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Abstract

Many interesting real functions on Euclidean space are di�eren-
tiable almost everywhere. All Lipschitz functions have this property,

but so, for example, does the spectral abscissa of a matrix (a non-

Lipschitz function). In practice, the gradient is often easy to compute.

We investigate to what extent we can approximate the Clarke subd-

i�erential of such a function at some point by calculating the convex

hull of some gradients sampled at random nearby points.
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1 Introduction

Over the last quarter century there has been remarkable progress in the
theoretical analysis of nonsmooth functions f : Rn ! R, primarily motivated
by optimization. Clarke's introduction of his generalized gradient in 1973
(summarized in his seminal book [7]) pioneered a rapid development, recently
presented in detail in [8] and [20].

Computational methods for nonsmooth optimization have also developed
rapidly, with many interesting applications. For a recent look, see [19], which
focuses on mechanical applications, or [17], which concentrates on optimal
control. Nonsmooth optimization algorithms such as the subgradient methods
outlined in [21], or the bundle methods described in [2, 15], typically assume a
locally Lipschitz function, and at each iterate xk compute only one element of
the generalized gradient (or subdi�erential). Even for convex functions it was
recognized very early that an exact computation of the entire subdi�erential
was generally impractical [23]. Good overviews are [14] and [12].

In certain specially structured problems (such as nonlinear minimax),
algorithms that can exploit the structure of the entire subdi�erential are
possible. An interesting example is a remarkable early paper on eigenvalue
optimization [9] that uses the special structure of the function f to compute
an approximation of the entire subdi�erential, an avenue pursued further
by Overton et al. (see [16] for a survey). In general-purpose nonsmooth
optimization algorithms, however, the subdi�erential set really only appears
as a theoretical tool.

So, to what extent can we really \do" general nonsmooth analysis? With-
out assuming any particular structure for our function f , what might a gen-
eral purpose algorithm learn about the subdi�erential? Our aim in this paper
is to approach these questions via random sampling of gradients at nearby
points. Stochastic gradient algorithms have been analyzed in [10, 21], for
example, but again the aim was to analyze algorithms working with a single
subgradient at each iteration rather than to approximate the subdi�erential.

Our starting point is to assume our function f is di�erentiable almost
everywhere. By Rademacher's theorem, this is true for all locally Lipschitz
functions, but there are interesting non-Lipschitz functions that have this
property, including all \directionally Lipschitz" functions (in the sense of
[20])|see [3], and also the spectral radius and spectral abscissa of a complex
square matrix (respectively the largest modulus and real part of the eigen-
values), regarded as functions of the real and imaginary parts of its entries.
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Indeed, it is hard to imagine a continuous function arising in a concrete
setting that is not di�erentiable almost everywhere.

Our philosophy is to suppose that, wherever the function f is di�eren-
tiable, the gradient is cheap to compute. For example, the spectral abscissa
is di�erentiable at any matrix having a unique eigenvalue whose real part
equals the spectral abscissa: the gradient is just vu�, where u and v are cor-
responding right and left eigenvectors with u�v = 1 (and furthermore, many
such gradients can be computed in parallel). On the other hand, computing
the subdi�erential of the spectral abscissa at a general matrix is much harder,
requiring some knowledge of the Jordan form of the underlying matrix [5].
Even for the much easier example of the maximum eigenvalue function on
the space of Hermitian matrices, this convex function is easy to di�erentiate
whenever the maximum eigenvalue has multiplicity one, but calculating the
subdi�erential in general requires a complete orthonormal set of correspond-
ing eigenvectors.

What can we say in general? If the function f is locally Lipschitz around
the point �x 2 Rn then the Clarke subdi�erential is given by

@Cf(�x) = conv flim
r
rf(xr) : xr ! �x; xr 2 Qg;(1.1)

where conv denotes the convex hull operation and Q is any full-measure
subset of a neighbourhood of �x consisting of points where f is di�erentiable
(see [7]: for the most part we follow the notation in the book of Rockafellar
and Wets [20], where @C is written �@). It is easy to see, in this Lipschitz
setting, the relationship

@Cf(�x) =
\
Æ>0

IÆ;(1.2)

where
IÆ = cl conv (rf(Q \ (�x + ÆB)))

and B denotes the open unit ball in Rn. This suggests that if we sample
random points x1; x2; : : : ; xk 2 Rn near �x and consider the set

Ck = conv frf(xi) : i = 1; 2; : : : ; kg;(1.3)

then we might hope that Ck approximates @Cf(�x).
It is reasonably straightforward to see that this approximation does in-

deed work, in a suitable stochastic sense, for locally Lipschitz functions. In
the non-Lipschitz case too there are some positive results. However, we
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present some simple non-Lipschitz examples that reveal the diÆculties of
approximating the subdi�erential in this manner.

In outline, we �rst show that the set Ck converges almost surely to the
set IÆ de�ned above. In the Lipschitz case this proves the desired approx-
imation, by equation (1.2). In the non-Lipschitz case we show that, under
reasonable conditions, the set IÆ is still an outer approximation to the Clarke
subdi�erential, but examples show that it may be much too large.

The theory relating the Clarke subdi�erential with limits of convex com-
binations of gradients at nearby points can also be considered in the light of
\molli�ers": see [20, Thm 9.67, Eq 9(38) and p. 420] for details in the Lip-
schitz case and further references. Our approach here does not use molli�er
theory.

2 The sampling framework

We consider a continuous function f : Rn ! R that is di�erentiable almost
everywhere. The gradient map rf : Rn ! Rn is Lebesgue measurable. To
see this, �x any direction w 2 Rn and consider the sequence of continuous
functions

x 2 Rn 7! r(f(x+ r�1w)� f(x)); for r = 1; 2; : : : :

Then the lim sup of this sequence of functions is measurable and agrees with
wTrf(x) almost everywhere. (In fact, to see this we just need to assume f
is measurable.)

Given real Æ > 0 (the sampling radius) and a point �x 2 Rn, we �x a
sample space 
 = �x+ ÆB with an associated probability measure, absolutely
continuous with respect to Lebesgue measure � on Rn. We assume the
corresponding density �, is strictly positive almost everywhere on 
. (We
refer to [6] or [13], for example, for probabilistic terminology.) Thus � is an
integrable function satisfying

R

 � d� = 1 and � > 0 a.e. For example, we

could choose � � �(
)�1.
With this probability space, we now consider a sequence of independent

trials with outcomes xi 2 
 for i = 1; 2; : : :. Our assumptions on the density
� guarantee that for each trial the outcome xi lies outside any �xed set of
Lebesgue measure zero almost surely, and that xi lies in any �xed nonempty
open subset of 
 with a strictly positive probability that is independent of
the trial number i.
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From the outcomes xi we construct a sequence of gradients Gi = rf(xi).
Since rf is measurable, G1; G2; : : : is a sequence of independent, identically
distributed random vectors. Each random vector Gi corresponds to an in-
duced probability measure: the measure of any Borel set A � Rn is just

Z
(rf)�1(A)

� d�:

Corresponding to this sequence of random vectors, we de�ne a corresponding
increasing sequence of closed convex random sets

Ck = conv fG1; G2; : : : ; Gkg (k = 1; 2; : : :):

Our aim is to compare Ck with the Clarke subdi�erential of f at �x. We call
k the sample size.

We will not need any general discussion of random sets. The events we
consider are measurable subsets of the in�nite product space 
1, typically
of the form

f(G1; G2; : : :) 2 Sg
for some closed set S: the probability of such an event is just its measure
with respect to the product measure associated with the density �.

Under reasonable conditions, the sets Ck converge to the closed convex
hull of the image of the neighbourhood �x+ ÆB under the gradient map rf .
This is the content of the following result. Thus a central question of this
paper is how well this convex hull captures the Clarke subdi�erential of f at
�x.

Theorem 2.1 (limiting approximation) Consider a continuous function
f : Rn ! R that is continuously di�erentiable on an open set Q � �x + ÆB
of full measure. Then

cl
1[
k=1

Ck = cl convrf(Q) almost surely;

and for any direction w 2 Rn we have

maxwTCk " supwTrf(Q) as k !1, almost surely:
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Proof Suppose a vector g lies in rf(Q). Given any real � > 0, since rf is
continuous on Q, the set

fx 2 Q : krf(x)� gk < �g
is open and nonempty. Hence for each index i we have

pr fkGi � gk < �g > 0;

so
g 2 [

k

Ck + �B almost surely:

Since � was arbitrary, we deduce

g 2 cl
[
k

Ck almost surely:

Now choose a countable dense subset fg1; g2; : : :g of rf(Q), and observe, by
the above,

gr 2 cl
[
k

Ck (r = 1; 2; : : :) almost surely:

Then taking closed convex hulls shows

cl convrf(Q) � cl
[
k

Ck almost surely:

On the other hand, since Q has full measure, each xi lies in Q almost
surely, so Gi lies in cl convrf(Q) almost surely. Hence each set Ck is con-
tained in cl convrf(Q) almost surely, so we have

cl convrf(Q) � [
k

Ck almost surely;

and the �rst equation follows by taking closures. The �nal claim then follows
easily. |

(The continuity assumption on f is in fact super
uous, since the other as-
sumptions imply that f is measurable.)

Our assumption on the continuous di�erentiability of f is stronger than
we need for most of our paper. However, it seems reasonable in practice.
For example, since the matrices with distinct eigenvalues form an open set of
full measure, this assumption holds for the spectral abscissa. Corollary 5.11
provides a variant of the result where the continuous di�erentiability of f is
dropped in favour of local Lipschitzness.
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3 Sampling gradients: the Lipschitz case

Let us suppose �rst that the function f is locally Lipschitz around the point
�x. In this case the analysis is reasonably straightforward.

Theorem 3.1 (inner approximation) If f is locally Lipschitz around �x
then for any real � > 0 we have, for any suÆciently small sampling radius,

Ck � @Cf(�x) + �B for k = 1; 2; : : : ; almost surely;

and so

cl
1[
k=1

Ck � @Cf(�x) + � clB almost surely:

Proof The Clarke subdi�erential is upper semicontinuous at �x, so there
exists a radius Æ > 0 such that

@Cf(�x + ÆB) � @Cf(�x) + �B:

But Ck is almost surely contained in the left hand side. The result therefore
follows. |

Example 7.1 (overestimating the subdi�erential) shows how this result can
fail for non-Lipschitz functions.

For the opposite inclusion we use the following lemma. We de�ne the reg-
ular subderivative (or Clarke directional derivative) at �x as the �nite sublinear
function d̂f(�x) : Rn ! R given by

d̂f(�x)(w) = maxwT@Cf(�x):

Lemma 3.2 For all real � > 0, directions w 2 Rn, and indices i = 1; 2; : : : ;
we have

pr fGT
i w > d̂f(�x)(w)� �g > 0:

Proof By our assumptions on the probability density �, it suÆces to show
that the measurable set

fx 2 �x + ÆB : rf(x)Tw > d̂f(�x)(w)� �g
has strictly positive Lebesgue measure. Suppose this fails, so rf(x)Tw �
d̂f(�x)(w)� � for all points x in Q, a subset of �x+ ÆB of full measure. Using
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our de�nition of the Clarke subdi�erential (1.1), we can choose a sequence
fxrg in Q approaching �x such that rf(xr)Tw ! d̂f(�x)(w), and this is a
contradiction. |

Theorem 3.3 (outer approximation) If f is locally Lipschitz around �x
then for any suÆciently small sampling radius and any real � > 0 we have

pr f@Cf(�x) � Ck + �Bg ! 1 as k!1:

Proof Denote the unit sphere in Rn by S and the Lipschitz constant of f
on �x + ÆB by L, and choose points w1; w2; : : : ; wm in S such that

S �
m[
j=1

�
wj +

�

3L
B
�
:

By Lemma 3.2 we know, for each index i = 1; 2; : : : and j = 1; 2; : : : ; m, the
probability

pr fGT
i wj > d̂f(�x)(wj)� �=3g

is strictly positive, and independent of i. Hence, for each j we have

pr
n
max
1�i�k

GT
i wj > d̂f(�x)(wj)� �=3

o
! 1 as k !1;

so

pr
n
max
1�i�k

GT
i wj > d̂f(�x)(wj)� �=3 for each j

o
! 1 as k !1;

or in other words

pr
n
maxwT

j Ck > d̂f(�x)(wj)� �=3 for each j
o

! 1 as k !1:

Now notice that the functions w 2 Rn 7! maxwTCk and d̂f(�x)(�) both have
Lipschitz constant L, so by our choice of the wj's, the inequalities

maxwT
j Ck > d̂f(�x)(wj)� �=3 for j = 1; 2; : : : ; m

imply
maxwTCk > d̂f(�x)(w)� � for all w 2 S;

which in turn implies
@Cf(�x) � Ck + �B:
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The result now follows. |

Such results clearly may fail for non-Lipschitz functions since the set Ck is
always bounded whereas the subdi�erential may be unbounded.

Corollary 3.4 If f is locally Lipschitz around �x then for any suÆciently
small sampling radius we have

@Cf(�x) � cl
1[
k=1

Ck almost surely:

Proof By Theorem 3.3, @Cf(�x) � �B + [kCk, almost surely, for any real
� > 0, and the result follows. |

We extend this result in Theorem 5.13.
In summary, in the locally Lipschitz case, Theorem 3.1 (inner approxima-

tion) says that providing we sample gradients close to �x, the sets Ck will not
overestimate the subdi�erential @Cf(�x) too badly, while Theorem 3.3 (outer
approximation) says that, as we increase our sample size, the probability of
underestimating the subdi�erential shrinks to zero.

4 Non-Lipschitz analysis

The variational analysis of non-Lipschitz functions is more subtle than the
Lipschitz case. In this section we summarize the notions we use. At the
risk of slight notational extravagance, we introduce a new subdi�erential-
like object, which we call the \convex-stable subdi�erential". We make no
attempt to study its properties as a subdi�erential, but rather observe how
it arises naturally in our gradient-sampling framework, and how it compares
with the Clarke subdi�erential. We refer throughout to [20].

We suppose, as before, that the function f : Rn ! R is continuous. The
regular subdi�erential of f at a point x 2 Rn is the set of vectors y 2 Rn

satisfying

f(�x+ z) � f(�x) + yTz + o(z) for small z 2 Rn:

We denote this closed convex set @̂f(�x), and we de�ne the subdi�erential of
f at �x by

@f(�x) =
\
Æ>0

cl (@̂f(�x + ÆB)):
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Thus y lies in @f(x) if and only if there are sequences xr ! x and yr ! y with
yr 2 @̂f(xr) for all r. This object has become fundamental in modern vari-
ational analysis. When f is locally Lipschitz we have @Cf(x) = conv @f(x)
[20, Thm 9.61].

Part of the subtlety of non-Lipschitz analysis arises from horizon be-
haviour. The horizon cone of a nonempty set C � Rn is the closed cone

C1 = flim
r
tryr : tr # 0; yr 2 Cg;

and we de�ne ;1 = f0g. Thus a set is bounded exactly when its horizon cone
is f0g. We call a cone K � Rn pointed when K \ �K = f0g. The horizon
subdi�erential of a continuous function f : Rn ! R at a point x 2 Rn is the
closed cone

@1f(x) = flim
r
tryr : tr # 0; yr 2 @̂f(xr); xr ! xg [ f0g:

It is easy to check @1f(x) = f0g if f is locally Lipschitz. The polar cone of
the horizon subdi�erential is the closed cone

@1f(x)� = fw : wTy � 0 for all y 2 @1f(x)g;
and the regular subderivative of f at x is the sublinear function d̂f(x) : Rn !
[�1;+1]) de�ned by

d̂f(x)(w) =

(
supwT@f(x) if w 2 @1f(x)�

+1 otherwise

[20, Ex 8.23]. We can then de�ne the Clarke subdi�erential of f at x as the
closed convex set

@Cf(x) = fy : wTy � d̂f(x)(w) for all w 2 Rng
[20, Thm 8.49]. These de�nitions agree with our previous notions in the
Lipschitz case. We call the point x Clarke-critical if 0 2 @Cf(x).

Since we interpret sup ; = �1, we see from our de�nitions that @f(x) =
; if and only if @Cf(x) = ; (cf. [20, Thm 8.49]). Assuming @f(x) is nonempty,
we call f regular at x if

@f(x) = @̂f(x) 6= ; and @̂f(x)1 = @1f(x)

[20, Cor 8.11]. In the next result we collect some useful representations of
the Clarke subdi�erential.
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Proposition 4.1 (Clarke subdi�erential) For any continuous function
f : Rn ! R, the Clarke subdi�erential at x has the following representa-
tions:

(i) @Cf(x) = cl (conv @f(x) + conv @1f(x));

(ii) @Cf(x) = conv @f(x) + conv @1f(x) providing @1f(x) is pointed;

(iii) @Cf(x) = @f(x) providing f is regular at x.

Proof (i) This result appears for example in [18, p.58, Prop. 2.6]: for
convenience, we outline a short proof. If @f(x) = ; then both sides of the
equation are empty. Hence we can assume @f(x) 6= ;, so both sides are
nonempty closed convex sets. It suÆces to show the corresponding support
functions coincide. On the left hand side we obtain d̂f(x)(w), and on the
right,

supwT@f(x) + supwT@1f(x):

These two functions of the vector w clearly coincide by our de�nition of the
regular subderivative. Indeed, for all w 2 @1f(x)� the second term in the
above sum is zero, while for all other w it is +1.

(ii) See [20, Thm 8.49].
(iii) This part follows easily from part (i) (cf. [20, p. 337]). |

We remark that continuity of f in the above results could in fact be relaxed
to lower semicontinuity.

An instructive example is the function

f(x) =

(
0 if x < 0
�px if x � 0:

(4.2)

An easy calculation shows

@̂f(0) = ;; @f(0) = f0g; @1f(0) = R� = @Cf(0):

Note f is not regular at 0, and @Cf(0) 6= cl conv @f(0).
The following notion of a convex-stable subdi�erential will be helpful later:

we de�ne
~@f(x) =

\
Æ>0

cl conv (@̂f(x+ ÆB)):

For example, for the function f above we have ~@f(0) = R�. The next result
shows that this subdi�erential is at least as large as the Clarke subdi�erential.
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Proposition 4.3 (Clarke versus convex-stable subdi�erential) If the
function f : Rn ! R is continuous, then at any point x 2 Rn we have

~@f(x) � @Cf(x):

Proof For any real Æ > 0 we need to show

cl conv (@̂f(x+ ÆB)) � @Cf(x):

Observe

@f(x) � cl conv (@̂f(x+ ÆB)) and @1f(x) � (cl conv (@̂f(x+ ÆB)))1:

We deduce

conv @f(x) + conv @1f(x)

� cl conv (@̂f(x+ ÆB)) + (cl conv (@̂f(x+ ÆB)))1

= cl conv (@̂f(x+ ÆB));

by [20, Thm 3.6]. The desired inclusion now follows by taking closures and
applying Proposition 4.1(i). |

Example 7.2 shows that the inclusion can be strict.
The next result shows that limits of convex combinations of \convex-

stable subgradients" at nearby points must themselves be convex-stable sub-
gradients.

Proposition 4.4 (stabilizing subdi�erentials) If the function f : Rn !
R is continuous, then at any point x 2 Rn we have

~@f(x) =
\
Æ>0

cl conv (@̂f(x+ ÆB))

=
\
Æ>0

cl conv (@f(x + ÆB))

=
\
Æ>0

cl conv (@Cf(x+ ÆB))

=
\
Æ>0

cl conv (~@f(x+ ÆB))
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Proof Since each expression contains the previous one (using the previous
result), it suÆces to show that the last expression is contained in ~@f(x). For
this, we simply observe the inclusion

cl conv (~@f(x + Æ0B)) � cl conv (@̂f(x + ÆB))

whenever 0 < Æ0 < Æ. |

Finally we show, under a horizon condition, that limits of convex combi-
nations of Clarke subgradients (and so, in particular, of gradients) at nearby
points are themselves Clarke subgradients.

Theorem 4.5 (stability of Clarke subdi�erential) For any continuous
function f : Rn ! R and any point x 2 Rn, if @1f(x) is pointed then

~@f(x) = @Cf(x):

Proof By Proposition 4.3, we need to show that if

v 2 \
Æ>0

cl conv (@̂f(x+ ÆB))

then v 2 @Cf(x). Assume the above condition holds. Then by the theorem
of Carath�eodory, for each integer j = 0; 1; : : : ; n there exist sequences fuijg
and fvijg in Rn and f�ijg in R+ (indexed by i 2 N) satisfying

nX
j=0

�ij = 1 for all i;

lim
i!1

uij = x for all j;

vij 2 @̂f(uij) for all i; j; and

lim
i!1

nX
j=0

�ijv
i
j = v:

We claim that for each index j the sequence f�ijvijg is bounded. If not,
there is an index j 0 and a subsequence I � N such that

�ij0kvij0k = max
j

�ijkvijk ! +1 as i!1 in I:
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Call the left hand side �i. Since for each j the sequence f(�ij=�i)vijg is
bounded, we can assume (taking a further subsequence) that it converges to
some vector vj 2 @1f(x) as i!1 in I. Now notice

kvj0k = 1 and
nX

j=0

vj = 0:

But since @1f(x) is pointed, so is its convex hull [20, Thm 8.49], and this is
a contradiction.

Hence, as we claimed, for each index j the sequence f�ijvijg is bounded,
so we can assume (taking a subsequence) that it converges to some vector
wj 2 Rn, and furthermore that the bounded scalar sequence f�ijg converges
to some scalar �j 2 R+. We then have

nX
j=0

wj = v and
nX

j=0

�j = 1:

De�ne a (nonempty) index set J = fj : �j > 0g. For j 2 J we have

��1j wj = lim
i!1

vij 2 @f(x);

whereas for j 62 J we have

wj = lim
i!1

�ijv
i
j 2 @1f(x):

Hence

v =
X
j2J

�j(�
�1
j wj) +

X
j 62J

wj

2 conv @f(x) + conv @1f(x)

= @Cf(x);

by Proposition 4.1(ii). |

Functions with a pointed horizon subdi�erential at a point are called direc-
tionally Lipschitz there [20].
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5 Sampling gradients: the non-Lipschitz case

We now return to our gradient-sampling framework in the case where the
continuous function f : Rn ! R may not be Lipschitz, but is nonetheless
di�erentiable almost everywhere. We shall see that this case is more prob-
lematic, but we begin with some positive results.

Given the convex nature of our proposed approximation (1.3), we hope
to approximate the Clarke subdi�erential @Cf(�x). Our approximation is
motivated by the relationship (1.2). To what extent does this relationship
still hold if f is not Lipschitz? The result below, which is essentially a slight
reworking of Clarke's original argument [7, p. 63], states a one-sided inclusion.
It assumes f is absolutely continuous on lines near �x: that is, for any points
u and v near �x, the function

t 2 [0; 1] 7! f(tu+ (1� t)v)(5.1)

is absolutely continuous. This is automatic for locally Lipschitz functions. It
also holds for the spectral radius and abscissa: the space of matrices strati-
�es into submanifolds (according to Jordan structure) on each of which these
functions are analytic [1], which shows that the function (5.1) is piecewise
di�erentiable with piecewise monotonic derivative, and hence absolutely con-
tinuous [22, 4.50].

Theorem 5.2 (covering gradients) Suppose, near the point �x 2 Rn, the
function f : Rn ! R is continuous, absolutely continuous on lines, and
di�erentiable almost everywhere, and Q is a full-measure subset of a neigh-
bourhood of �x consisting of points where f is di�erentiable. Then the Clarke
and convex-stable subdi�erentials satisfy

@Cf(�x) � ~@f(�x) =
\
Æ>0

cl conv (rf(Q \ (�x+ ÆB))):

Proof We �rst show, for any real Æ > 0,

@̂f(�x) � cl conv (rf(Q \ (�x+ ÆB))):(5.3)

To see this, suppose a vector y 2 Rn does not lie in the right hand side, so
by separation there is a vector z 2 Rn and real k such that yTz > k but

rf(x)T z � k for all x 2 Q \ (�x + ÆB):(5.4)
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If y 2 @̂f(�x) then for small real t we have

f(�x + tz) � f(�x) + yT tz + o(t);

so there exists t 2 (0; Æ=(2kzk)) such that

f(�x+ tz) > f(�x) + kt:

By continuity, for all points w 2 Rn close to �x we have

f(w + tz) > f(w) + kt:(5.5)

By Fubini's theorem [22, 6.124], almost all w close to �x satisfy

w + sz 2 Q for almost all s 2 [0; t]:(5.6)

Therefore we can choose w in �x + (Æ=2)B satisfying both (5.5) and (5.6).
Now consider the function g : [0; 1]! R de�ned by g(s) = f(w+sz). By

assumption, g is absolutely continuous and for almost all s 2 [0; t] we have

g0(s) = rf(w + sz)T z � k;

by (5.6) and (5.4). By the Fundamental Theorem of Calculus [22, 6.85] we
deduce g(t) � g(0)+kt, which contradicts inequality (5.5). Hence y 62 @̂f(�x),
so we have proved the inclusion (5.3).

We now apply this inclusion at points in a neighbourhood of �x and for
suitable Æ to obtain

cl conv (@̂f(�x+ Æ00B)) � cl conv (rf(Q \ (�x+ Æ0B))) � cl conv (@̂f(�x+ Æ0B))

whenever 0 < Æ00 < Æ0, and the equality in the main result follows. The
inclusion for the Clarke subdi�erential is a consequence of Proposition 4.3
(Clarke versus convex-stable subdi�erential). |

In passing, we note the analogy between the right hand side of the inclu-
sion we have just proved, and Fillipov's notion of a generalized solution for
di�erential equations with discontinuous right hand sides [11].

Returning to the sampling scheme described in Section 2, we can now
generalize Lemma 3.2.
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Lemma 5.7 If the function f satis�es the assumptions of Theorem 5.2 then
for all real � > 0, directions w 2 Rn, and indices i = 1; 2; : : : we have

pr fwTGi > d̂f(�x)(w)� �g > 0:

Proof It suÆces to show that the measurable set

fx 2 �x + ÆB : wTrf(x) > d̂f(�x)(w)� �g
has strictly positive Lebesgue measure. Suppose this fails, and de�ne Q to
be the set of points x 2 �x + ÆB where f is di�erentiable and

wTrf(x) � d̂f(�x)(w)� �:

Theorem 5.2 shows @Cf(�x) � cl convrf(Q). Hence
d̂f(�x)(w) � supwTrf(Q) � d̂f(�x)(w)� �;

which is a contradiction. |

We deduce the following non-Lipschitz version of Theorem 3.3 (outer
approximation), stating, loosely speaking, that our approximation to the
subdi�erential gives a good upper approximation to the regular subderivative.

Theorem 5.8 (upper approximation) Suppose, near the point �x 2 Rn,
the function f : Rn ! R is continuous, absolutely continuous on lines, and
di�erentiable almost everywhere. Then for any direction w 2 Rn we have

lim
k!1

maxwTCk � d̂f(�x)(w) almost surely:

Proof This follows from Lemma 5.7. |

Example 7.1 shows that the inequality in the above result may be strict.
With more care we can gain a little more insight into this result. The

following theorem parallels Theorem 2.1 (limiting approximation).

Theorem 5.9 (directional approximation) Suppose, near a point �x 2
Rn, the function f : Rn ! R is continuous, absolutely continuous on lines,
and di�erentiable on a full measure subset Q � Rn. Then, for any direction
w 2 Rn and suÆciently small sampling radius Æ > 0,

maxwTCk " supwTrf(Q \ (�x+ ÆB)) as k!1; almost surely:
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Proof With probability one, each xi 2 Q, so Gi 2 cl convrf(Q\ (�x+ÆB)).
Hence each set Ck is almost surely contained in cl convrf(Q \ (�x + ÆB)),
the right hand side is almost surely an upper bound.

We now claim, for all real � > 0 and indices i = 1; 2; : : :,

pr fwTGi > supwTrf(Q \ (�x + ÆB))� �g > 0:(5.10)

To see this, choose a point ~x 2 Q \ (�x + ÆB) satisfying

wTrf(~x) > supwTrf(Q \ (�x + ÆB))� �

2
:

Let ~Æ = Æ�k~x� �xk > 0. Then, as in the proof of Lemma 5.7, the measurable
set n

x 2 ~x+ ~ÆB : wTrf(x) > wTrf(~x)� �

2

o
has strictly positive Lebesgue measure, and our claim (5.10) follows. This
proves the result. |

In the Lipschitz case this gives a variant of Theorem 2.1 (limiting approx-
imation).

Corollary 5.11 (Lipschitz approximation) Suppose the function f is lo-
cally Lipschitz around �x and di�erentiable on a full-measure subset Q of a
neighbourhood of �x. Then for any suÆciently small sampling radius Æ > 0,

cl
1[
k=1

Ck = cl convrf(Q \ (�x+ ÆB)) almost surely:

Proof Denote the left and right hand side sets by C and D respectively.
Clearly these closed convex sets satisfy C � D, almost surely. By Theorem
5.9 (directional approximation) we know the support functions agree at any
given vector in Rn, almost surely. Hence in fact they agree on any given
countable dense subset of Rn, almost surely. But D is bounded, whence so
is C, so both support functions are continuous. Hence the support functions
are identical, almost surely, and the result follows. |

A natural test for optimality, in our gradient sampling scheme, is to ask
the question

0 2 Ck?(5.12)

The next result relates this test to �nding a Clarke-critical point.
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Theorem 5.13 (detecting critical points) Suppose, on a neighbourhood
of �x,

(i) f is locally Lipschitz, or

(ii) f is absolutely continuous on lines and continuously di�erentiable on a
full-measure open subset.

Then

@Cf(�x) � cl
1[
k=1

Ck almost surely:

Consequently, dist(0; Ck) ! 0 almost surely whenever �x is a Clarke-critical
point of f , and furthermore

0 2 int @Cf(�x) ) 0 2 intCk eventually, almost surely:

Proof Under either assumption we know

cl
1[
k=1

Ck = cl convrf(Q) almost surely;

where Q is a full-measure subset of a neighbourhood of �x, using Theorem
2.1 (limiting approximation) or Corollary 5.11 (Lipschitz approximation).
By Theorem 5.2 (covering gradients) we deduce the �rst inclusion. The
result about Clarke-critical points now follows, and the last implication is a
consequence of the fact that

int cl
1[
k=1

Ck = int
1[
k=1

Ck =
1[
k=1

intCk;

by convexity and nestedness. |

We have stated this result for the Clarke subdi�erential, although obviously
there is a completely parallel result replacing the Clarke subdi�erential with
the convex-stable subdi�erential throughout.

What about the opposite inclusion in Theorem 5.2 (covering gradients)?
To understand the issues here we need to consider horizon behaviour more
carefully.
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6 The Clarke subdi�erential and the horizon

condition

Consider once again a continuous function f : Rn ! R. If the horizon
subdi�erential @1f(�x) is pointed (so f is directionally Lipschitz around �x) we
know that f is di�erentiable almost everywhere near �x [3]. We also know that
the Clarke subdi�erential coincides with the convex-stable subdi�erential, by
Theorem 4.5 (stability of Clarke subdi�erential). Putting this fact together
with Theorem 5.2 (covering gradients) leads to the following result, providing
conditions under which convex combinations of gradients at nearby points
give a good approximation of the Clarke subdi�erential.

Corollary 6.1 (gradient-based approximation) Suppose that, close to
the point �x 2 Rn, the function f : Rn ! R is continuous, and absolutely
continuous on lines, with @1f(�x) pointed. If Q is a full-measure subset of a
neighbourhood of �x consisting of points where f is di�erentiable, then

@Cf(�x) =
\
Æ>0

cl convrf(Q \ (�x+ ÆB)):

In passing, we remark that a directionally Lipschitz function even of one
variable may not be absolutely continuous. For example, the \Lebesgue sin-
gular function" [22, Ex. 3.138] is continuous and nondecreasing on the interval
[0; 1], and hence directionally Lipschitz, but it is not absolutely continuous.

Our next result shows that, in searching for Clarke-critical points, provid-
ing our sampling radius is suÆciently small, the test 0 2 Ck will not generate
a false positive, even approximately.

Corollary 6.2 (false positives) Suppose, close to the point �x 2 Rn, the
function f : Rn ! R is continuous, with @1f(�x) pointed. If �x is not a
Clarke-critical point of f then for any suÆciently small sampling radius we
have

lim
k!1

dist(0; Ck) > 0 almost surely:

Proof As above, we know f is di�erentiable almost everywhere near �x.
Since 0 62 @Cf(�x), we know, for all small Æ > 0,

0 62 cl conv (@̂f(�x+ ÆB)) � cl
1[
k=1

Ck almost surely;
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by Theorem 4.5 (stability of Clarke subdi�erential). |

This suggests a conceptual algorithm for generating descent directions,
outlined in the next result.

Corollary 6.3 (descent directions) Suppose, near the point �x 2 Rn, the
function f : Rn ! R is continuous, and absolutely continuous on lines, with
@1f(�x) pointed. The sequence of random vectors

Yk = closest point to 0 in Ck, for k = 1; 2; : : :,

converges almost surely to a limit Y 2 Rn, and if �x is not a Clarke-critical
point of f and the sampling radius is small, then

d̂f(�x)(�Y ) < 0 almost surely:

Proof As before, f is di�erentiable almost everywhere near �x. It is routine
to check that the sequence Yk converges to the closest point to 0 in the set
C = cl [kCk. (For example, the nonincreasing sequence of functions k�k+ÆCk
epi-converges to k � k + ÆC , by [20, Prop 7.4], and is level-bounded, so the
minimizers converge as required, by [20, Thm 7.33].)

Since 0 62 cl [k Ck, by Corollary 6.2 (false positives) we deduce

0 < inf Y T
1[
k=1

Ck = lim
k!1

minY TCk � �d̂f(�x)(�Y );

by Theorem 5.8 (upper approximation). |

Notice, as with Theorem 5.13 (detecting critical points), we have stated the
above two corollaries for the Clarke subdi�erential, although there are anal-
ogous results for the convex-stable subdi�erential needing no pointedness
assumption.

At least when the function f is Lipschitz near �x, the above result is
reassuring. When 0 62 @Cf(�x) and we pick a small sampling radius, any
approximation �Y close to Y will satisfy

lim sup
x!�x; t#0

f(x� t �Y )� f(x)

t
= d̂f(�x)(� �Y ) < 0;
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by [20, Ex 9.15] and the continuity of d̂f(�x). Thus � �Y is a descent direction
which is stable with respect to small perturbations, both to itself and to the
base point �x.

On the other hand, when f is not Lipschitz around �x, the subdi�erential
@Cf(�x) is unbounded [20, Thm 9.13], so the choice of descent direction may
be highly sensitive under perturbation.

7 Examples

We end with some simple examples illustrating the delicate features of non-
Lipschitz optimization in this framework. The functions we consider here
even satisfy the strong assumption of regularity for all points x near the point
of interest �x (so in particular the Clarke subdi�erential coincides locally with
the subdi�erential).

Example 7.1 (overestimating subderivatives) We show here how, for
certain directions w 2 Rn, the estimate maxwTCk may be much larger than
the regular subderivative d̂f(�x)(w), even when f is regular near �x and satis�es
all the assumptions of Corollary 6.3 (descent directions).

We de�ne a function f : R2 ! R by

f(x) =
q
(kxk � 1)+ ;

where, for real u, we de�ne u+ = maxfu; 0g. A direct calculation shows

@̂f(x) = @f(x) = @Cf(x) =

8>><
>>:
f0g (kxk < 1)n�
2kxk

q
(kxk � 1)+

��1
x
o

(kxk > 1)

R+x (kxk = 1);

and

@̂f(x)1 = @1f(x) =

( f0g (kxk 6= 1)
R+x (kxk = 1):

Thus f is everywhere regular and satis�es all the assumptions of Corollary
6.3 at any point: furthermore, it is continuously di�erentiable on the full-
measure open set fx : kxk 6= 1g.

Consider the point �x = (1; 0). Our calculations are slightly easier if,
rather than a circular neighbourhood, we consider, in polar coordinates, the
neighbourhood

N = fx = (r; �) : j�j < Æ; jr � 1j < Æg:
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Let Q = fx 2 N : kxk 6= 1g, an open, full-measure subset of N . Then,
essentially by Theorem 2.1 (limiting approximation), if we sample our points
xi from N we obtain, almost surely,

cl
1[
k=1

Ck = cl convrf(Q)

= cl conv (f0g [ f(r; �) : j�j < Æ; 2r
p
Æ > 1g)

= f(r; �) : j�j � Æg:

Since
@Cf(�x) = f(r; �) : � = 0g;

the conclusion of Theorem 3.1 (inner approximation) fails.
We see from this that our approximations may give overestimates for

regular subderivatives: returning to Cartesian coordinates, if w = (0; 1) then
d̂f(�x)(w) = 0, whereas limk!1wTCk =1 almost surely.

Notice �nally that, if we denote the spectral abscissa of a matrix by �,
then we can write our function in the following form:

f(x1; x2) = �

2
6664

0 0 1 0
0 0 0 1

x1 � 1 x2 0 0
x2 �x1 � 1 0 0

3
7775 :

Example 7.2 (The horizon condition) This example shows the impor-
tance of the horizon condition in Section 6. We de�ne f : R2 ! R by

f(x) =
q
jkxk � 1j:

A direct calculation shows f is continuously di�erentiable on the full-measure
open set fx : kxk 6= 0; 1g,

@̂f(x) = @f(x) = @Cf(x) =

8<
:
n

sgn(kxk�1)

2kxk
p
jkxk�1j

x
o

(kxk 6= 0; 1)

Rx (kxk = 1)

(where, for nonzero real u we de�ne sgn u = u=juj), and

@̂f(x)1 = @1f(x) =

( f0g (kxk 6= 0; 1)
Rx (kxk = 1):
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Thus f is regular everywhere except at the origin (where we could easily
smooth it, if so desired), and it satis�es all the assumptions of Corollary 6.3
at any nonzero point x, except that @f(�x) has nonpointed horizon cone when
k�xk = 1.

We claim, for any sampling radius Æ > 0, at any point �x with k�xk = 1 we
have

~@f(�x) = cl conv (@f(�x + ÆB)) = cl convrf(Q \ (�x + ÆB)) = R2;(7.3)

(where Q is any full measure subset of a neighbourhood of �x consisting of
points where f is di�erentiable). That is, the conclusions of Theorem 4.5
(stability of Clarke subdi�erential) and Corollary 6.1 (gradient-based ap-
proximation) both fail badly.

To see this, without loss of generality choose �x = (0; 1). As before, our
calculations are slightly easier if we use the neighbourhood N (along with
the subset Q) and the sampling scheme of the previous example. We then
obtain, essentially by Theorem 2.1 (limiting approximation) again, almost
surely,

cl
1[
k=1

Ck = cl convrf(Q)

= cl conv f(r; �) : � 2 (�Æ; Æ) [ (� � Æ; � + Æ); 2r
p
Æ > 1g

= R2:

We deduce equations (7.3) easily, and our observation follows.
Returning to Cartesian coordinates, consider the new function ~f(x) =

f(x)� x2. Clearly 0 62 @C ~f(1; 0); that is, (1; 0) is not a Clarke-critical point
of ~f . Indeed, tracing around the unit circle from the point (1; 0) causes the
value of ~f to decrease locally at linear rate. However, for any sampling radius
Æ > 0, for this new function

0 2 intCk eventually, almost surely

(using the same convexity argument as in the proof of Theorem 5.13 (detect-
ing critical points)), so our optimality test will always give a false positive for
large enough sample size: Corollaries 6.2 (False positives) and 6.3 (Descent
directions) both fail.

24



Example 7.4 (Large samples) Our last example shows that even though
Theorem 5.13 guarantees that we can, in some sense, detect Clarke-critical
points, we may require a large sample size.

Consider the function f : R2 ! R de�ned by

f(x1; x2) = 2maxfjx1j;
q
jx2jg+ x1:

A calculation shows f is everywhere regular, with

@f(0; 0) = [�1; 3]�R;

so 0 2 int @̂f(0; 0): the origin is a \sharp" local minimizer, since, for example
f(x) � kxk=2 � 0 = f(0) for all small x.

We know that f is continuously di�erentiable on the full-measure open
set fx : x2 6= �x21g and absolutely continuous on lines, so Theorem 5.13
guarantees

0 2 intCk eventually, almost surely:(7.5)

To make our calculations slightly easier, let us take our points xi uniformly
distributed on [�Æ; Æ]2. Note Ck � [1; 3]�R unless j(xi)2j < (xi)

2
1 and xi < 0

for some index i 2 f1; 2; : : : ; kg. The probability of this event is Æ=6 for each
i, so Ck � [1; 3]�R with probability (1� Æ=6)k.

Suppose we choose our sample size as b1=Æc (the largest integer less than
1=Æ). Our argument shows, despite (7.5), we have

pr fdist(0; Cb1=Æc) � 1g ! e�1=6 as Æ # 0:

A similar calculation shows that to ensure the distance of Ck from the origin
is less than one with any given strictly positive probability, we need a sample
size growing like 1=Æ. In summary, we need a very large sample size to secure
0 2 Ck.

Denoting the spectral abscissa by �, we can write our function in the
form

f(x1; x2) = �

2
666666664

3x1 0 0 0 0 0
0 �x1 0 0 0 0
0 0 x1 2 0 0
0 0 2x2 x1 0 0
0 0 0 0 x1 2
0 0 0 0 �2x2 x1

3
777777775
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Notice that at the minimum the corresponding matrix is derogatory: the
multiple zero eigenvalue appears in several Jordan blocks. Such solutions
are, in a well-de�ned sense, atypical in spectral abscissa minimization. The
minimizing matrix for the problem at the end of Example 7.1 is, by contrast,
nonderogatory. It is unclear whether the phenomena exhibited in Examples
7.2 and 7.4 can occur in typical spectral abscissa minimization problems. For
a discussion of what we mean by \typical", see [4].
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