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Abstract. We characterize the spectral behavior of a primal Schur-complement-based block diagonal precondi-
tioner for saddle point systems, subject to low-rank modifications. This is motivated by a desire to reduce as much
as possible the computational cost of matrix-vector products with the (1,1) block, while keeping the eigenvalues of
the preconditioned matrix reasonably clustered. The formulation leads to a perturbed hyperbolic quadratic eigen-
value problem. We derive interlacing results, highlighting the differences between this problem and perturbed linear
eigenvalue problems. As an example, we consider primal-dual interior point methods for semidefinite programs, and
express the eigenvalues of the preconditioned matrix in terms of the centering parameter.
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1. Introduction. Consider the following saddle point system coefficient matrix:

H =

[
E

−1
A

T

A 0

]
.(1.1)

We assume thatE andA have dimensionsn × n andm × n respectively, withm < n, that
E is symmetric positive definite, and thatA has rankm. The use of the inverse in the (1,1)
block is purely notational, to highlight the fact that we exclude the semidefinite case. We
will, however, assume thatE could be very ill-conditioned. Saddle point systems of the form
(1.1) arise in numerous applications, ranging from optimization [18] to solution of PDEs [9]
to other areas, and their iterative solution has been subject to extensive study in the last couple
of decades; see [4] for a comprehensive survey.

A key for the rapid convergence of an iterative method for a linear system of the form
Hx = b is the availability of an effective preconditioner, which we will denote through-
out by K. Each step of anouter iteration for solving the preconditioned linear system
K

−1
Hx = K

−1b (using, say,MINRES [19]) requires the solution of aninner linear sys-
tem whose coefficient matrix isK. Therefore, convergence of the outer iteration is fast if the
eigenvalues of the preconditioned matrixK

−1
H are clustered, but careful attention must be

paid to the conditioning and eigenvalue distribution of thematrix K itself, which determine
the speed of convergence of the inner iteration.

Consider the preconditioner

K =

[
E

−1 + A
T
W

−1
A 0

0 W

]
,(1.2)

with W an m × m symmetric positive definite matrix. Here, we have setK11, the (1, 1)
block of K, to the primal Schur complement of the matrix obtained by replacingH22 = 0
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by the stabilizing negative definite matrix−W. A motivation for this is that even ifE is
ill-conditioned, by selecting an appropriate weight matrix W it is possible to makeK11

relatively well conditioned. This will enable us to solve the inner systems efficiently using
the conjugate gradient method. For a discussion of preconditioning techniques based on
this and related approaches, their analysis, and application to boundary value problems, see
[5, 6, 14, 21].

In [14] it is shown that withK defined as in (1.2), the preconditioned matrixK−1
H

has an eigenvalue1 of algebraic multiplicityn, that the negative eigenvalues all lie between
−1 and0, and that ifH11 is allowed to be singular with nullityp (which is not the case in
the current paper) thenp negative eigenvalues are exactly−1. This characterization of the
clustering of the eigenvalues shows that (1.1) can be solved within a small number of outer
iterations. The multiplicities of the eigenvalues of the preconditioned matrix hold regard-
less of the choice of the weight matrixW, and a good choice may help reduce the overall
computational cost, by efficiently solving the inner iterations associated withK11.

This leads to the main question that we investigate in this paper. Suppose we want to
consider preconditioners of the type (1.2), ensuring thatK11 is well conditioned even when
E is ill-conditioned, but at the same time we aim to reduce the cost of performing matrix-
vector products withK11. This may occur when the construction of rows ofA or their
multiplication with a vector entails a high computational cost. One way to address this is by
replacingW−1 in K11 by a simple, lower rank matrixV. Then, ifV is diagonal and some of
its diagonal entries are zero, not all rows ofA are used when forming matrix-vector products
with K11. We would like to explore whether this is possible without degrading the condition
numbers and the spectral distributions ofK11 andK

−1
H too much.

In Section2, we set the stage for exploring this issue. We setV = W
−1, and provide a

few new results on the eigenvalues of the preconditioned matrix, specifically exploring con-
nections to the eigenvalues of the dual Schur complement of (1.1). In Section3, we present
a perturbed hyperbolic quadratic eigenvalue problem and derive new interlacing results. In
Section4, we apply our results to primal-dual interior point methodsfor semidefinite pro-
gramming.

For notational convenience, the eigenvalues in the lemmas and theorems below are or-
dered as follows: eigenvalues of symmetric positive definite matrices are ordered in ascending
order; eigenvalues of symmetric indefinite problems are ordered in descending order.

2. Preconditioning with a low-rank weight matrix. Motivated by the arguments made
in the Introduction, consider the following block diagonalmatrix, which generalizes (1.2), as
a preconditioner for (1.1),

K =

[
E

−1 + A
T
VA 0

0 W

]
,(2.1)

whereV,W arem×m symmetric matrices. Likewise, the(1, 1) block of the preconditioner
is now generalized to

K11 = E
−1 + A

T
VA.

We will chooseW to be positive definite andV to be a positive semidefinite rankm − s

correction ofW−1 as follows,

W
−1 = V + Y

T
Y,(2.2)
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whereY ∈ R
(m−s)×m, 0 ≤ s ≤ m, with full row rank. If s = m, Y is “empty” and

V = W
−1, i.e., (2.1) reduces to (1.2). The following lemma includes this case.

LEMMA 2.1. The preconditioned matrixK−1
H has an eigenvalueϕ = 1 of algebraic

multiplicity n − m + s. The corresponding eigenvectors are of the form(w,W−1
Aw). If

s = m thenanyset ofn linearly independent vectorsw ∈ R
n qualify. Otherwise, a possible

set of eigenvectors(w,W−1
Aw) is defined byn−m vectorsw that are linearly independent

null vectors ofA, ands additional null vectors ofYA that are not null vectors ofA, that is,
w satisfies0 6= Aw ∈ null(Y).

Proof. The eigenvalue problem forK−1
H is

[
E

−1
A

T

A 0

] [
w

z

]
= ϕ

[
E

−1 + A
T
VA 0

0 W

] [
w

z

]
.(2.3)

From the first block row we have
(
(ϕ − 1)E−1 + ϕA

T
VA

)
w = A

T z.(2.4)

If ϕ = 1, (2.4) simplifies toA
T
VAw = A

T z. In this case, from the second block row of
(2.3) we havez = W

−1
Aw, and hence

A
T
VAw = A

T
W

−1
Aw.(2.5)

We can readily see that there are vectorsw 6= 0 that satisfy this equation, and thereforeϕ = 1
is indeed an eigenvalue ofK−1

H. Notice that ifAw 6= 0, thenA
T
W

−1
Aw 6= 0, sinceA

has full row rank. IfV = W
−1 then (2.5) holds for anyw. Otherwise, under relation (2.2)

betweenV andW, (2.5) simplifies to(YA)T
YAw = 0. Sincerank(Y) = m − s there are

s linearly independent vectors other than the null vectors ofA that satisfy this relation, and
they are as stated in the lemma.

In the special caseV = W
−1 we can provide further insight. Let us first show that a

matrix we will need to invert later is nonsingular.
LEMMA 2.2. SupposeV = W

−1 and letϕ be an eigenvalue ofK−1
H. Then the matrix

T(ϕ) = (ϕ − 1)E−1 + ϕA
T
VA

is singular ifϕ = 1 and nonsingular otherwise.
Proof. First, note that sinceH is nonsingular,ϕ cannot be zero. SinceK is symmetric

positive definite,K1/2 exists and the eigenvalues ofK
−1

H are identical to those of the
symmetric matrixK−1/2

HK
−1/2. The inertia of the latter is equal to the inertia ofH, and

hence we must have thatn eigenvaluesϕ are positive andm are negative. By Lemma2.1the
multiplicity of the positive eigenvalueϕ = 1 is n, and therefore all the remaining eigenvalues
ϕ must be negative.

If ϕ = 1 thenT = A
T
VA, which is singular since it isn × n but its rank is at mostm.

If ϕ 6= 1 then we must haveϕ < 0 by the above inertia considerations, andT in this case is
negative definite, hence nonsingular.

Theorem2.4below relates the eigenvalues ofK
−1

H to the eigenvalues of the dual Schur
complement of (1.1),

M = AEA
T .(2.6)

We start with a lemma.
LEMMA 2.3. Define

Ê
−1 = (ϕ − 1)E−1, V̂ = ϕV, M̂ = AÊA

T .
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Then, ifϕ 6= 1,

(AT
−1

A
T )−1 = M̂

−1 + V̂.

Proof. This follows readily from [10], or can be obtained by using the Sherman-Morrison
formula; see also [5, 11]. We have

T
−1 = (Ê−1 + A

T
V̂A)−1 = Ê− ÊA

T (I + V̂AÊA
T )−1

V̂AÊ.

Thus

AT
−1

A
T = A

(
Ê− ÊA

T (I + V̂AÊA
T )−1

V̂AÊ

)
A

T

= M̂ − M̂(I + V̂M̂)−1
V̂M̂.

One can verify thatI − (I + V̂M̂)−1
V̂M̂ = (I + V̂M̂)−1. Finally, it is immediate to see

thatM̂(I + V̂M̂)−1 = (M̂−1 + V̂)−1, which completes the proof.
Continuing on with consideringV = W

−1, the specific choice of a scalar multiple of
the identity allows us to relate the eigenvalues ofK

−1
H to the eigenvalues ofM; we denote

the latter by

0 < γ1 ≤ γ2 ≤ · · ·γm.(2.7)

We have the following result.
THEOREM 2.4. SupposeV = W

−1 = βI, and letγi be the eigenvalues ofM defined
in (2.6), ordered as in (2.7). Then, the eigenvalues of the preconditioned matrixK

−1
H are

given, in descending order, as follows:

ϕj = 1, j = 1, . . . , n;

−1 < ϕn+j =
−βγj

βγj + 1
< 0, j = 1, . . . , m.

(2.8)

Proof. The multiplicity of ϕ = 1 has been established in Lemma2.1. Consider now
ϕ 6= 1. The matrix multiplyingw on the left hand side of (2.4), namelyT(ϕ), is nonsingular
by Lemma2.2. Multiplying (2.4) by T

−1 and usingAw = ϕWz from (2.3), we obtain

AT
−1

A
T z = ϕWz.(2.9)

By Lemma2.3, (2.9) is equivalent to

z = ϕ(M̂−1 + V̂)Wz.(2.10)

SubstitutinĝM−1 = (ϕ − 1)M−1, V̂ = ϕβI, andW
−1 = βI , (2.10) is equivalent to

ϕ(ϕ − 1)M−1z = β(1 − ϕ2)z,(2.11)

or Mz = − 1
β

ϕ
1+ϕz. Thusγj = −

ϕn+j

β(1+ϕn+j)
, which gives the second equation of (2.8).

It follows from Theorem2.4 that the value ofβ may be used to control the eigenvalues.
The larger it is, the closer the negative eigenvalues given in (2.8) are to−1, and hence the
smaller the number of expectedMINRES iterations. However, there is a tradeoff, because
the rate of convergence of the preconditionedinner iteration, namely the linear system solve
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for K11, depends in a different way onβ. Let us make the assumption, valid in the case of
semidefinite programming discussed in Section4, that the costs of multiplication of vectors
by E andE

−1 are comparable. ThusE provides a preconditioner forK11, and the spectrum
of EK11 = I + EA

T
VA controls the rate of convergence of the conjugate gradient method

to solve systems whose coefficient matrix isK11. WhenV is a multiple of the identity, the
characterization of this spectrum is straightforward.

LEMMA 2.5. Suppose thatV = βI. Thenn − m eigenvalues of

EK11 = I + EA
T
VA

are equal to1, and the remainingm eigenvalues have the form1 + βγj , j = 1, . . . , m.
Proof. This is a consequence of the fact that the nonzero eigenvalues of the matrix

product(EA
T
V)A equal the nonzero eigenvalues of the productA(EA

T
V).

Thus, the wish to makeβ large to speed up convergence of the outerMINRES iteration
conflicts with the desire to makeβ small to improve the rate of convergence of the inner
conjugate gradient iteration.

3. Interlacing for a quadratic eigenvalue problem. In this section we extend the re-
sults of Section2 to the case where, instead of settingV to a multiple of the identity matrix,
we choose it to have lower rank; the multiplication of vectors byA

T
VA in the “inner” iter-

ation is then less costly. We first make an easy generalization of Lemma2.5 using standard
eigenvalue interlacing results, and then we go on to generalize Theorem2.4by extending the
interlacing results to the quadratic eigenvalue problem that arises.

The discussion that ensues shows that the eigenvalues of thepreconditioned matrix can be
expressed in terms of a low-rank modification of a hyperbolicquadratic eigenvalue problem
(QEP). There is a rich mathematical theory for QEPs; see the excellent review [22] and the
recent paper [15]. However, they are not as well understood as their linear eigenvalue problem
counterparts. For example, interlacing results for these problems are fairly scarce; see [20].

LEMMA 3.1. Suppose thatV is diagonal withs diagonal values set toβ and the other
m − s values equal to zero. Denote the eigenvalues ofEK11 = I + EA

T
VA by δj , j =

1, . . . , n, ordered in ascending order. Then we have

δj = 1, j = 1, . . . , n − s;
1 + βγj ≤ δn−s+j ≤ 1 + βγj+m−s, j = 1, . . . , s.

Proof. This follows from the interlacing property for symmetric matrices ([12, Theorem
8.1.8], [25, pp. 94-97]), because the matrixMV = AEA

T
V is a rankm − s perturbation

of βM.
This result includes Lemma2.5 as the special cases = m. Likewise, the following result
includes Theorem2.4as the special cases = m.

THEOREM 3.2. SupposeW−1 = βI. LetV be a diagonal matrix withs of its diagonal
values equal toβ and the rest zero. Denote the eigenvalues ofK

−1
H in this case byνj ,

ordered in descending order. Then, forβ sufficiently large,

νj > 1, j = 1, . . . , m − s;
νj = 1, j = m − s + 1, . . . , n;

−1 <
−βγj+m−s

βγj+m−s + 1
≤ νn+j ≤

−βγj

βγj + 1
< 0, j = 1, . . . , s;

νj < −1, j = n + s + 1, . . . , n + m.
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Proof. By Lemma2.3 and equations (2.9)–(2.10), which hold for any choice ofV, we
have a quadratic eigenvalue problem inν,

βz = ν
(
(ν − 1)M−1 + νV

)
z.

The cases = m follows from Theorem2.4. Below we present a proof for the cases = m−1
(that is,V is a rank-1 change ofW−1). Consider the spectral decomposition

M = UΓU
T , Γ = diag(γ1, . . . , γm).

Note thatW−1 − V is diagonal, withm − s nonzero elements, all equal toβ. We have
(
ν2(Γ−1 + βI − uuT ) − νΓ−1 − βI

)
z̃ = 0,

whereu is a column vector and̃z = U
T z. This is a rank-1 change to the diagonal quadratic

eigenvalue problem
(

ϕ2(Γ−1 + βI) − ϕΓ
−1 − βI︸ ︷︷ ︸

Φ(ϕ)

)
ẑ = 0,(3.1)

which corresponds to the caseV = W
−1 after performing a step of diagonalization; cf. (2.11).

This case is covered by Theorem2.4. It is straightforward to show that this quadratic eigen-
value problem is hyperbolic [15, Definition 1.1].

By inertia considerations similar to those presented in theproof of Lemma2.2we must
haven positive andm negative eigenvalues. The existence and multiplicityn−m+s = n−1
of the eigenvalue1 follows from Lemma2.1. Suppose now thatν 6= 1, and consider the
matrix in (3.1), namelyΦ(ν). It is singular if and only if̂z is an eigenvector of (3.1). But this
is covered by Theorem2.4. If Φ is nonsingular then

0 = det
(
ν2(Γ−1 + βI − uuT ) − νΓ−1 − βI

)
(3.2)

= det
(
ν2(Γ−1 + βI) − νΓ−1 − βI

)

× det
(
I−

(
ν2(Γ−1 + βI) − νΓ−1 − βI

)−1

ν2uuT
)
.

By our assumption, the first determinant on the right hand side of equation (3.2), which
is nothing butdet(Φ(ν)), is nonzero and hence the second determinant must be zero. For any
two vectorsx andy we havedet(I + xyT ) = 1 + yT x [7, Lemma 5.1], and hence

det
(
I−

(
ν2(Γ−1 + βI) − νΓ−1 − βI

)−1

ν2uuT
)

= 1 − ν2uT
(
ν2(Γ−1 + βI) − νΓ−1 − βI

)−1

u

= 1 −
m∑

j=1

ν2u2
j

ν2(γ−1
j + β) − νγ−1

j − β
︸ ︷︷ ︸

g(ν)

.

The expressions in the denominator can be factored as

qj(ν) ≡ ν2(γ−1
j + β) − νγ−1

j − β =
(
(γ−1

j + β)ν + β
)
(ν − 1), j = 1, . . . , m.
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Denoting the expression for the determinant byg(ν), the poles ofg are the roots ofqj ,
namely,1 and the negative values given in (2.8). We have

g′(ν) =

m∑

j=1

u2
jν(νγ−1

j + 2β)
( (

(γ−1
j + β)ν + β

)
(ν − 1)

)2 .

Whenν > 0 we haveg′(ν) > 0, since all quantities in the expression forg′ are positive.
Therefore, the only eigenvalue that is positive but is not equal to 1 must be larger than 1.

For negativeν, we haveg′(ν) < 0 if νγ−1
j + 2β > 0. From Theorem2.4 it follows

that them poles of the functiong(ν) are algebraically larger than−1. Forν > −1 we have
νγ−1

j + 2β > −γ−1
j + 2β, and hence forβ sufficiently large we haveg′(ν) < 0. Thus, the

subset of eigenvalues that are negative,{νj}
n+m
j=n+1, are equal to or algebraically smaller than

their counterparts forV = W
−1, {ϕj}

n+m
j=n+1, andm − s = 1 of them are smaller than−1.

Whenm − s is larger than 1, the proof is obtained by considering a sequence of rank- 1
changes to a diagonal quadratic eigenvalue problem. The details are omitted for the sake of
brevity.

−10 −5 0 5 10

0

1

2

−1

FIG. 3.1. Left: a schematic illustration of the interlacing phenomenon for the quadratic eigenvalue problem,
with a rank-1 change. Most of the variation occurs near−1. Right: a close-up view of the interlacing of the negative
eigenvalues near−1.

For clarity, we provide a characterization of the functiong(ν), under the conditions stated
in Theorem3.2, for a rank-1 change (that is,s = m − 1); see also Fig.3.1.

• It has poles located at the eigenvalues of the problem described in Theorem2.4.
There arem negative poles, and one positive pole at 1.

• It has a positive derivative forν > 0 and a negative derivative forν < 0.
• Between0 and1 it has no roots. We have thatg(0) = 1, and for0 < ν < 1, g is

monotonically increasing and approaches∞ asν → 1−.
• For ν > 1, the function is monotonically increasing. Forν → 1+, we have

g(ν) → −∞. As ν → ∞, we have

g(ν) → 1 −
m∑

i=1

u2
i

γ−1
i + β

.

Forβ sufficiently large this value is positive and hence one root greater than1 exists.
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• All other roots are negative. Of them,m − 1 are between−1 and0. One root is
smaller than the smallest pole. The smallest pole is larger than−1, but the root may
or may not be smaller than−1.

• As ν → −∞, againg(ν) → 1 −
∑m

i=1
u2

i

γ−1

i +β
.

Fig. 3.2 illustrates the effect of a rank-3 modification on the spectrum of the precondi-
tioned matrix. Six eigenvalues of the preconditioned matrix ‘escape’ from the range where
the other eigenvalues are trapped: these are the three leftmost and three rightmost eigenvalues
shown in the panel on the right. The tradeoff is interesting:the outerMINRES iteration count
will increase by up to six steps, but every inner conjugate gradient step requires three fewer
inner products with rows ofA and three fewer inner products with columns ofA.

0 5 10 15 20 25 30 35
10

−1

10
0

10
1

10
2

 

 
pos eig of −H
pos eig of H

pos eig of −K−1 H

pos eig of K−1 H

0 5 10 15 20 25 30 35
10

−1

10
0

10
1

10
2

 

 
pos eig of −H
pos eig of H

pos eig of −K−1 H

pos eig of K−1 H

FIG. 3.2. Eigenvalues of a preconditioned matrixK−1
H, with n = 23 andm = 9, whereA is randomly

generated, andE−1 = B
T
B with B randomly generated. Left:V = I. Right: V is diagonal with20 ones and3

zeros.

4. Application to semidefinite programming. We discuss in this section the appli-
cability of the proposed preconditioning technique to nondegenerate semidefinite programs
(SDPs). Preconditioning of SDPs is an important and active research topic [24, 26].

LetSN denote the Euclidean space ofN×N real symmetric matrices with inner product
X • Y = trXY , and letX � 0 (respectivelyX ≻ 0) mean thatX is positive semidefinite
(positive definite). Consider the primal SDP

min
X∈SN

C • X

such that Ak • X = bk, k = 1, . . . , m,

X � 0,

whereb ∈ R
m, C ∈ SN , and them data matricesAk are linearly independent inSN .

The dual SDP is

maxy∈Rm, Z∈SN bT y

such that
∑m

k=1 ykAk + Z = C.

Z � 0.

In practice, the matricesX andZ almost always have a prescribed block-diagonal structure.
The results below all extend to the block diagonal case, but the necessary notation is quite
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cumbersome. Note that SDP reduces to linear programming in the case thatX andZ are
diagonal.

Under the assumption that the SDP has strictly feasible points, that is the primal SDP has
a feasible pointX ≻ 0 and the dual SDP has a feasible point(y, Z) with Z ≻ 0, it is well
known that the optimal values of the primal and dual SDP are the same, and that the central
path, which consists of triples(Xµ, yµ, Zµ) satisfying the primal and dual constraints as well
as the centering condition,

XµZµ = µI, for some µ > 0,

exists and converges to solutions of the primal and dual SDP as µ ↓ 0. Primal-dual interior-
point path-following methods generate iterates that approximately follow the central path to
find solutions to the primal and dual SDP [23]. Widely used publicly available software
packages implementing these primal-dual methods include SDPT3, SDPA, and SeDuMi. In
contrast, dual-only path-following methods generate onlythe dual iterates(y, Z), motivated
by the fact thatZ is generally much more sparse than the primal iterateX [3]. This is because
Z is a weighted sum of the data matricesC and theAk, all of which are generally sparse. On
the central path,X is a multiple of the inverse ofZ, so it is generally dense. See [8] for a
special case whereX can be represented efficiently even though it is not sparse.

For both classes of methods, the linear algebra bottleneck that stands in the way of solv-
ing large SDPs is as follows. Define

n = N2,

and let “vec” map anN × N matrix to a vector inRn by stacking its columns. Let

A =




(vec A1)
T

...
(vec Am)

T


 .

The basic linear system that must be solved is

H

[
vec ∆X

∆y

]
≡

[
E

−1
A

T

A 0

] [
vec ∆X

∆y

]
=

[
f1

f2

]
.(4.1)

For primal-dual methods, the most commonly used formula forE is the Kronecker product
X ⊗ Z−1, whereX andZ are the current primal and dual iterates. The search direction
associated with this choice ofE is sometimes called the “HKM” direction and is generally
considered more efficient than its primal-dual competitors, the “NT” and “AHO” directions
[23]. It follows that the(1, 1) block of H is E

−1 = X−1 ⊗ Z, and hence that the cost of
multiplications of vectors byE andE

−1 are similar, assuming the Cholesky factors ofX

andZ are known (this is always the case, since these matrices cannot be accepted as iterates
of the optimization algorithm without checking their positive definiteness). In particular, the
preconditioned (1,1) block of (2.1) is EK11 = I + (X−1 ⊗ Z)−1

A
T
VA and matrix-vector

products with this can be computed efficiently using the identity

(X−1 ⊗ Z)vec(W ) = vec(ZWX−1)

(using [16, Lemma 4.3.1], asX = XT ).
The discussion above is for primal-dual methods, but for dual-only methods, simply

replaceX by µZ−1.
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One step of block Gauss elimination reduces the system (4.1) to the equivalent normal
equations (or Schur complement system)

M∆y = f,

wheref = AEf1 − f2 andM = AEA
T . Thus, usingE = X ⊗ Z−1, we have

Mij = Mji = trAiXAjZ
−1, 1 ≤ i, j ≤ n.

Note thatM ≻ 0 sinceX ≻ 0 andZ ≻ 0.
In the remainder of this section we develop some analysis that applies on the central

path. For anyµ > 0, sinceXµ andZµ commute, there exists an orthogonal matrixQµ that
simultaneously diagonalizes them, with

Xµ = Qµ diag(λµ
1 , . . . , λ

µ
N ) (Qµ)T , Zµ = Qµ diag(ωµ

1 , . . . , ω
µ
N) (Qµ)T ,(4.2)

andλ
µ
i ω

µ
i = µ, i = 1, . . . , N. Without loss of generality, assume that

λ
µ
1 ≥ · · · ≥ λ

µ
N and ω

µ
1 ≤ · · · ≤ ω

µ
N .

Letting µ ↓ 0, we obtain(Xµ, yµ, Zµ) → (X̄, ȳ, Z̄), which solves the primal and dual SDP
[17]. We have the complementarity condition̄XZ̄ = 0, and there must exist a (not necessarily
unique) orthogonal matrix̄Q with

X̄ = Q̄ diag(λ̄1, . . . , λ̄N ) Q̄T , Z̄ = Q̄ diag(ω̄1, . . . , ω̄N) Q̄T ,

whereλ̄i andω̄i, the limits ofλµ
i andω

µ
i , satisfyλ̄iω̄i = 0, i = 1, . . . , N. Define

r = rank(X̄),

so that

λ̄1 ≥ · · · ≥ λ̄r > λ̄r+1 = · · · = λ̄N = 0.

It follows from the complementarity condition that̄Z has rank at mostN − r. We make the
strict complementarityassumption that̄Z has rank equal toN − r, so that

0 = ω̄1 = · · · = ω̄r < ω̄r+1 ≤ · · · ≤ ω̄N .

This holds generically [1], but more importantly, it seems to almost always hold for SDPs
that occur in practice. We then have the following trivial lemma.

LEMMA 4.1. Suppose that the strict complementarity assumption holds.Then the cen-
tral path eigenvalues satisfy

λ
µ
i = Θ(1), 1 ≤ i ≤ r, λ

µ
i = Θ(µ), r + 1 ≤ i ≤ N,

asµ ↓ 0.
REMARK 4.2. Recall that theΘ notation signifies a stronger relation than big-O notation:

a functionf(n) is Θ(g(n)) if f is asymptotically bounded both above and below byg [13,
p. 448].

Proof. The first equality holds because fori ≤ r, λ
µ
i → λ̄i > 0 asµ ↓ 0. The second

holds because fori > r,

λ
µ
i =

µ

ω
µ
i

and ω
µ
i → ω̄i > 0.



ETNA
Kent State University 

http://etna.math.kent.edu

LOW-RANK MODIFICATIONS OF PRECONDITIONERS FOR SADDLE POINT SYSTEMS 317

Let us partitionQ̄ = [Q̄1 Q̄2], whereQ̄1 hasr columns andQ̄2 hasn − r columns. We
say that the SDP isprimal nondegenerateif the matrices,

[
Q̄T

1 AkQ̄1 Q̄T
1 AkQ̄2

Q̄T
2 AkQ̄1 0

]
, k = 1, 2, . . . , m,

are linearly independent inSn, anddual nondegenerateif the matrices,

Q̄T
1 AkQ̄1, k = 1, 2, . . . , m,

span the spaceSr. These conditions are well defined even ifQ̄ is not unique.
In what follows it is convenient to use the notation

r2 =
r(r + 1)

2
.

The primal nondegeneracy condition implies thatm ≤ r2 +r(n−r), and the dual nondegen-
eracy condition implies thatm ≥ r2. Given the strict complementarity assumption, primal
nondegeneracy is equivalent to the dual SDP having a unique maximizer, that is, having
no other solutions in addition to(ȳ, Z̄), and dual nondegeneracy is equivalent to the primal
SDP having a unique minimizer, that is, no other solutions inaddition toX̄ [1]. Primal
and dual nondegeneracy are generic properties in the sense that randomly generated SDPs
with solutions will have both properties, and therefore unique primal and dual solutions, with
probability one. However, in practice it is very typical that SDPs are either primal or dual
degenerate.

Let B̄k = Q̄T AkQ̄. From [16, Lemma 4.3.1], we have

vec B̄k = (Q̄T ⊗ Q̄T ) vec Ak.

Thus

B̄ ≡




(vec B1)
T

...
(vec Bm)T


 = A

(
Q̄ ⊗ Q̄

)
.

Each column ofB̄ corresponds to an index pair(i, j) identifying two columns ofQ̄, with

1 ≤ i, j ≤ n. Note that there are(n − 1)
2 duplicate columns (one for each pairi 6= j).

Following [2], we may partition

B̄Π = [B̄1 B̄2 B̄3],

whereΠ is a permutation matrix and the columns inB̄1, B̄2 andB̄3 correspond, respectively,
to index pairs(i, j) with bothi andj ≤ r, exactly one ofi, j ≤ r, and neither≤ r. The dual
nondegeneracy condition says thatB̄1 (which hasr2 columns andm rows) has rankr2 (the

other(r − 1)
2 columns are redundant), and hence thatm ≥ r2.

On the central path, the dual Schur complement matrix is

M
µ = A(Xµ ⊗ (Zµ)−1)AT = µ−1

A(Xµ ⊗ Xµ)AT = µ−1
B

µ(Λµ ⊗ Λµ)(Bµ)T ,

whereB
µ = A(Qµ ⊗ Qµ) andΛµ = diag(λµ

1 , . . . , λ
µ
N ), usingQµ, λ

µ
i defined in (4.2). It

follows that

µM
µ = B

µ
1 (Λµ

1 ⊗ Λµ
1 )(Bµ

1 )T + B
µ
2 (Λµ

1 ⊗ Λµ
2 )(Bµ

2 )T + B
µ
3 (Λµ

2 ⊗ Λµ
2 )(Bµ

3 )T ,(4.3)
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whereΛµ
1 = diag(λµ

1 , . . . , λµ
r ), Λµ

2 = diag(λµ
r+1, . . . , λ

µ
N ) and, as long asΠ is chosen

appropriately,Bµ
1 , B

µ
2 andB

µ
3 respectively converge tōB1, B̄2 andB̄3 asµ ↓ 0. We then

have the following lemma.
LEMMA 4.3. Suppose the strict complementarity and the dual nongeneracy assumptions

hold. ThenMµ hasr2 eigenvalues that areΘ(µ−1) andm − r2 eigenvalues that areO(1).
Proof. Following [2], we consider the scaled dual Schur complement matrix shown

in (4.3) asµ ↓ 0. The second and third terms on the right-hand side converge to zero by
Lemma4.1, while the first converges tōB1(Λ̄1 ⊗ Λ̄1)(B̄1)

T , whereΛ̄1 = diag(λ̄1, . . . , λ̄r).
The matrixB̄1 has rankr2 by the dual nondegeneracy assumption, whileΛ̄1⊗Λ̄1 is a positive
definite diagonal matrix of orderr2. It follows thatr2 eigenvalues of them×m matrixµM

µ

converge to positive numbers. The remaining eigenvalues converge to zero, and since the
second and third terms in (4.3) areO(µ), these eigenvalues areO(µ) by Lipschitz continuity.
Dividing by µ gives the result.

We are now ready to perform a spectral analysis for the preconditioned systemK−1
H

for SDP, assuming that the relevant matrices are evaluated on the central path. The first result
is a refinement of Theorem2.4. Recall that the order ofH in (4.1) is n + m = N2 + m.

THEOREM 4.4. Suppose that in (4.1),

E
−1 = (Xµ)−1 ⊗ Zµ

and that in (2.1),

V = W
−1 = βI = µ−α

I

for someα ≥ 0. Finally, assume that the strict complementarity and dual nondegeneracy
conditions hold. Thenn eigenvalues ofK−1

H are equal to 1,r2 eigenvaluesϕi are−1 +
Θ(µα+1), andm−r2 eigenvaluesϕi are−1+O(µα). These eigenvalues are all algebraically
larger than−1.

Proof. The multiplicity of the eigenvalue one follows immediately from Theorem2.4.
From Lemma4.3, provided strict complementarity and dual nondegeneracy hold, for r2 of
the eigenvalues ofMµ there exists a positive constantci independent ofµ such thatγi = ci

µ ,

and hence by (2.8)

ϕi =
−ciµ

−(α+1)

ciµ−(α+1) + 1
=

−ci

ci + µα+1
.

Therefore forµ sufficiently small we haver2 eigenvaluesϕi that are−1 + Θ(µα+1). The
remainingm − r2 eigenvalues correspond to eigenvalues ofM

µ that areO(1). By a similar
argument, these eigenvalues are−1 + O(µα). Furthermore, sinceµ > 0, these eigenvalues
are all larger than−1.

Next, we present a refinement of Theorem3.2.
THEOREM 4.5. SupposeW−1 = βI. LetV be a diagonal matrix withs of its diagonal

values equal toβ and the rest zero. Denote the eigenvalues ofK
−1

H in this case byνj ,
ordered in descending order. Suppose, as in the previous theorem, that the iterates follow the
central path, that the strict complementarity and dual nondegeneracy conditions hold, and
thatβ = Θ(µ−α). Assume further thatr2 ≤ s ≤ m. Then, forµ sufficiently small, there are
at leastmax(0, r2 + s − m) eigenvalues ofK−1

H that are−1 + Θ(µα+1).
Proof. By Lemma4.3, r2 eigenvaluesγi of Mµ areΘ(µ−1) and the remainingm−r2 are

O(1). Supposes = m. Then by Theorem4.4the algebraically smallest negative eigenvalues
arer2 eigenvalues that are−1+Θ(µα+1). Now supposes = m−1. By interlacing arguments
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identical to the ones made in Theorem3.2, r2 − 1 of these eigenvalues are trapped between
poles of the same magnitude and hence are still of the same order. Sinceg′(ϕ) < 0 for
ϕ < 0, the remaining negative eigenvalue moves to the left under the perturbation implied by
reducings to m−1. However, it is not necessarily of the order−1+Θ(µα+1), since it is not
trapped by a pole ofg on the left. The same arguments can be repeated fors < m − 1.

5. Conclusions and future work. We have studied the spectral properties of a primal
Schur-complement-based block diagonal preconditioner for saddle point systems, subject to
low-rank modifications. A motivation for this approach is the goal of performing matrix-
vector products with as few as possible rows of the constraint matrix, while maintaining the
effectiveness of the preconditioner. We have taken semidefinite programming as an example.
Our focus in this paper is on the analysis, and there is much todo to investigate the practi-
cality of the proposed approach. First, semidefinite programs are typically degenerate, and
in such cases, some of our analysis does not hold. Secondly, the strong connection between
the spectrum of the preconditioned matrix to that of the dualSchur complement requires a
comparison to alternatives that rely on the latter, namely normal equations solvers. Finally,
the approach that we have investigated is parameter-dependent, and it would be desirable to
explore choices that reduce the overall computational cost.

Acknowledgments. We are grateful to the referees for their constructive comments. In
particular, we are indebted to one of them for a thorough and helpful review of our analytical
results.
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