∈ [0, 12 ) and a 6= 1
3 (we will discuss the

case a = 1
2 later) and c, d arbitrary and Re w ≥ 0:

P−1t =

 1
t

1
t

c∗

(3a−1)t
t 1

t t

t d∗

(1−3a)t
1
t

 ,

Jt =

 t 1 0
0 t 0
0 0 t+ it

 ,

W ∗t =

a+ t w∗ + t 0
0 a+ t 0
0 0 1− 2a− 2t

 (13)

are such that Xt = P−1t JtPt, Yt = P ∗t WtP
−∗
t ∈ ∂̂α(Xt),

Xt → J and Yt → Y =

a 0 0
b a c
d 0 a


where b = w+ cd

1−3a , with t positive real, converging to 0. We omit the formula

for Pt since it is complicated. In the case where a = 1
2 we can take a similar

sequence with

W ∗t =

 1
2 − t w

∗ + t 0
0 1

2 − t 0
0 0 2t

 .

We then get that Xt → J and Yt → Y as above but with a = 1
2 . It is

necessary to consider this separately since in equation (13) if a = 1
2 the bottom

right entry would be negative and therefore not a regular subgradient. Since
b = w + cd

1−3a and Re w ≥ 0 we created a sequence for a 6= 1
3 and arbitrary

b, c, d satisfying Re(b− cd
1−3a ) for which Yt ∈ ∂̂α(Xt) converges to the specified

Y ∈ γ(J).

This proves the inclusion ∂α(J) ⊃ γ(J) and completes the proof of Theo-
rem 5.
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6 The horizon subgradients

We conclude our subdifferential analysis for the spectral abscissa at J by giving
necessary and sufficient conditions for the horizon subgradients. Note that the
expression for ∂∞α(J) is simpler than the expression for ∂α(J) because there
is no inequality constraint on the matrix entries.

Theorem 6

∂∞α(J) =


 0 0 0
b 0 c
d 0 0

 .

Proof. The necessary conditions for the horizon subgradient are proved
by applying Theorem 1 so all we need to do is establish sufficient conditions.
Consider the following sequences of matrices:

Pt =

−c∗d∗2 − b∗d∗t c∗d∗2

t3

0 −c∗d∗2 0

0 − c
∗d∗

t
1
t3


P−1t =

− 1
c∗d∗2

b∗−c∗2d∗2
c∗2d∗3t

1
0 − 1

c∗d∗2
0

0 − t2

d∗ t3


Jt =

 t 1 0
0 t 1
0 0 t


W ∗t =

 1
3

1
t2 −

1
c∗d∗t4

0 1
3

1
t2

0 0 1
3

 .

They have the property that Xt = PtJtP
−1
t → J and with Yt = P ∗t WtP

−∗
t ∈

∂α̂(Xt), we have

tYt →

 0 0 0
b 0 c
d 0 0


for any choice of b, c 6= 0, d 6= 0 and t positive real, converging to 0. If either c
or d is zero change it to t in the sequence above.

7 Concluding remarks

The subgradient analysis of Sections 4 and 5, establishing necessary and suf-
ficient conditions for Y to be a subgradient of the spectral abscissa at the
3× 3 derogatory, defective matrix J , was quite complicated, suggesting that a
general analysis for derogatory, defective matrices may be difficult. However,
we hope that the detailed analysis presented for this case may show the way
forward for obtaining a more general result.
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