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Abstract: Stabilization by static output feedback (SOF) is a long-standing open
problem in control: given an n by n matrix A and rectangular matrices B and C,
find a p by q matrix K such that A + BKC is stable. Low-order controller design
is a practically important problem that can be cast in the same framework, with
(p+k)(q+k) design parameters instead of pq, where k is the order of the controller,
and k << n. Robust stabilization further demands stability in the presence of
perturbation and satisfactory transient as well as asymptotic system response.
We formulate two related nonsmooth, nonconvex optimization problems over K,
respectively with the following objectives: minimization of the ε-pseudospectral
abscissa of A+BKC, for a fixed ε ≥ 0, and maximization of the complex stability
radius of A + BKC. Finding global optimizers of these functions is hard, so
we use a recently developed gradient sampling method that approximates local
optimizers. For modest-sized systems, local optimization can be carried out from
a large number of starting points with no difficulty. The best local optimizers
may then be investigated as candidate solutions to the static output feedback or
low-order controller design problem. We show results for two problems published
in the control literature. The first is a turbo-generator example that allows us to
show how different choices of the optimization objective lead to stabilization with
qualitatively different properties, conveniently visualized by pseudospectral plots.
The second is a well known model of a Boeing 767 aircraft at a flutter condition.
For this problem, we are not aware of any SOF stabilizing K published in the
literature. Our method was not only able to find an SOF stabilizing K, but also to
locally optimize the complex stability radius of A + BKC. We also found locally
optimizing order–1 and order–2 controllers for this problem. All optimizers are
visualized using pseudospectral plots.
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1. STATIC OUTPUT FEEDBACK AND
LOW-ORDER CONTROLLERS

Given an n × n matrix A, an n × p matrix B
and a p × q matrix C, the stabilization by static
output feedback (SOF) problem is to find a p× q
matrix K such that A + BKC is stable (has
all its eigenvalues in the left half-plane). How to
efficiently find such a K (or show that it does not
exist) is a long-standing open problem in control
(Blondel et al., 1995).

Given the same data, together with an integer
k < n, the low-order controller design problem
is to find K1, K2, K3 and K4, respectively with
dimensions p× q, p×k, k× q and k×k, such that[

A 0
0 0

]
+

[
B 0
0 I

] [
K1 K2

K3 K4

] [
C 0
0 I

]
(1)

is stable. The problem is mainly of interest when
k, the order of the controller, is much less than
n. When k = n, the task of finding a stabiliz-
ing solution or showing that it does not exist
is efficiently solvable by well known techniques
based on linear matrix inequalities and convex
optimization (Boyd et al., 1994). The low-order
controller design problem is an SOF problem with
(p + k)(q + k) design variables instead of pq, with
the case k = 0 being the original SOF problem.

2. ROBUST STABILIZATION

As is well known, stabilization is a necessary
but far from sufficient property for a controlled
system to be well behaved. The notion of “ro-
bust stability” has emerged over the past two
decades as an important concept in control and
dynamical systems. In the robust control com-
munity, the complex stability radius (Hinrichsen
and Pritchard, 1986) has become a very well
known measure of robust stability. This notion
may be interpreted in terms of pseudospectra
(Trefethen, 1990), an approach to measuring sys-
tem behavior that has become well known in the
numerical analysis and PDE communities, and
for which powerful graphical tools have recently
become available.

For a real ε ≥ 0, the ε-pseudospectrum of a matrix
X ∈ Rn×n is the subset of the complex plane
defined by

Λε(X) = {z ∈ C : σmin(X − zI) ≤ ε},

where σmin denotes smallest singular value. Equiv-
alently (Trefethen, 1990),

Λε(X) = {z ∈ C : σmin(Y − zI) = 0,
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for some Y ∈ Cn×n with ‖Y −X‖ ≤ ε}.

Here ‖ · ‖ denotes the 2-norm (largest singular
value). Note that Y may be complex. Thus the
pseudospectrum of a matrix is the union of the
spectra of nearby matrices. When ε = 0, the
pseudospectrum reduces to the spectrum.

In this paper we focus on two measures of robust
stability of a matrix X . One is the ε-pseudospectral
abscissa αε(X), defined as the largest real part of
all elements of the pseudospectrum Λε(X), for a
fixed ε. The case ε = 0 is the spectral abscissa.
The other measure is the complex stability radius
β(X), also known as the distance to the unsta-
ble matrices. It is defined to be 0 if X is not
stable and otherwise as the largest ε for which
the pseudospectrum Λε(X) lies in the left half-
plane. More directly, without explicit reference to
pseudospectra, we have

αε(X) = max
z∈C

{Re z : σmin(X − zI) ≤ ε}, (2)

and

β(X) = min
z∈C

{σmin(X − zI) : Re z ≥ 0}. (3)

It is not hard to see that the connection between
these two concepts is summarized by the facts that

αε(X) ≥ 0 ⇔ β(X) ≤ ε.

For a matrix X that is not stable, we have
β(X) = 0, while for stable X , αβ(X)(X) = 0, and
the minimization in (3) may as well be done over
z on the imaginary axis. As is well known, β(X)−1

is the H∞ norm of the associated transfer function
(sI −X)−1.

The relationships between the quantities αε(X)
and β(X) and the robustness of the stability of
X with respect to perturbation are clear from the
definitions. Less obvious is that these functions
also measure the transient response of the associ-
ated dynamical system v̇ = Xv (Trefethen, 1997).
By choosing ε < β(X) in αε, we place more
emphasis on asymptotic behavior than when we
choose ε = β(X). Stated differently, we choose
ε according to the size of perturbation we are
prepared to tolerate, and measure what kind of
asymptotic response this allows us to guarantee,
instead of measuring the largest perturbation that
can be tolerated while still guaranteeing stability.
In robust control, another important considera-
tion is that perturbations are typically structured,
but we do not address this in the present work.
In particular, since perturbations are typically
real, not complex, another interesting measure of
robust stability is the real stability radius; how-
ever, this does not provide a measure of transient
response.



Efficient algorithms to compute the pseudospec-
tral abscissa αε(X) and the complex stability ra-
dius β(X) are available. For the latter, which is a
special case of more general H∞ norm computa-
tions, fast algorithms based on computing eigen-
values of Hamiltonian matrices are well known
(Boyd and Balakrishnan, 1990; Bruinsma and
Steinbuch, 1990), and software is available in the
matlab control toolboxes and the slicot library.
For αε, a related algorithm has been developed
recently (Burke et al., 2003c), and software is also
available. 4

3. NONSMOOTH, NONCONVEX
OPTIMIZATION

With these measures of robust stability at hand,
we are now in a position to approach the static
output feedback stabilization problem via nons-
mooth, nonconvex optimization. Consider the op-
timization problems

min
K∈Rp×q

αε(A + BKC) (4)

and

min
K∈Rp×q

−β(A + BKC). (5)

Both αε and −β are nonsmooth, nonconvex func-
tions. However, they are locally Lipschitz, except
α0 (the spectral abscissa). At the opposite ex-
treme, the limit of αε(X)− ε as ε →∞ is the con-
vex function 1

2λmax(X + XT ) (the largest eigen-
value of the symmetric part of X). In fact, as ε is
increased from zero to an arbitrarily large quan-
tity, the optimization problem (4) evolves from
minimization of α0(A + BKC) (enhancing the
asymptotic decay rate of the associated dynamical
system) to the minimization of λmax(A + BKC +
AT + CT KT BT ) (minimizing the initial growth
rate of the associated system). For ε equal to the
optimal value of (5), the optimization problem (4)
has the same solution set as (5). These issues are
explored at greater length in (Burke et al., 2003a).

We approach robust stabilization by searching
for minimizers of (4) and (5). However, because
these problems are not convex, finding global
minimizers can be expected to be difficult. Indeed,
it is known that if we add interval bounds on
the entries of K, the problem (4) is NP-hard in
the case ε = 0 (Blondel and Tsitsiklis, 1997).
Consequently, we focus on approximating local
minimizers, which may then be investigated as
candidate solutions for robust stabilization by
static output feedback.

4 http://www.cs.nyu.edu/faculty/overton/software/

Not only are the optimization problems (4) and
(5) nonconvex, they are also nonsmooth, so that
standard local optimization methods such as
steepest descent and BFGS are inapplicable (when
tried, they typically “jam” at a point of discon-
tinuity of the gradient of the objective, forcing
the line search to repeatedly take tiny steps). The
state of the art for both smooth, nonconvex op-
timization and for nonsmooth, convex optimiza-
tion is quite advanced, and reliable software is in
wide use, but nonsmooth, nonconvex optimization
problems are much more difficult. However, we
have devised a method based on gradient sampling
that is very effective in practice and for which we
have developed a local convergence theory (Burke
et al., 2002; Burke et al., 2003b). This method
is intended for minimizing functions f that are
continuous and for which the gradient exists and
is readily computable almost everywhere on the
design parameter space, even though the gradient
may be (and often is) discontinuous at an op-
timizing solution. Briefly, the method generates
a sequence of points {xν} in the design space,
say Rm, as follows. Given xν , the gradient ∇f
is computed at xν and at randomly generated
points near xν within a sampling diameter η, and
the convex combination of these gradients with
smallest 2-norm, say d, is computed by solving
a quadratic program. One should view −d as a
kind of stabilized steepest descent direction. A line
search is then used to obtain xν+1 = xν − td/‖d‖,
with f(xν+1) < f(xν), for some t ≤ 1. If ‖d‖
is below a prescribed tolerance, or a prescribed
iteration limit is exceeded, the sampling diame-
ter η is reduced by a prescribed factor, and the
process is repeated. For the numerical examples
in the next section, we used sampling diameters
10−j, j = 1, . . . , 6, with a maximum of 100 iterates
per sampling diameter and a tolerance 10−6 for
‖d‖, and we set the number of randomly generated
sample points to 2m (twice the number of design
variables) per iterate. Besides its simplicity and
wide applicability, a particularly appealing feature
of the gradient sampling algorithm is that it pro-
vides approximate “optimality certificates”: if ‖d‖
is small for a small sampling diameter η, one can
be reasonably sure that a local minimizer has been
approximated.

In order to apply the gradient sampling algorithm
to the optimization problems (4) and (5), we need
to know how to compute the relevant gradients.
References for methods to evaluate the objective
functions αε and β were given at the end of
the previous section; implementations respectively
return a maximizing z in (2) and minimizing z
in (3) as well as the value of the function. These
allow us to compute the gradients of αε and β as
functions on Rn×n, as follows. Except on a set of
measure zero in Rn×n, we can assume that the



rightmost points of the pseudospectrum Λε(X)
(the set of maximizers in (2)) consist either of a
single real point z or a complex conjugate pair
(z, z̄). It follows (Burke et al., 2003a) that

∇αε(X) = Re
(

1
u∗v

uv∗
)

,

where u and v are respectively left and right
singular vectors corresponding to σmin(X − zI).
Typically, there is never a tie for the definition of
the maximizing z for iterates generated by the gra-
dient sampling optimization algorithm, although
at an exact minimizer of (4), there very often is a
tie — hence the nonsmoothness of the function. A
second source of nonsmoothness could arise if the
singular value σmin(X − zI) is multiple, but this
does not usually occur, even at an exact minimizer
of (4).

When ε = 0, the function αε(X) is simply the
maximum of the real parts of the eigenvalues of
X . In this case, the singular vectors u and v are
left and right eigenvectors of X for the eigenvalue
z. For α0, there are actually two different sources
for the nonsmoothness of the function: the pos-
sibility of ties for the rightmost eigenvalue, and
the possibility of multiple eigenvalues, which in
fact often occur at minimizers of spectral abscissa
optimization problems (Burke et al., 2001).

Likewise, for stable X , except on a set of measure
zero, we can assume that the set of points where
the pseudospectrum Λβ(X)(X) is tangent to the
imaginary axis (the set of minimizers in (3))
consists either of a single real point z or a complex
conjugate pair (z, z̄). It follows that

∇ (−β(X)) = Re (uv∗) ,

where u and v are left and right singular vectors
satisfying u∗(X − zI)v = σmin(X − zI). Again,
typically there is never a tie for the definition
of the minimizing z at points generated by the
algorithm, although at an exact minimizer of (5)
there very often is a tie.

Finally, we need the gradients in the design pa-
rameter space. Let A denote the affine function
that maps K ∈ Rp×q to A + BKC ∈ Rn×n.
From the ordinary chain rule, the gradient of the
composition of any function φ on Rn×n with A is

∇ (φ ◦ A) (K) = BT∇φ (A + BKC)CT ,

a matrix in Rp×q that can also be interpreted
as a vector in the design parameter space Rpq.
Applying this with φ equal to either αε or β
provides the gradients needed to implement the
gradient sampling algorithm in Rm, with m = pq.

4. NUMERICAL EXAMPLES

We have applied gradient sampling optimization
to many static output feedback (SOF) stabiliza-

tion problems published in the control literature,
all kindly provided to us by F. Leibfritz. We now
describe results for two problems that we think
are especially instructive. For the first, we consider
only the pure SOF problem, while for the second
we consider SOF and low-order controllers. 5

The first set of data matrices A, B, C comes from
a turbo-generator model (Hung and MacFarlane,
1982, Appendix E). For this problem, n = 10 and
p = q = 2, so there are four design parameters
in the static output feedback matrix K. Each of
Figures 1 through 4 shows a pseudospectral plot
in the complex plane, showing, for a particular K,
the boundary of Λε(A + BKC) for four different
values of ε. The legend at the right of each figure
shows the logarithms (base 10) of the four values
of ε used in the plot. A particular pseudospectrum
Λε(A + BKC) may or may not be connected, but
each connected component must contain one or
more eigenvalues, shown as solid dots. The figures
do not show all 10 eigenvalues; in particular,
they do not show a conjugate pair of eigenvalues
with large imaginary part, whose corresponding
pseudospectral components are well to the left of
the ones appearing in the figures. In Figures 3
and 4, the smallest real eigenvalue is also outside
the region shown. The pseudospectral contours
were plotted by T. Wright’s EigTool, an extremely
useful graphical interface for interpreting spectral
and pseudospectral properties of nonsymmetric
matrices. 6

Figure 1 shows the pseudospectra of the original
matrix A, that is, with K = 0. Although A
is stable, since its eigenvalues are to the left
of the imaginary axis, it is not robustly stable,
since three connected components of the 10−2-
pseudospectrum cross the imaginary axis.

Figure 2 shows the pseudospectra of A + BKC
when K solves (4) with ε = 0, or, in other words,
when the rightmost eigenvalue of A + BKC is
pushed as far as possible to the left. Notice that
six eigenvalues of A + BKC are now arranged
on a line parallel to the imaginary axis, and that
two of the conjugate pairs are quite close to each
other, indicating the possibility that at an exact
minimizer there is a double conjugate pair of
eigenvalues as well as a simple conjugate pair with
the same real part. The 10−2-pseudospectrum
is now contained in the left half-plane, but the
10−1.5-pseudospectrum is not. The optimizing K
is approximately[−2.2227 −5.6120

−0.0087 −0.0230

]
.

5 The problem data matrices A, B and C are available at
http://www.cs.nyu.edu/faculty/overton/papers/SOFdata/
6 Freely available from the Pseudospectra Gateway,
http://web.comlab.ox.ac.uk/projects/pseudospectra/
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Fig. 1. Pseudospectra for Turbo-Generator with
No Feedback
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Fig. 2. Pseudospectra for Turbo-Generator when
Pure Spectrum is Optimized

Figure 3 shows the pseudospectra of A + BKC
when K solves (4) with ε = 10−1.5, or, in
other words, when the rightmost part of the
10−1.5-pseudospectrum of A + BKC is pushed
as far as possible to the left. Now the 10−1.5-
pseudospectrum is to the left of the imaginary
axis, but the eigenvalues have moved back to-
wards the right, compared to Figure 2. There is
apparently a three-way tie for the maximizing z
in (2) at the local minimizer — one real value in
its own small pseudospectral component, and two
conjugate pairs in a much larger pseudospectral
component. The optimizing K is approximately[−0.0641 −0.3684

−0.0341 −0.0398

]
.

Figure 4 shows the pseudospectra of A + BKC
when K solves (5) (maximizes the complex sta-
bility radius β), or, in other words, when K
is chosen to maximize the ε for which the ε-
pseudospectrum of A + BKC is contained in
the left half-plane. For this optimal value, ε =
10−1.105, the ε-pseudospectrum is tangent to the
imaginary axis at five points, a real point and two
conjugate pairs, indicating (as previously) a three-
way tie for the minimizing z in (5). Each mini-
mizing z has its own pseudospectral component.
This ε-pseudospectrum crosses the imaginary axis
in the previous three figures. On the other hand,
the 10−1.5-pseudospectrum is now further to the
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Fig. 3. Pseudospectra for Turbo-Generator when
10−1.5-Pseudospectrum is Optimized

−20 −15 −10 −5 0 5 10
−15

−10

−5

0

5

10

15
Pseudospectra for Turbo−Generator when Complex Stability Radius is Optimized

−2

−1.5

−1.105

−0.5

Fig. 4. Pseudospectra for Turbo-Generator when
Complex Stability Radius is Optimized

right than it was in Figure 3. The optimizing K
is approximately[−0.7763 −0.7193

−0.0935 −0.1515

]
.

Because the gradient sampling algorithm approx-
imately verifies first-order optimality conditions,
we are reasonably confident that the matrices K
yielding Figures 2, 3 and 4 are all approximate
local minimizers of their respective objectives. We
cannot be sure that the minimizers are global, but
it seems very likely that they are, based on the
fact that repeated optimization runs from differ-
ent starting points continued to produce approxi-
mately the same local minimizer. We do not claim
that the matrices K displayed above are accurate
approximations to local minimizers; because of
the nonsmoothness, the objective value is much
more sensitive to some perturbations in K than
to others.

We now turn to our second example, a much
more difficult stabilization problem. This is a
well known model of a Boeing 767 aircraft at a
flutter condition (Davison, 1990, Problem No. 90-
06). The state space has dimension n = 55, but
p = q = 2, so there are only 4 design parameters in
the SOF matrix K. We are not aware of any SOF
stabilizing solution published in the literature
up until now. Figure 5 shows pseudospectra for
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Fig. 5. Pseudospectra for B767 with No Feedback
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Fig. 6. Pseudospectra for B767 when Pure Spec-
trum is Locally Optimized for SOF Controller
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Fig. 7. Pseudospectra for B767 when Complex
Stability Radius is Locally Optimized for
SOF Controller

the most interesting part of the spectrum of the
unstable matrix A, with no feedback. There is a
conjugate pair of unstable eigenvalues near the top
and bottom of the figure.

We used the gradient sampling method start-
ing from many different initial points to search
for local optimizers of the SOF spectral abscissa
problem (4) (with ε = 0) and the SOF complex
stability radius problem (5). We found that it
was useful to first search for minimizers of the
spectral abscissa and then, once a stabilizing K
was obtained, use it to initialize maximization of
the complex stability radius, both explicitly and
with randomly generated starting points whose
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Fig. 8. Pseudospectra for B767 when Complex
Stability Radius is Locally Optimized for
Order–1 Controller
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Fig. 9. Pseudospectra for B767 when Complex
Stability Radius is Locally Optimized for
Order–2 Controller

scaling was determined by the spectral abscissa
minimizer.

Figure 6 shows the pseudospectra of A + BKC
for the best SOF local optimizer found for (4)
with ε = 0. The locally optimal spectral abscissa
is approximately −7.79× 10−2, with approximate
minimizer

K =
[−8.1908e−02 2.2651e−05
−3.8308e+00 2.2771e−04

]
.

Although A + BKC is stable, it is far from being
robustly stable. Its complex stability radius is
6.6 × 10−7. Thus even the 10−6-pseudospectrum
crosses the imaginary axis.

Figure 7 shows the pseudospectra of A+BKC for
the best SOF local optimizer found for (5). The
locally optimal complex stability radius is approx-
imately 7.91×10−5, with approximate maximizer

K =
[

4.5457e+00 5.9329e−05
7.2997e+00 2.1689e−04

]
.

Note that the 10−4-pseudospectrum crosses the
imaginary axis, but the 10−4.5-pseudospectrum
does not.

Finally, we considered low-order controller design
for the same problem, using gradient sampling to
maximize the complex stability radius of (1) over



K1, K2, K3, K4 for order k = 1 and k = 2.
Figure 8 shows the pseudospectra of (1) when the
complex stability radius is locally maximized over
order–1 controllers. The locally optimal complex
stability radius is approximately 9.98×10−5, with
approximate maximizer [K1 K2; K3 K4] =


 3.41e+00 5.16e−05 1.07e−03

1.86e+00 1.24e−04 −9.06e−03
−1.09e−01 2.12e−02 −3.35e−02


 .

Figure 9 shows the pseudospectra of (1) when the
complex stability radius is locally maximized over
order–2 controllers. The locally optimal complex
stability radius is approximately 1.02×10−4, with
approximate maximizer [K1 K2; K3 K4] =



3.63e+00 4.99e−05 8.96e−05 9.01e−03
1.90e+00 1.14e−04 −4.78e−03 1.15e−04
−1.13e−01 2.06e−02 −4.27e−02 1.17e−03
2.26e−03 3.51e−02 −1.56e−03 −1.04e+00


.

In Figures 8 and 9, the 10−4-pseudospectrum is
very close to the imaginary axis, actually crossing
it in the former but not in the latter.

As with the turbo-generator example, the fact
that the gradient sampling algorithm approxi-
mately verifies first-order optimality conditions
allows us to be reasonably confident that the
matrices K yielding Figures 6, 7, 8 and 9 all
approximate local optimizers of their respective
objectives. However, we cannot conclude that they
are global optimizers.

5. CONCLUSIONS

We have demonstrated that the gradient sam-
pling algorithm (Burke et al., 2003b) is a power-
ful and versatile tool for finding local optimizers
of nonsmooth, nonconvex optimization problems
that arise in robust stabilization. We have also
demonstrated the usefulness of pseudospectra in
formulating such optimization problems and visu-
alizing the results. Our techniques are applicable
to low-order controller design, a problem of great
practical importance.
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