
IMA Journal of Numerical Analysis (2005) 25, 648–669
doi:10.1093/imanum/dri012
Advance Access publication on March 7, 2005

Algorithms for the computation of the pseudospectral radius and the
numerical radius of a matrix

EMRE MENGI† AND MICHAEL L. OVERTON‡

Computer Science Department, Courant Institute of Mathematical Sciences,
New York University, New York, NY 10012, USA

[Received on 25 March 2004; revised on 9 November 2004]

Two useful measures of the robust stability of the discrete-time dynamical system xk+1 = Axk are the
ε-pseudospectral radius and the numerical radius of A. The ε-pseudospectral radius of A is the largest
of the moduli of the points in the ε-pseudospectrum of A, while the numerical radius is the largest of
the moduli of the points in the field of values. We present globally convergent algorithms for computing
the ε-pseudospectral radius and the numerical radius. For the former algorithm, we discuss conditions
under which it is quadratically convergent and provide a detailed accuracy analysis giving conditions
under which the algorithm is backward stable. The algorithms are inspired by methods of Byers, Boyd–
Balakrishnan, He–Watson and Burke–Lewis–Overton for related problems and depend on computing
eigenvalues of symplectic pencils and Hamiltonian matrices.
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1. Introduction

The convergence of a discrete-time dynamical system

xk = Axk−1, (1.1)

where xk ∈ Cn , A ∈ Cn×n , depends on the norms of the powers of A. In the asymptotic sense, when
k → ∞, eigenvalues provide all the information needed to analyse (1.1). Specifically, it is well known
that limk→∞ ‖xk‖ = 0 is satisfied for all x0 if and only if A is stable, i.e. all of the eigenvalues of A lie
inside the unit circle. Here and throughout this paper ‖·‖ refers to the 2-norm. Moreover, for generic
x0, the asymptotic decay rate of (1.1) can be measured by the spectral radius of A,

ρ(A) = max{|λ|: λ ∈ Λ(A)},
where Λ(A) is the spectrum (set of eigenvalues) of A. The smaller the spectral radius is, the faster the
system (1.1) converges asymptotically.

On the other hand, eigenvalues themselves do not reveal the behavior of (1.1) for finite time unless
A is normal. For a non-normal matrix A, even though A is stable, the norm of the kth power ‖Ak‖ can
be arbitrarily large. Two related notions, the field of values and the pseudospectrum, provide additional
insight. The field of values of A is

F(A) = {z∗ Az: z∗z = 1, z ∈ Cn}, (1.2)
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and for real ε > 0, the ε-pseudospectrum is

Λε(A) = {z: z ∈ Λ(A + E), for some E such that ‖E‖ � ε}. (1.3)

The site (Embree & Trefethen, 2005) contains detailed information about pseudospectra, including a
comprehensive bibliography and software links.

Both the field of values and the ε-pseudospectrum of A are compact sets containing the eigenvalues
of A. Thus, it makes sense to talk about the points in these sets that are located furthest away from the
origin. Both the numerical radius of A

r(A) = max{|w|: w ∈ F(A)} (1.4)

and the analogous measure defined on the ε-pseudospectrum, the ε-pseudospectral radius

ρε(A) = max{|z|: z ∈ Λε(A)}, (1.5)

are convenient for estimating the norms of the powers of A. Figure 1 illustrates the pseudospectra
of a random matrix (i.e. the real and imaginary components of the entries of the matrix are chosen
independently from a normal distribution with mean 0 and standard deviation 1) for various values of ε
together with the point in the ε-pseudospectrum with the largest modulus for ε = 1. Similarly, Fig. 2
shows the point where the numerical radius of the same matrix is attained on the field of values.

It follows (Horn & Johnson, 1991) from the definition (1.4) that the numerical radius of A is within
factor of 0.5 of ‖A‖,

‖A‖
2
� r(A) � ‖A‖. (1.6)

FIG. 1. The eigenvalues (solid dots) and the ε-pseudospectra of a random 50 × 50 matrix are shown for various values of ε. The
bar on the right shows the values of ε on a log 10 scale. The point where the ε-pseudospectral radius is attained for ε = 1 is in
the lower right corner and is marked with a circle.
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FIG. 2. The field of values of the matrix for which the pseudospectra is illustrated in Fig 1. A circle marks the point where the
numerical radius is attained.

The lower bound together with the power inequality r(Ak) � r(A)k (Pearcy, 1966) implies an upper
bound on the kth power of A

‖Ak‖ � 2r(A)k . (1.7)

According to (1.7) one can gain insight about how large the norm of any power of A can be by computing
r(A). Moreover (1.6) implies that the upper bound 2r(A)k on ‖Ak‖ is typically tighter than ‖A‖k . Ac-
tually, r(A) captures the norm of A as well as the asymptotic behaviour of the system (1.1). Therefore,
it is a desirable measure for the analysis of the classical iterative systems for which the error can be
represented by the recurrence (1.1). The analysis of the classical iterative methods using the field of
values and the numerical radius has been studied by Axelsson et al. (1994) and Eiermann (1993).

For the pseudospectral radius it can be deduced from the Kreiss matrix theorem (Kreiss, 1962;
Trefethen & Embree, 2005; Wegert & Trefethen, 1994) that

sup
ε>0

ρε(A) − 1

ε
� sup

k
‖Ak‖ � e n sup

ε>0

ρε(A) − 1

ε
. (1.8)

In (1.8) the supremum of the norms of the matrix powers is bounded above and below in terms of the
ε-pseudospectral radius. The lower bound is especially useful as an indicator of how large the norms of
the matrix powers can grow. For instance, consider the ‘Grcar’ matrix (Trefethen & Embree, 2005), a
100 × 100 Toeplitz matrix with −1 on the first subdiagonal, 1 on the diagonal and on the first, second
and third superdiagonals and all other entries 0. When we multiply this matrix by 0.4, we obtain a stable
matrix A with ρ(A) ≈ 0.9052. However, this matrix is very close to being unstable as is demonstrated
by the fact that ρε(A) ≈ 1.0321 for ε = 10−8. For this value of ε, the ratio ρε(A)−1

ε that lower bounds
the left-hand side of (1.8) is approximately 3.2 × 106. For comparison purposes, a plot of the matrix
power norms ‖Ak‖ as a function of k is shown in Fig. 3. The norms decay to zero as they must since
A is stable. Nonetheless, they first grow to the order of 107, which is approximately revealed by the
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FIG. 3. The norms of the matrix powers for the 100 × 100 Grcar matrix multiplied by 0.4. The vertical axis corresponds to ‖Ak‖
for the k value in the horizontal axis.

lower bound in (1.8) using ε = 10−8. See Trefethen & Embree (2005), Chapters 14 and 16 for extensive
further discussion along these lines.

In this paper we develop algorithms to compute the robust stability measures r(A) and ρε(A). The
algorithm we present for the latter is the first algorithm to compute the pseudospectral radius with high
precision. For the computation of the numerical radius, the most recent method was suggested by
He & Watson (1997). As we discuss in Section 3, the numerical radius can be reduced to an eigenvalue
optimization problem with global maximum equal to the numerical radius. The method introduced in
He & Watson (1997) is based on finding a local maximum of this eigenvalue optimization problem
and verifying whether the local maximum is actually the global maximum by solving a generalized
eigenvalue problem. The simple iteration introduced to locate a local maximum is not guaranteed to
converge. Here we describe an algorithm that generates estimates converging to the numerical radius
in exact arithmetic. The local convergence rate is usually quadratic. The algorithm is analogous to the
Boyd–Balakrishnan algorithm for the H∞ norm (Boyd & Balakrishnan, 1990) and depends on the so-
lution of the generalized eigenvalue problems used for checking whether a local maximum is the global
maximum in He & Watson (1997).

We put emphasis on the computation of the pseudospectral radius, the subject of Section 2. Before
presenting a locally quadratically convergent algorithm for the ε-pseudospectral radius in Sections 2.2
and 2.3, we discuss its variational properties. The convergence analysis of the algorithm is simi- lar to
that in Burke et al. (2003b), so we briefly justify our claims about its convergence properties in Section
2.4. The boundary of the pseudospectrum of a matrix may contain arcs of circles which may potentially
cause numerical trouble for the pseudospectral radius algorithm. We investigate this phenomenon in
Section 2.5. In Section 2.6 we specify a version of the algorithm in floating point arithmetic which is
expected to produce accurate results as long as the pseudospectral radius problem is well conditioned.
In Section 3 we describe the algorithm for the numerical radius without any convergence and accuracy
analysis. We believe that the convergence analysis in Boyd & Balakrishnan (1990) and the accuracy
analysis in this paper can be extended to this algorithm. The algorithm for the ε-pseudospectral radius
is included in EigTool, Wright’s state-of-the-art software for computing pseudospectra (Wright, 2002).

Notation. The smallest singular value of A is denoted by σmin(A). The symbols λ̄ and A∗ denote the
complex conjugate of the scalar λ and complex conjugate transpose of the matrix A, respectively. Λ(A)
and Λ(A, B) are the set of eigenvalues of A and the set of generalized eigenvalues of the pencil A−λB,
respectively. When M = M∗, the largest eigenvalue of the matrix M is λmax(M). When describing
algorithms, we use the notation x mod 2π which refers to the real number in the interval [0, 2π) such
that x = k2π + x mod 2π for some integer k.
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2. Computation of the pseudospectral radius

In this section we will utilize the well known fact (Trefethen & Embree, 2005) that (1.3) is equivalent to

Λε(A) = {z ∈ C: σmin(A − z I ) � ε}. (2.1)

We will also refer to the strict ε-pseudospectrum,

Λ′
ε(A) = {z ∈ C: σmin(A − z I ) < ε}. (2.2)

For the convergence of continuous-time systems the analogous quantity to the pseudospectral radius
is the pseudospectral abscissa, the maximum of the real parts of the points in the pseudospectrum. In
Burke et al. (2003b), a quadratically convergent algorithm to compute the pseudospectral abscissa is
given, so a first thought to compute the pseudospectral radius of A might be to reduce the problem to
the computation of the pseudospectral abscissa of a related matrix. Given a complex number r eiθ in
the pseudospectrum, by taking the logarithm, we obtain ln r + iθ . Denoting the set that is obtained
by taking the logarithm of every point in Λε(A) by ln(Λε(A)), we conclude that the real part of the
rightmost point in ln(Λε(A)) is equal to the logarithm of the pseudospectral radius of A. However,
there may not be any matrix with the pseudospectrum ln(Λε(A)). For instance, as we discuss later in
this section, there are matrices for which the boundary of the ε-pseudospectrum contains an arc of a
circle centred at the origin. For such a matrix A, a line parallel to the imaginary axis intersects the
boundary of the set ln(Λε(A)) at infinitely many points, but in Burke et al. (2003b), it is shown that
vertical cross sections of the ε-pseudospectrum of a matrix have only finitely many boundary points.
Therefore, we derive an algorithm tailored to the pseudospectral radius, following the ideas in Burke
et al. (2003b). Before presenting the algorithm, we discuss the variational properties of ρε(A) that will
play a crucial role in our analysis of the algorithm later.

2.1 Variational properties of the ε-pseudospectral radius

In this section we are interested in how the pseudospectral radius ρε(X) varies with respect to ε and X .
Thus, we view the pseudospectral radius as a mapping fromR+×Cn×n toR+. The most basic result we
are looking for is the continuity of the pseudospectral radius with respect to ε and X . For this purpose
we notice that the pseudospectral radius is the robust regularization of the spectral radius in the sense of
Lewis (2002), i.e.

ρε(X) = sup
Y

{ρ(Y ): ‖Y − X‖ � ε}. (2.3)

Since the spectral radius is continuous in matrix space, the continuity of ρε(X) in matrix space immedi-
ately follows from Proposition 3.5 in Lewis (2002). In fact, joint continuity with respect to X and
ε can also be shown by proving upper and lower semicontinuity separately (A. S. Lewis, personal
communication).

THEOREM 2.1 (A. S. LEWIS) The function ρε(X) is jointly continuous with respect to ε and X every-
where.

The next result states that the (ε + β)-pseudospectral radius of X depends on the ε-pseudospectral
radius of the matrices in the β neighbourhood of X .

THEOREM 2.2 Let β and ε be non-negative real numbers. Then the equality

ρε+β(X) = sup
‖X ′−X‖�β

ρε(X ′)

holds.
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Proof. By definition (2.3)

ρε+β(X) = sup
Y

{ρ(Y ): ‖Y − X‖ � ε + β}
= sup

Y,X ′
{ρ(Y ): ‖X ′ − X‖ � β, ‖Y − X ′‖ � ε}

= sup
X ′

{ρε(X ′): ‖X ′ − X‖ � β}.

Therefore, the result follows. �
Next we focus on the differentiability of ρε(X). For this purpose let us introduce the function

p(ε,X): R+ × [0, 2π) → R for a given ε and X defined by

p(ε,X)(r, θ) = σmin(X − r eiθ I ) − ε. (2.4)

Note that p(ε,X)(r, θ) is less than or equal to 0 if and only if the complex number r eiθ belongs to
the ε-pseudospectrum of X . Well known properties of the minimum singular value function imply that
p(ε,X)(r, θ) is a continuous function of r and θ . The theorem below specifies the conditions under which
the function p(ε,X)(r, θ) is differentiable with respect to r and θ . Recall that a real-valued function
defined on a real domain is called real-analytic at a given point if the function has a real convergent
Taylor expansion at the given point.

THEOREM 2.3 Let ε ∈ R+ and X ∈ Cn×n . If the minimum singular value of X − r eiθ I is greater than
0 and has multiplicity one, then at (r, θ) the function p(ε,X)(r ′, θ ′) is real-analytic with respect to r ′ and
θ ′ with derivatives

∇ p(ε,X)(r, θ) = (−Re(eiθu∗v), Im(r eiθu∗v)),

where u and v are any consistent pair of unit left and right singular vectors corresponding to σmin(X −
r eiθ I ).

Proof. The function σmin(X − r ′ eiθ ′
I ) is real-analytic at (r, θ) provided σmin(X − r eiθ I ) is positive

and has multiplicity one. This immediately follows from the fact that X2(r ′, θ ′) = (X∗ −r ′ e−iθ ′
I )(X −

r ′ eiθ ′
I ) is analytic with respect to r ′ and θ ′ and therefore σ 2

min(X − r ′ eiθ ′
I ), the smallest eigenvalue

of X2(r ′, θ ′), is real-analytic whenever σ 2
min(X − r ′ eiθ ′

I ) has multiplicity one. The derivatives can be
derived by applying the chain rule to the result of Theorem 7.1 in Burke et al. (2003a). �

For a fixed ε and X , we call the constrained optimization problem

sup
p(ε,X)(r,θ)�0

r, (2.5)

the ε-pseudospectral radius problem at X . By the definition of p(ε,X)(r, θ) and the definition of the
ε-pseudospectral radius given in (2.1), we see that the value attained at a global maximizer of the ε-
pseudospectral radius problem at X is equal to ρε(X). Now we are ready to derive the derivatives of
ρε(X) with respect to ε and X .

THEOREM 2.4 Let a matrix X0 ∈ Cn×n and ε0 ∈ R+ be given. Suppose (r0, θ0) is a local maximizer
of the ε0-pseudospectral radius problem at X0 and the multiplicity of σmin(X0 − r0 eiθ0 I ) is one. Then
the gradient of p(ε0,X0)(r, θ) at (r0, θ0) is a non-negative multiple of (1, 0).

Moreover if the point (r0, θ0) is the unique global maximizer, ∇ p(ε0,X0)(r0, θ0) is non-zero and the
Hessian of p with respect to r and θ , ∇2 p(ε0,X0)(r0, θ0), is non-singular, then at (ε0, X0) the function
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ρε(X) is differentiable with respect to ε and X with derivatives

dρε0(X0)

dε
= −1

Re(eiθu∗v)
, ∇Xρε0(X0) = uv∗

Re(eiθu∗v)
,

where u and v are any consistent pair of unit left and right singular vectors corresponding to σmin(X0 −
r0 eiθ0 I ).

Proof. Since (r0, θ0) is a local maximizer of the ε0-pseudospectral radius problem at X0 and by
Theorem 2.3 p(ε0,X0)(r, θ) is differentiable with respect to r and θ at this maximizer, provided its gradi-
ent is non-zero, standard first-order necessary conditions must be satisfied. Thus, either the gradient of
p(ε0,X0) at (r0, θ0) is 0 or there exists a positive µ such that

(1, 0) − µ∇ p(ε0,X0)(r0, θ0) = 0.

In either case the gradient is a non-negative multiple of (1, 0) as desired. From Theorem 2.3, we know
that

∇ p(ε0,X0)(r0, θ0) = (−Re(eiθ0u∗v), Im(r0eiθ0u∗v)),

so when u∗v 
= 0, we have µ = −1
Re(eiθ0 u∗v)

.

When (r0, θ0) is the unique global maximizer with non-zero gradient and non-singular Hessian,
we deduce from a standard sensitivity result such as Theorem 5.53 in Bonnans & Shapiro (2000) that
dρε0 (X0)

dε = −µ
dp(ε0,X0)(r0,θ0)

dε = µ and ∇Xρε0(X0) = −µ∇X p(ε0,X0)(r0, θ0) = −µuv∗ hold (since
∇X p(ε0,X0)(r0, θ0) = uv∗; see Theorem 7.1 in Burke et al. (2003a)). �

2.2 Radial and circular searches

The algorithm depends on the steps that we call circular and radial searches. Figure 4 illustrates a radial
and a circular search for a variant of a 3 × 3 example given by Demmel (1987) and for ε = 10−3.18.
This matrix is an upper triangular Toeplitz matrix with the entry dj,k , k > j , equal to −102(k− j) and
the entries on the diagonal equal to 0.1 + 0.01i. For the rest of this section, let us fix ε ∈ R+ and the
matrix A ∈ Cn×n for which we are computing the pseudospectral radius. We drop the subscripts of the
function p(ε,A)(r, θ) for convenience.

The aim of a radial search is to find the point on the boundary of the ε-pseudospectrum with the
largest modulus in a given direction. More formally, given θ ∈ [0, 2π) such that there exists a positive
real number r ′ satisfying p(r ′, θ) = 0 , we want to calculate

ηε(θ) = max{r ∈ R+: p(r, θ) = 0}. (2.6)

We will state a theorem which suggests how we can compute the r values such that p(r, θ) = 0 holds
for a fixed θ ∈ [0, 2π).

THEOREM 2.5 Let r, ε ∈ R+ and θ ∈ [0, 2π). The matrix A − r eiθ I has ε as one of its singular values
if and only if the matrix

K (θ, ε) =
[

i eiθ A∗ ε I
−ε I i e−iθ A

]
(2.7)

has the pure imaginary eigenvalue ir.
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FIG. 4. The boundary of the ε-pseudospectrum for an example due to Demmel. (a) The radial search finds the point with
the maximum modulus on the pseudospectrum boundary in a given search direction. (b) The circular search determines the
intersection points of the ε-pseudospectrum boundary with a circle of given radius.

Proof. The matrices A − r eiθ I and iA e−iθ − ir I have the same set of singular values. It follows from
Byers (1988, Theorem 1) and Burke et al. (2003a, Lemma 5.3) that the matrix iA e−iθ − ir I has the
singular value ε if and only if the imaginary number ir is an eigenvalue of the matrix in (2.7). �

We note that the matrix K (θ, ε) is Hamiltonian, i.e. J K (θ, ε) is Hermitian, where

J =
[

0 I
−I 0

]
, (2.8)

with n × n blocks. Using definition (2.6) and Theorem 2.5, ηε(θ)i is an imaginary eigenvalue of
K (θ, ε). According to the next corollary ηε(θ)i is actually the imaginary eigenvalue with the largest
imaginary part.

COROLLARY 2.6 (RADIAL SEARCH) Given a number θ ∈ [0, 2π) with p(r ′, θ) = 0 for some r ′, the
quantity ηε(θ) defined in (2.6) is the largest of the imaginary parts of the pure imaginary eigenvalues of
K (θ, ε).

Proof. Since there exists r ′ such that p(r ′, θ) = 0, Theorem 2.5 implies that the matrix K (θ, ε) has
an imaginary eigenvalue. Let rε(θ)i be the imaginary eigenvalue of the matrix K (θ, ε) with greatest
imaginary part. Using definition (2.6) and Theorem 2.5, ηε(θ)i ∈ Λ(K (θ, ε)), i.e. rε(θ) � ηε(θ). Now
suppose rε(θ) is strictly greater than ηε(θ). Again from Theorem 2.5, we deduce that A −rε(θ) eiθ I has
a singular value ε (not necessarily the smallest one), so p(rε(θ), θ) � 0. Since p is a continuous function
of r and p(r, θ) approaches ∞ as r goes to ∞, from the intermediate value theorem we conclude that for
some r̂ � rε(θ) > ηε(θ), p(r̂ , θ) = 0. But this contradicts the definition of ηε(θ) in (2.6). Therefore,
ηε(θ) = rε(θ) must hold. �

In a circular search we identify the set of points on the boundary of the pseudospectrum with a given
modulus. In other words, given a positive real number r , we need to determine those θ values in the
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interval [0, 2π) for which p(r, θ) = 0 is satisfied. A result from Byers (1988) implies that A − eiθ I has
ε as one of its singular values if and only if the pencil P(1, ε)−λQ(1, ε) has the generalized eigenvalue
eiθ , where

P(r, ε) =
[−ε I A

r I 0

]
, Q(r, ε) =

[
0 r I
A∗ −ε I

]
. (2.9)

The pencil P(r, ε)∗ − λQ(r, ε)∗ is symplectic, i.e. P(r, ε)∗ J P(r, ε) = Q(r, ε)∗ J Q(r, ε) for the matrix
J defined in (2.8). Apart from the symplectic structure of the pencil P(r, ε) − λQ(r, ε), we note that
D(θ)(P(r, ε) − eiθ Q(r, ε)) is Hermitian for all θ , where

D(θ) =
[

I 0
0 −e−iθ I

]
. (2.10)

The error analysis in Section 2.6 exploits this structure.
We present a generalized version of Byers’ result, establishing a relation between the singular values

of A−r eiθ I and the eigenvalues of the pencil P(r, ε)−λQ(r, ε). We recall that a 2n×2n pencil X −λY
is said to be singular if det(X − λY ) = 0 for all λ ∈ C; otherwise it is said to be regular in which case
it has at most 2n finite eigenvalues.

THEOREM 2.7 (CIRCULAR SEARCH) The matrix A − r eiθ I has ε as one of its singular values if and
only if the pencil P(r, ε) − λQ(r, ε) has the generalized eigenvalue eiθ or the pencil P(r, ε) − λQ(r, ε)
is singular.

Proof. The matrix A − r eiθ I has the singular value ε if and only if[
0 A − r eiθ I

A∗ − r e−iθ I 0

]
has ε as one of its eigenvalues. But this holds if and only if

det

[ −ε I A − r eiθ I
A∗ − r e−iθ I −ε I

]
= 0

or equivalently, multiplying the matrix above by D∗(θ) on the left

det

[ −ε I A − r eiθ I
−eiθ A∗ + r I ε eiθ I

]
= 0.

By rearranging the matrix above, we see that det(P(r, ε) − eiθ Q(r, ε)) = 0. �
Unlike a radial search, in a circular search we wish to determine all of the zeros of p(r, ·). Hence, as

long as P(r, ε)−λQ(r, ε) is regular, to find the points on the ε-pseudospectrum boundary with modulus
r we need to check whether A − r eiθ I has ε as its minimum singular value for each θ ∈ [0, 2π) such
that eiθ ∈ Λ(P(r, ε), Q(r, ε)).

2.3 The algorithm

We now combine radial and circular searches to obtain an algorithm for the ε-pseudospectral radius.
For now, we assume that the pencil we use for circular searches is regular for all values of r . The issue
of singular pencils is the theme of Section 2.5. In particular, we explain how the algorithm below can
be modified for singular pencils.

The algorithm is based on the Boyd–Balakrishnan algorithm (Boyd & Balakrishnan, 1990) and
the criss-cross method for the pseudospectral abscissa introduced by Burke et al. (2003b). It keeps an
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estimate of the pseudospectral radius and a set of open ‘intervals’, I j
1 , I j

2 , . . . , I j
mj . Actually, all these are

intervals (γ
j

k , ζ
j

k ) ⊂ [0, 2π) with the possible exception of I j
mj which may ‘wrap around the circle’, i.e.

I j
mj = (γ

j
mj , 2π)∪[0, ζ

j
mj ) with γ

j
mj > ζ

j
mj . Let the real number η j be the estimate of the pseudospectral

radius at the j th iteration and let θ ∈ [0, 2π). Then for j > 1 the point η j eiθ lies inside the strict
pseudospectrum if and only if the angle θ is contained in one of I j

1 , I j
2 , . . . , I j

mj .
At each iteration, the algorithm applies a radial search in the direction of the midpoint of each

interval. The estimate of the pseudospectral radius is refined to the maximum of the modulus values
returned by the radial searches. The open intervals are updated by the application of a circular search.
New open intervals contain the angles of the points lying inside the strict pseudospectrum and on the
circle with radius equal to the new estimate of the pseudospectral radius. Initially, we start with a radial
search in the direction of the angle of an arbitrary eigenvalue whose modulus is equal to the spectral
radius.

ALGORITHM 2.8

1. Let θρ be the angle of an eigenvalue with modulus ρ(A), set j = 0 and Φ0 = [θρ].

2. Radial searches: Perform a radial search for each midpoint Φ
j
k ∈ Φ j . Compute

η j+1 = max{ηε(Φ
j
k ): Φ

j
k ∈ Φ j }, (2.11)

where ηε is defined in (2.6).

3. Circular search: Perform a circular search to find the intersection points of the circle with radius
η j+1 and the ε-pseudospectrum boundary. Using these intersection points determine the open
intervals I j+1

1 , I j+1
2 , . . . , I j+1

m j+1 in which p(η j+1, ·) is negative. Compute the new set of midpoints

Φ j+1 = {Φ j+1
1 , Φ

j+1
2 , . . . , Φ

j+1
m j+1},

where Φ
j+1
k is the midpoint of the interval I j+1

k ,

Φ
j+1
k =

⎧⎨⎩
γ

j+1
k +ζ

j+1
k

2 , if γ
j+1

k < ζ
j+1

k ,

γ
j+1

k +ζ
j+1

k +2π

2 mod 2π, otherwise.

4. Increment j by one, go to step 2.

In Fig 5, the first two iterations of a sample run of the algorithm are shown. The initial radial search
is followed by a circular search which detects four intersection points. Next we perform two radial
searches in the directions of the midpoints of two intervals in which p(η1, ·) is negative. The maximum
of the values returned by the radial searches is our next estimate η2 for the ε-pseudospectral radius. For
the specific example, the input matrix is real, so the values returned by the radial searches are equal. We
continue with a circular search as before.

It is possible to obtain a slight improvement in Algorithm 2.8 by changing the radial search to return
the largest r in absolute value such that p(r, θ) = 0. Corollary 2.6 can be extended to show that the
modulus of the pure imaginary eigenvalue of K (θ, ε) with the largest imaginary part in absolute value is
the largest zero of p(·, θ) in absolute value. This version of the radial search may occasionally provide
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FIG. 5. First two iterations of the algorithm on a shifted companion matrix.

a better initial estimate, however, for the later iterations the gain is likely to be insignificant. To keep the
description and analysis simple we use definition (2.6).

In Algorithm 2.8 one point that is left unspecified is how the intervals I j
1 , I j

2 , . . . , I j
mj can be deter-

mined from the intersection points returned by a circular search. One trivial and robust way is to sort the
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intersection points and compute σmin(A − η j eiθ I ) at the midpoint θ of each adjacent pair. The adjacent
pair constitutes an interval in which p(η j , ·) < 0 is satisfied if and only if σmin(A − η j eiθ I ) < ε.
Another possibility is to classify the intersection points as crossing or non-crossing zeros. We call the
intersection point θ ′ a crossing zero of p(r, ·) if p(r, ·) has opposite sign on (θ ′ −α, θ ′] and [θ ′, θ ′ +α′)
for sufficiently small positive α. Otherwise the intersection point is called a non-crossing zero of p(r, ·).
We can distinguish the crossing zeros from non-crossing zeros using the theorem below under the as-
sumption that σmin(A − r eiθ I ) is of multiplicity one for each intersection point r eiθ .

THEOREM 2.9 (CROSSING VERSUS NON-CROSSING ZEROS DURING THE CIRCULAR SEARCHES)
Let r ∈ R+ and eiθ0 be an eigenvalue of the pencil P(r, ε)−λQ(r, ε). Moreover suppose that σmin(A −
r eiθ0 I ) is simple and equal to ε. Then θ0 is a crossing zero of p(r, ·) if and only if the algebraic
multiplicity of the eigenvalue eiθ0 is odd.

Proof. By the definitions of P(r, ε) and Q(r, ε) (see (2.9))

P(r, ε) − λQ(r, ε) = det

[ −ε I A − λr I
r I − λA∗ λε I

]
.

We define the function q: C → C as the determinant of this matrix with the bottom block multiplied by
−λ̄,

q(λ) = (−1)n λ̄n det(P(r, ε) − λQ(r, ε)) = det

[ −ε I A − λr I

|λ|2 A∗ − λ̄r I −|λ|2ε I

]
. (2.12)

Define a function g: R → C by g(θ) = q(eiθ ). Now if the multiplicity of eiθ0 as the eigenvalue of the
pencil P(r, ε) − λQ(r, ε) is m, we have

g(θ) = q(eiθ ) = β(θ)(eiθ − eiθ0)m, (2.13)

where β: R → C is a continuous function with β(θ0) 
= 0. Furthermore, when we make the substitution
λ = eiθ in the right-hand side of (2.12), we see that the eigenvalues of the resulting matrix are ±σj (A −
r eiθ I ) − ε, i.e. plus and minus the singular values of A − r eiθ I decremented by ε. Therefore,

g(θ) = (−1)n
n∏

j=1

(σj (A − r eiθ I ) − ε)(σj (A − r eiθ I ) + ε) (2.14)

implying g(θ) is real valued for all θ .
Now for real small α, we deduce from the equality

ei(θ0+α) − eiθ0 = eiθ0(eiα − 1) = eiθ0 iα + O(α2) = α(ei(θ0+π/2) + O(α))

and from (2.13) that

g(θ0 + α) = αm(β(θ0 + α) emi(θ0+π/2) + O(α)) ≡ αm f (θ0, α)

holds, where f : R× R → R is continuous. Notice that because of the continuity of f and the fact that
f (θ0, 0) = β(θ0) emi(θ0+π/2) is a non-zero real number, f (θ0, α) and f (θ0, −α) are non-zero with the
same sign. Therefore, for all small α, g(θ + α) = αm f (θ0, α) and g(θ − α) = (−α)m f (θ0, −α) have
different signs if and only if m is odd. But according to (2.14) the sign of g(θ) changes around θ0 if and
only if the sign of p(r, θ) changes. �
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Theorem 2.9 allows us in principle to classify in which intervals p(η j , ·) is negative by evaluating
σmin(A − η j eiθ I ) only at the midpoint of one pair of intersection points computed in step 3, provided
the assumption that σmin(A − r eiθ I ) is simple at the intersection points is valid. In practice, however,
evaluation of σmin(A − η j eiθ I ) at every midpoint seems a simpler and more robust way to determine in
which intervals p(η j , ·) is negative.

2.4 Convergence analysis of Algorithm 2.8

We claim that the sequence of iterates {η j } generated by Algorithm 2.8 converges to the ε-pseudospectral
radius of A. Recall that we assume the pencil for the circular searches is regular which implies that there
are at most 2n intersection points of the circle of radius r and the ε-pseudospectrum boundary. The con-
vergence proof is analogous to that of the crisscross method to compute the pseudospectral abscissa
(Burke et al., 2003b, Theorem 3.2). Therefore, we shall just give an outline of the proof.

First note that on a circle centered at the origin and with radius strictly between the spectral radius
and the ε-pseudospectral radius there are points lying in the strict ε-pseudospectrum as shown by the
following argument. Given a point z on the boundary of the ε-pseudospectrum, according to definition
(1.3) z ∈ Λ(A + E) for some E with norm ε. But the eigenvalues of A + t E are continuous functions
of t ∈ [0, 1]. Therefore, there must be a continuous path from each point on the ε-pseudospectrum
boundary to an eigenvalue of A lying entirely in the strict ε-pseudospectrum except the end point on the
boundary.

If at some iteration j the ε-pseudospectral radius estimate η j is equal to the ε-pseudospectral ra-
dius, there is nothing to prove. Thus, suppose that none of the estimates is equal to the ε-pseudospectral
radius. In this case the estimates {η j } are monotonically increasing, bounded above by the ε-
pseudospectral radius and bounded below by the spectral radius. This can be easily shown by induction
considering the update rule (2.11) and the definition of ηε(θ) in (2.6).

Since the estimates are in increasing order bounded above by the ε-pseudospectral radius, they must
converge to a real number η∞ less than or equal to the ε-pseudospectral radius. Suppose η∞ is strictly
less than the ε-pseudospectral radius. There must be open intervals such that the function p(η∞, θ)
is non-positive. Otherwise we obtain a contradiction with the result stating that for all r between the
spectral radius and the pseudospectral radius there are points lying inside the ε-pseudospectrum and on
the circle centered at the origin with radius r . But from the existence of the open intervals in which the
inequality p(η∞, θ) � 0 is satisfied, it is possible to deduce p(η∞, Φ

j
k ) � 0 for sufficiently large j

and for some k. Therefore, the inequality η j+1 � η∞ holds for sufficiently large j . This contradicts
the fact that the iterates are monotonically increasing. Therefore, the limit η∞ must be equal to the
ε-pseudospectral radius. Thus we have:

THEOREM 2.10 Suppose the pencil P(r, ε) − λQ(r, ε) is regular for all positive r . Then the sequence
{η j } generated by Algorithm 2.8 converges to ρε(A).

Just like the crisscross algorithm for the pseudospectral abscissa, we expect Algorithm 2.8 to con-
verge to the pseudospectral radius quadratically under the same regularity assumption stated in Burke
et al. (2003b), namely, that the global maximizers of the ε-pseudospectral radius problem (2.5) are
regular. In Burke et al. (2003b) a point in the complex plane (x, y) is called regular if the multiplicity
of the minimum singular value of A − (x + iy)I is one and the pair of left and right singular vectors
corresponding to this minimum singular value are not orthogonal to each other. To show the quadratic
convergence, the approach in Burke et al. (2003b, Section 4 and Section 5) can be followed. The cru-
cial point that is worth noting here is that by Theorem 2.3 the function p(r, θ) is analytic whenever the
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minimum singular value of A − r eiθ I is positive and has multiplicity one. Additionally, by Theorem
2.4 around a regular local maximum of the pseudospectral radius problem, the gradient of p must be a
positive multiple of (1, 0). Suppose the point (r0, θ0) is a regular local maximum. Now an analogous
argument to that of Theorem 4.1 and Corollary 4.5 in Burke et al. (2003b) applies to deduce the exist-
ence of a real-analytic function f (θ) near zero such that p(r, θ) and r − r0 + f (θ − θ0) have the same
signs for all r and θ sufficiently close to (r0, θ0). Moreover the function f satisfies the properties

f (0) = f ′(0) = · · · = f (2k−1)(0) = 0, f (2k)(0) > 0, (2.15)

for some k � 1. According to Section 5 in Burke et al. (2003b) since the pseudospectrum around a
local maximum can be described by a function satisfying (2.15), Algorithm 2.8 converges quadratically
to the global maximum which is the pseudospectral radius in our case.

As argued in Burke et al. (2003b), for generic matrices the multiplicity of σmin(A − r eiθ I ) is one
at the maximizer (r, θ). If the multiplicity of the minimum singular value is greater than one at a maxi-
mizer, the quadratic convergence proof outlined above does not apply, although it may be possible to
extend the proof to cover such cases.

2.5 Singular pencils in the circular search

We first consider the geometrical interpretation of the singularity of the pencil in a circular search.
When the boundary of the ε-pseudospectrum of A contains an arc of the circle of radius r centered
at the origin, we infer from Theorem 2.7 that the pencil P(r, ε) − λQ(r, ε) is singular. Notice that
the reverse implication does not necessarily hold. For generic matrices the minimum singular value of
A − r eiθ I has multiplicity one for all θ (see Burke et al., 2003b) and Theorem 2.11 tells us that there
are actually only two possibilities when the pencil P(r, ε) − λQ(r, ε) is singular.

THEOREM 2.11 (SINGULAR PENCILS AND CIRCULAR PSEUDOSPECTRA) Given a positive real num-
ber r suppose that the pencil P(r, ε) − λQ(r, ε) is singular and that σmin(A − r eiθ I ) has multiplicity
one for all θ ∈ [0, 2π). Then either

• the circle with radius r lies completely inside the strict ε-pseudospectrum or

• the ε-pseudospectrum boundary contains the circle of radius r .

Proof. By Theorem 2.7 the singularity of the pencil guarantees that given an arbitrary θ ∈ [0, 2π), the
matrix A − r eiθ I has ε as one of its singular values, so p(r, θ) � 0. If for all θ , p(r, θ) < 0 is satisfied,
the first case holds. So assume there is a zero of p(r, ·). By way of contradiction, suppose there exists θ̃
such that p(r, θ̃ ) < 0. Let θ̂ be the zero of p(r, ·) closest to θ̃ . Without loss of generality assume θ̂ is
greater than θ̃ . For all θ ∈ [θ̃ , θ̂ ), p(r, θ) < 0, so the smallest singular value of A − r eiθ I is strictly less
than ε, and hence, the second smallest singular value of A − r eiθ I is less than or equal to ε. It follows

by the continuity of singular values that the second smallest singular value of A − r eiθ̂ I is less than or

equal to ε. This contradicts the fact that σmin(A − r eiθ̂ I ) is equal to ε and has multiplicity one. Thus,
p(r, θ) = 0 for all θ , so the second case holds. �

Now returning to Algorithm 2.8, we note that for all j there is a zero of the function p(η j , ·) because
of the way we update the estimates of the pseudospectral radius (2.11). Therefore, the circle of radius
η j cannot completely lie inside the strict pseudospectrum. In other words, for generic matrices the
singularity of the pencil used by Algorithm 2.8 for the circular search implies that the ε-pseudospectrum
boundary contains a circle.
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In general, the presence of singular pencils is not desirable for Algorithm 2.8, because it is difficult
to determine the singularity of a pencil. Thus, our strategy to handle singular pencils is to try to avoid
them. This turns out to be surprisingly simple. The next result is a corollary of Theorem 2.7.

COROLLARY 2.12 (AVOIDING SINGULAR PENCILS) Let r be a positive real number such that σmin(A−
r eiθ I ) > ε for some θ . Then the pencil P(r, ε) − λQ(r, ε) is regular.

For all r greater than η1, by (2.6) σmin(A − r eiθρ I ) > ε. Therefore, as long as the initial estimate
computed in floating point arithmetic η̂1 is greater than the exact initial estimate η1, no singular pencils
will be encountered. In particular, the convergence analysis of the previous subsection is valid. Trouble
may occur, however, when η̂1 < η1 in which case there may not exist θ such that σmin(A − r eiθ I ) > ε.
In general, when σmin(A − η̂1 eiθ I ) < ε for all θ , the circle of radius η̂1 lies completely inside the
ε-pseudospectrum, so the circular search in floating point arithmetic may potentially fail to return any
intersection point.

All this discussion suggests raising the initial estimate η̂1 by a tolerance. In the next subsection
we show that provided structure preserving backward stable eigenvalue solvers are used for the radial
searches, η̂1 is the imaginary part of the largest imaginary eigenvalue of K (θρ, ε + β), where β =
O(δmach(‖A‖ + ε)). Here δmach refers to the machine precision and O(δmach) means ‘of the order of the
machine precision’, a standard terminology that is made precise, e.g. in Trefethen & Bau (1997). We
have (see Theorem 2.5 and Corollary 2.6)

σmin(A − η̂1 eiθρ I ) = ε + β.

We essentially want to increment η̂1 by a value δr such that

σmin(A − (η̂1 + δr) eiθρ I ) > ε. (2.16)

In a numerical implementation of Algorithm 2.8, the case we need to worry about is when β is negative.
Assuming that the multiplicity of σmin(A−η̂1 eiθρ I ) is one (so that Theorem 2.3 implies σmin(A−r eiθρ I )
is real-analytic at r = η̂1), it follows from the equality

(ε + β) + δr
∂σmin(A − r eiθρ I )

∂r

∣∣∣∣∣
r=η̂1

+ O(δr2) = σmin(A − (η̂1 + δr) eiθρ I ),

that for δr = −β
/ ∂σmin(A−r eiθρ I )

∂r |r=η̂1 , σmin(A−(η̂1+δr) eiθρ I ) = ε+O(δr2) holds. Since according to

Theorem 2.3, ∂σmin(A−r eiθρ I )
∂r |r=η̂1 = ∂p(r,θρ)

∂r |r=η̂1 = −Re(eiθρ u∗v), where u and v are unit left and right
singular vectors corresponding to the minimum singular value of A − η̂1 eiθρ I , we keep incrementing
η̂1 by β

Re(eiθρ u∗v)
until (2.16) is satisfied. Usually it is sufficient to iterate once or twice to obtain a

satisfactory δr .

2.6 Accuracy of Algorithm 2.8

We analyze the error introduced by a numerical implementation of Algorithm 2.8 that generates in-
creasing estimates in floating point arithmetic and terminates when the circular search fails to return
any intersection point. The pseudospectral radius problem (2.5) may be ill conditioned. This is the case
when the pseudospectral radius is differentiable and the smallest left and right singular vectors at the
global maximizer are close to being orthogonal (see Theorem 2.4). Therefore, we focus on the backward
error.
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We start with an error analysis for the radial search. From Corollary 2.6 we know that the exact
value ηε(θ) = rε(θ), where rε(θ)i is the imaginary eigenvalue of K (θ, ε) with the largest imaginary
part. On the other hand, assuming that the eigenvalues are computed by a backward stable algorithm, the
counterpart of rε(θ) in floating point arithmetic, say r̂ε(θ), is the largest imaginary part of the imaginary
eigenvalues of a perturbed matrix

K̃ (θ, ε) = K (θ, ε) + E, (2.17)

where ‖E‖ = O(δmach‖K (θ, ε)‖) or, since ‖K (θ, ε)‖ � 2(‖A‖ + ε), ‖E‖ = O(δmach(‖A‖ + ε)).
Additionally, when the algorithm used to solve the Hamiltonian eigenvalue problem is structure pre-
serving, the matrices E and K̃ (θ, ε) are Hamiltonian. The analysis for the radial search is valid only
when a backward stable, structure preserving Hamiltonian eigenvalue solver (see Chu et al., 2004) is
used within Algorithm 2.8.

We first derive an upper bound on the result returned by the radial search in terms of the radius of
nearby pseudospectra. The following result inspired by Byers (1988) relates the eigenvalues of K̃ (θ, ε)
and the (ε + β)-pseudospectrum of A, where β is some real number with |β| at most the norm of the
perturbation matrix E .

THEOREM 2.13 (ACCURACY OF THE RADIAL SEARCH) Suppose the Hamiltonian matrix K̃ (θ, ε) has
the imaginary eigenvalue ir . Then ir ∈ Λ(K (θ, ε + β)) for some real β such that |β| � ‖E‖.

Proof. Since ir ∈ Λ(K̃ (θ, ε)),

det(K̃ (θ, ε) − ir I ) = det(J K̃ (θ, ε) − ir J ) = 0.

Notice that J K̃ (θ, ε)−ir J is Hermitian, meaning that the perturbed Hermitian matrix J K̃ (θ, ε)−ir J −
J E = J K (θ, ε) − ir J has a real eigenvalue β which is at most ‖E‖ in absolute value (from Weyl’s
Theorem; see e.g. Horn & Johnson, 1985, Theorem 4.3.1). Now by the definition of K (θ, ε) (see (2.7))

0 = det(J K (θ, ε) − ir J − β I ) = det(K (θ, ε) + β J − ir I ) = det(K (θ, ε + β) − ir I ).

Hence, ir is an eigenvalue of K (θ, ε + β). �
An immediate consequence of Theorem 2.13 is that r̂ε(θ) � ηε+β(θ) for some β with |β| � ‖E‖;

therefore, the result of the radial search in floating point arithmetic, r̂ε(θ), satisfies the inequality

r̂ε(θ) � ρε+‖E‖(A). (2.18)

We now turn our attention to the circular search. In order to find the intersection points of the circle
of radius r and the ε-pseudospectrum boundary, we compute the eigenvalues of the pencil P(r, ε) −
λQ(r, ε). In floating point arithmetic, assuming a backward stable algorithm is used, we retrieve the
eigenvalues of a nearby pencil P̃(r, ε) − λQ̃(r, ε). Additionally, for any non-negative real µ, we make
use of the notation

P̃(r, µ) = P(r, µ) + E1 and Q̃(r, µ) = Q(r, µ) + E2,

where E1 = P̃(r, ε) − P(r, ε) and E2 = Q̃(r, ε) − Q(r, ε). The fact that eigenvalue solver is back-
ward stable implies ‖E1‖ = O(δmach(‖A‖ + ε + ρε(A))) and ‖E2‖ = O(δmach(‖A‖ + ε + ρε(A))),
since ‖E1‖ = O(δmach‖P(r, ε)‖) and ‖P(r, ε)‖ � (‖A‖ + ε + ρε(A)) and similarly for ‖E2‖. The
error analysis for the circular search involves the unitary matrix D(θ) (see (2.10)). The role of D(θ) in
the analysis below is analogous to the role of J in the error analysis for the radial search in the sense
that D(θ)(P(r, ε) − eiθ Q(r, ε)) is Hermitian for all θ . In addition to the backward stability require-
ment on the generalized eigenvalue solver, we also assume it preserves the structure so that for all θ ,
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D(θ)( P̃(r, ε)−eiθ Q̃(r, ε)) is Hermitian. Unfortunately, we are not aware of the existence of a backward
stable algorithm preserving this structure at the moment, but the assumption that the eigenvalue solver
preserves this structure is essential for the analysis.

We are interested in bounding the estimate for the pseudospectral radius from below in terms of a
nearby pseudospectral radius when the circular search does not return any intersection point. In this
case the pencil P̃(r, ε) − λQ̃(r, ε) does not have any unit eigenvalue.

THEOREM 2.14 (ACCURACY WHEN THE CIRCULAR SEARCH FAILS) Suppose the pencil P̃(r, ε) −
λQ̃(r, ε) does not have any unit eigenvalue and there exists θ such that σmin(A − r eiθ I ) � ε + ‖E1‖ +
‖E2‖. Then the pencil P(r, µ) − λQ(r, µ) does not have any unit eigenvalue for all positive µ �
ε − ‖E1‖ − ‖E2‖.

Proof. Let χj (θ) and ϕj (θ), j = 1, . . . , 2n, denote the eigenvalues of N (θ) = D(θ)( P̃(r, 0) −
eiθ Q̃(r, 0)) and R(θ) = D(θ)(P(r, 0) − eiθ Q(r, 0)) as functions of θ in descending order. Notice that
χj (θ) and ϕj (θ) are real-valued continuous functions of θ , since the entries of the matrices N (θ) and
R(θ) are continuous with respect to θ and both of the matrices are Hermitian for all θ . Note also that

|χj (θ) − ϕj (θ)| � ‖E1‖ + ‖E2‖ (2.19)

holds for all j and θ . This inequality follows from the fact that ‖N (θ) − R(θ)‖ = ‖E1 − eiθ E2‖ �
‖E1‖ + ‖E2‖, so the corresponding eigenvalues of the Hermitian matrices cannot differ by more than
‖E1‖ + ‖E2‖.

Since the pencil P̃(r, ε) − λQ̃(r, ε) does not have any unit eigenvalue, for all θ

det(D(θ)(P̃(r, ε) − eiθ Q̃(r, ε))) = det(D(θ)( P̃(r, 0) − eiθ Q̃(r, 0) − εD∗(θ)))

= det(D(θ)( P̃(r, 0) − eiθ Q̃(r, 0)) − ε I )

= det(N (θ) − ε I )


= 0.

Hence, the function χj (θ) 
= ε for all j and θ . But the assumption that σmin(A − r eiθ̂ I ) � ε + ‖E1‖ +
‖E2‖ for some θ̂ implies that for all 1 � j � n

ϕj (θ̂) � ε + ‖E1‖ + ‖E2‖, (2.20)

since for all θ the eigenvalues of R(θ) consist of plus and minus the singular values of A−r eiθ I . When
we combine (2.19) and (2.20), we see that for all 1 � j � n

χj (θ̂) � ε. (2.21)

Now by way of contradiction, suppose there exists a positive µ � ε − ‖E1‖ − ‖E2‖ such that the
pencil P(r, µ) − λQ(r, µ) has a unit eigenvalue, say eiθ̃ . Then

det(D(θ̃)(P(r, µ) − eiθ̃ Q(r, µ))) = det(D(θ̃)(P(r, 0) − eiθ̃ Q(r, 0)) − µI ) = 0

meaning for some j � n, ϕj (θ̃) = µ, since µ is positive. It follows from (2.19) that χj (θ̃) � µ+‖E1‖+
‖E2‖ � ε is satisfied. But for the same j , (2.21) holds as well. We conclude from the intermediate
value theorem that there exists θ ′ satisfying χj (θ

′) = ε. This contradicts the fact that χj (θ) 
= ε for all
θ and j . �
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In exact arithmetic the circular search fails when the circle of radius r lies either completely inside or
completely outside the pseudospectrum. In the theorem above we need the condition that there exists a
point r eiθ on the circle of radius r such that σmin(A−r eiθ I ) � ε +‖E1‖+‖E2‖ in order to distinguish
these two cases. When σmin(A − r eiθ I ) � ε and the derivative of σmin(A − r ′ eiθ ′

I ) with respect to θ ′
at (r, θ) is not very small, such a point exists on the circle of radius r in a small neighborhood of θ . In
the previous subsection we discussed how to generate estimates r such that σmin(A − r eiθρ I ) � ε.

Focusing on the implications of Theorem 2.14, whenever the circular search in floating point arith-
metic fails for some r > ρ(A) and there exists a point (r, θ) with σmin(A − r eiθ I ) � ε +‖E1‖+‖E2‖,
then for all τ � ‖E1‖ + ‖E2‖, the (ε − τ)-pseudospectrum lies inside the circle of radius r . We infer
the lower bound

ρε−‖E1‖−‖E2‖(A) � r. (2.22)

Now we are ready to find the backward error of the algorithm. First, since the estimates are increas-
ing in floating point arithmetic, the algorithm is guaranteed to terminate. At the termination the estimate
value must satisfy the upper bound (2.18), because it is generated by a radial search at the previous
iteration. Moreover, at the last iteration, the circular search fails meaning that the lower bound (2.22) on
the final estimate holds as well. Combining these bounds and from the continuity of ρε(A) with respect
to ε (see Theorem 2.1), we see that the estimate ρ̂ε(A) at the termination satisfies

ρ̂ε(A) = ρε+β(A),

where β = O(δmach(‖A‖+ ε +ρε(A))), i.e. the final estimate is the solution of a nearby pseudospectral
radius problem for the same matrix.

Since our analysis above depends on the usage of the proper eigenvalue solvers, let us comment on
the eigenvalue solvers that should ideally be used in a reliable implementation of Algorithm 2.8. For the
radial searches inside the current implementation we use the backward stable Hamiltonian eigenvalue
solver in Benner et al. (1998). Also in Benner et al. (1998) a generalized Hamiltonian eigenvalue solver
is described. For the circular searches, the symplectic pencil P(r, ε)∗ − λQ(r, ε)∗ can be converted
into a Hamiltonian pencil via a Cayley transformation and the algorithm in Benner et al. (1998) can be
applied. To be precise the algorithms in Benner et al. (1998) preserve the symmetry of the eigenvalues
rather than the structure of the matrix. Using eigenvalue solvers preserving the eigenvalue structure
is sufficient to avoid the tolerances needed to decide whether an eigenvalue is imaginary or of unit
modulus. However, the analysis above does not necessarily apply in this case. Recently, Chu et al.
(2004) presented backward stable structure preserving algorithms that are the most suitable choices
inside Algorithm 2.8 at the moment, but implementations are not yet available.

We note that an analogous backward error analysis applies to the criss-cross method for the pseudo-
spectral abscissa (Burke et al., 2003b) and is available on the web (Mengi & Overton, 2004a). Addition-
ally, on the web site (Mengi & Overton, 2004b) we provide an extreme numerical example for which the
radial search introduces a large error that can be explained by the analysis in this section. Remarkably,
the errors introduced by the radial searches do not affect the accuracy of the overall algorithm.

3. Computation of the numerical radius

An analogous measure to the numerical radius for continuous-time dynamical systems is the numerical
abscissa, the real component of the rightmost point in the field of values,

αF (A) = max{Re z: z ∈ F(A)}.
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Though intuitively computation of the numerical abscissa and the numerical radius seem equally diffi-
cult, the former can be reduced to an eigenvalue problem (Horn & Johnson, 1991)

αF (A) = λmax(H(A)), (3.1)

where H(A) = 1
2 (A + A∗). By contrast, the computation of r(A) is a challenging task.

Multiplying A by eiθ rotates the field of values of A by θ . Consequently, the numerical radius of A
can be viewed as the global maximum of an optimization problem with a single real variable

r(A) = max
θ∈[0,2π)

αF (A eiθ ). (3.2)

Combining (3.1) and (3.2) yields the following characterization of the numerical radius

r(A) = max
θ∈[0,2π)

λmax(H(A eiθ )).

Given the matrix A, let us define f : [0, 2π) → R by

f (θ) = λmax(H(A eiθ )). (3.3)

Observe that for each θ ∈ [0, 2π), f (θ) ∈ [−‖A‖, ‖A‖]. Our aim is to find the global maximum of f .
In our algorithm, we need to determine θ values satisfying f (θ) = α, where α > 0 is a numerical

radius estimate. Consider the pencil R(α) − λS with

R(α) =
[

2α I −A∗
I 0

]
, S =

[
A 0
0 I

]
.

In He & Watson (1997), it is proved that given a real number α � minθ f (θ), the pencil R(α) − λS has
an eigenvalue on the unit circle or is singular if and only if the inequality α � r(A) holds. Using the
theorem in He & Watson (1997), we can decide whether there is a θ satisfying f (θ) = α; however, this
theorem does not tell us what the θ values are. For this purpose we state a slightly modified version.

THEOREM 3.1 The pencil R(α) − λS has the eigenvalue eiθ or is singular if and only if the Hermitian
matrix H(A eiθ ) has α as one of its eigenvalues.

Proof. The equality det(R(α) − eiθ S) = 0 is satisfied if and only if the matrix[
2α I − eiθ A −A∗

I −eiθ I

]
is singular. Multiplying the bottom block row of this matrix by e−iθ , we see that this 2n × 2n matrix
is singular if and only if the n × n matrix eiθ A + e−iθ A∗ − 2α I is singular. Therefore, the Hermitian
matrix H(A eiθ ) has α as one of its eigenvalues if and only if the matrix R(α) − eiθ S is rank
deficient. �

From Theorem 3.1 it follows that as long as the pencil R(α) − λS is regular for a given α we can
solve the generalized eigenvalue problem R(α) − λS and extract the angles of the eigenvalues on the
unit circle to obtain a superset of θ values satisfying f (θ) = α. To determine the exact set, for each
angle θ ′ that is extracted, the eigenvalues of H(A eiθ ′

) need to be computed. Only those angles for
which H(A eiθ ′

) has α as the largest eigenvalue should be kept.
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Now that we know how to compute the intersection points of a horizontal line with the graph of f
efficiently, we suggest an iterative algorithm. At the j th iteration the algorithm generates an estimate of
the numerical radius, r j , and a set of open intervals, I j

1 , I j
2 , . . . , I j

m j , where, as earlier, I j
mj may wrap

around the circle. The function f is greater than r j in each interval I j
k , 1 � k � m j (i.e. for all θ ∈ I j

k ,
f (θ) > r j ) and exactly r j at the end points of the intervals. At the j th iteration the new estimate r j is
set to the maximum value the function f attains at the midpoints of the open intervals produced at the
previous iteration. Then the open intervals at the j th iteration are obtained using Theorem 3.1 followed
by the maximum eigenvalue checks.

ALGORITHM 3.2

1. Set j = 0 and φ0 = [0].

2. Update the numerical radius estimate: Compute r j+1 using the formula

r j+1 = max{ f (θ): θ ∈ φ j }. (3.4)

3. Update the set of the midpoints: Find θ values for which f (θ) = r j+1 holds. From these infer the
open intervals I j+1

1 , I j+1
2 , . . . , I j+1

m j+1 in which f (θ) > r j+1. Calculate the new set of midpoints

φ j+1 = {φ j+1
1 , φ

j+1
2 , . . . , φ

j+1
m j+1},

where φ
j+1
k is the midpoint of the open interval I j+1

k

φ
j+1
k =

⎧⎪⎨⎪⎩
γ

j+1
k +ζ

j+1
k

2 , if γ
j+1

k < ζ
j+1

k ,

γ
j+1

k +ζ
j+1

k +2π

2 mod 2π, otherwise.

4. Increment j by one, go to step 2.

A robust way to determine I j
1 , I j

2 , . . . , I j
m̂ j from the set of intersection points is to sort the intersec-

tion points and to compute f at the midpoint of each adjacent pair of points. The pencil R(α)∗ − λS∗
is symplectic, so just as with circular searches in the previous section, this problem can be reduced to
a Hamiltonian eigenvalue problem and the eigenvalue solver described in Benner et al. (1998) can be
applied. It is easy to avoid singular pencils, since for all α greater than the initial estimate r1 = f (0),
the pencil R(α) − λS is guaranteed to be regular. Note also that we can compute f accurately because
of the fact that the eigenvalues of symmetric matrices are well conditioned.

Algorithm 3.2 is an extension of the Boyd–Balakrishnan algorithm (Boyd & Balakrishnan, 1990) to
the numerical radius. Thus, a similar convergence proof applies (based on the fact that the length of the
greatest open interval is at least halved at each iteration). We believe that a proof along the line of the ar-
gument in Boyd & Balakrishnan (1990) is applicable to show that the algorithm converges quadratically
to the value r(A) and that the accuracy analysis in the previous section for the pseudospectral radius can
be extended to Algorithm 3.2.

4. Software

The software package EigTool (Wright, 2002) is a MATLAB graphical user interface used to compute
the pseudospectra of a matrix. The Numbers menu includes options to compute the ε-pseudospectral
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abscissa using the algorithm of Burke et al. (2003b) and the ε-pseudospectral radius using the algorithm
presented in this paper. In addition, freely downloadable implementations of these algorithms and
others, including the algorithm of Section 3 to compute the numerical radius, may be found at Mengi &
Overton (2005).
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