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1. Introduction

In 2008, Nesterov [1] introduced the following smooth (differentiable, in fact polynomial) function on R":

- 1 n—1
f(x) = Z(X] — ])2 + Z(XH] - 2X1»2 + 1)2.
i=1
The only stationary point of f is the global minimizer x* = [1, 1, ..., 1]7. Consider the pointX = [—1, 1, 1, ..., 1]7 and the
manifold

M={x:x—2¢+1=0,i=1,....,n—1}
which contains both x* and X. For x € M,
X =2 —1=To(x) =Tyi(x1), i=1,...,n—1,

where Tj(x) denotes the kth Chebyshev polynomial of the first kind [2, Section 2.4].

The function f is the sum of a quadratic term and a nonnegative sum whose zero set is the manifold . Minimizing
f is equivalent to minimizing the first quadratic term on M. Standard optimization methods, such as Newton’s method
and the BFGS quasi-Newton method, when applied to minimizef and initiated at X, generate iterates that, as in the well
known Rosenbrock example [3] and its extensions [4], approximately “track” .M to approach the minimizer. The iterates
do not track M exactly, but because they typically follow this highly oscillatory manifold fairly closely, the tracking process
requires many iterations. To move from X to x* along M exactly would require x,, to trace the graph of the 2"~'th Chebyshev
polynomial, which has 2"~! — 1 extrema in (—1, 1), as x; increases from —1 to 1. Hence, f is a challenging test problem for
optimization methods.
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Nesterov—Chebyshev—Rosenbrock, first variant Nesterov—Chebyshev—Rosenbrock, second variant
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Fig. 1. Contour plots for Nesterov's first (left) and second (right) non-smooth Chebyshev-Rosenbrock functionsf and f respectively, with n = 2. Points
connected by line segments show the iterates generated by the BFGS method (see Section 3) initialized at 7 different randomly generated starting points
(iterates plotted later may overwrite those plotted earlier). For the first variant f , convergence always takes place to the only Clarke stationary point: the
global minimizer x* = [1, 1]". For the second variant f, some runs of BFGS generate iterates that approximate the nonminimizing Clarke stationary point
[0, —1]7 while others converge to the minimizer [1, 1]".

Nesterov also introduced two nonsmooth variants of f , the first being

1 n—1
foo =200 =17+ i — 2 + 11 (1

i=1
A contour plot of this function when n = 2 is shown on the left side of Fig. 1. Again, the unique global minimizer is x*. Like
f, the function f is the sum of a quadratic term and a nonnegative sum whose zero set is the manifold M, so, as previously,
minimizing f is equivalent to minimizing the first quadratic term on M, but unlike f, the function f is not differentiable at
points in M. However, as we show in the next section, f is partly smooth with respect to .M, in the sense of [5], at points in
M. It follows that, like f, the function f has only one stationary point — the global minimizer x* — where by stationary point

we mean both in the sense of Clarke and of Mordukhovich.
The second nonsmooth variant is

n—1

f<x>=l|x1—1|+;|x,~+1—2|xf|+1|. 2)
Again, the unique global minimizer is x*. Consider the set

S={x:xy41—-2]x|+1=0,i=1,...,n—1}. 3)
Minimizing f is equivalent to minimizing its first term on S. Like .M, the set S is highly oscillatory, but it has “corners”: it
is not a manifold around any point x where any of the components x1, ..., X,_1 vanishes. For example, consider the case

n = 2, for which a contour plot is shown on the right side of Fig. 1. It is easy to verify that the point [0, —1]7 is Clarke
stationary (zero is in the convex hull of gradient limits at the point), but not a local minimizer ([1, 2]7 is a direction of linear
descent from [0, —1]7). We will show in the next section that, in fact, f has 2"~! Clarke stationary points, that the only local
minimizer is the global minimizer x*, and furthermore that the only stationary point in the sense of Mordukhovich is x*.

In the next section, we define stationarity in both senses and present the main results. In Section 3, we report on numerical
experiments showing the behavior of nonsmooth minimization algorithms on these functions.

2. Main results

Before stating our main results, we will need the following well-known definitions. The Clarke subdifferential or
generalized gradient [6] of a locally Lipschitz function on a finite-dimensional space can be defined as follows |7, Theorem
6.2.5]. Let V denote gradient.

Definition 1 (Clarke Subdifferential). Consider a function ¢ : R* — R and a point x € R", and assume that ¢ is locally
Lipschitz around x. Let ¢ C R" be the set of all points where ¢ is differentiable, and A C R" be an arbitrary set with measure
zero. Then the Clarke subdifferential of ¢ at x is

3Sh(x) = conv [n}me VAR™) : x™ = X, Xm € G, X ¢A} . (4)
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Note that by Rademacher’s Theorem [8], locally Lipschitz functions are differentiable almost everywhere so A can be chosen
as the set of points at which ¢ is not differentiable.
As expounded in [9], the Mordukhovich [10] subdifferential is defined as follows.

Definition 2 (Mordukhovich Subdifferential). Consider a function ¢ : R" — Rand a pointx € R". Avector v € R" is a regular
subgradient of ¢ at x (written v € d¢(x)) if

limi $@) —dx) — (v, z —X)
iminf

o |z — X|

>0,

where (-, -} is the usual inner product on R". A vector v € R" is a Mordukhovich subgradient of ¢ at x (written v € 3V ¢ (x))
if there exist sequences x™ and v™ in R" satisfying

X" — x

P("™) — ¢(x)

V™ € dp(x™)

V™ — .
We say that ¢ is Clarke stationary at x if 0 € 3¢ (x). Similarly, ¢ is Mordukhovich stationary at x if 0 € 3M¢(x). For a locally
Lipschitz function ¢, we have [9, Theorem 8.49]

3 p(x) = conv {a"p(x)}. (5)
The following simple example illustrates equation (5).

Example 1. Forg(x) = |x;|— |x2|,x € R?, explicit formulas for the Clarke and Mordukhovich subdifferentials can be derived
atx = [0, 0]7. Using Definitions 1 and 2, a straightforward computation leads to

9g([0,0]") = [-1,1] x [-1,1] and 08“g([0,0]") = [—-1,1] x {—1,1},
where the former subdifferential is the convex hull of the latter one.

We will need the concept of regularity (also known as subdifferential regularity or Clarke regularity) [9], which can be
characterized for locally Lipschitz functions as follows [11, Theorem 6.10].

Definition 3 (Regularity). A locally Lipschitz function ¢ : R" — Ris regular at a point x if and only if its ordinary directional
derivative satisfies

¢’ (x; d) = limsup (Ve (2), d)

Z—>X
for every direction d € R".

One consequence of regularity of ¢ at a point x is that 3¢ (x) = d™¢(x) [12, Proposition 4.1(iii)] and another is that the
Clarke stationarity condition 0 € 3¢ (x) is equivalent to the first-order optimality condition ¢’(x, d) > 0 for all directions
d [13, Section 14.1].

A property that will be central in our analysis is partial smoothness [5].

Definition 4. A function ¢ is partly smooth at x relative to a manifold X containing x if

1. its restriction to X, denoted by ¢, is twice continuously differentiable at x,

2. at every point close to x € X, the function ¢ is regular and has a subgradient,

3. par {3M¢(x)}, the subspace parallel to the affine hull of the subdifferential of ¢ at x, is the normal subspace to X at x, and
4. the subdifferential map 0" ¢ is continuous at x relative to X.

We illustrate the definition by proving that f is partly smooth.
Lemma 1. Nesterov’s first nonsmooth Chebyshev-Rosenbrock function f , defined in (1), is partly smooth with respect to M at all
points in M.

Proof. For eachi € {1,...,n — 1}, consider the function h;(x) = |xj;1 — in2 + 1| and the manifold M; = {x : H;(x) :=
Xit1 — 2"1‘2 + 1 = 0}. By the chain rule [9, Proposition 10.5], h; is globally regular as a composition of two regular functions
and we have

Mhi(x) = VHi®) [{8"] - 1} Kig1 — 22 + 1]
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forany x € R". We have the normal space Ny, = Range(VH;(x)) [9, Example 6.8] which is clearly parallel to the subdifferen-
tial 9™ h;(x). Since hij »; = 0 is smooth and dMh; is continuous at x relative to M, it follows from Definition 4 that h; is partly
smooth with respect to the manifold M;. We conclude from [5, Corollary 4.6 and 4.7] that f (x) = %(m - 1%+ Z}:]l hi(x)
is partly smooth with respect to the manifold M = ﬂ;:]l M; atall pointsin M. O

It follows that f has only one stationary point.

Theorem 1. Nesterov’s first nonsmooth Chebyshev-Rosenbrock function f is Clarke stationary or Mordukhovich stationary only

at the unique global minimizer x* = [1, 1, ..., 1]".

Proof. Ifx ¢ M, then f is smooth and nonstationary at x as the partial derivative of f with respect to x, is +1. On the other
hand, if x € M, then the restricted functionfw = %()q — 1)? is smooth and has a critical point only at the global minimizer
x*.1Ifx € M and x # x*, it follows from [5, Proposition 2.4] that 0 ¢ aff B’V’f(x). Thus, 0 ¢ 8Mf(x). By regularity, we have
3¢f (x) = aMf (x) and the result follows. [

The main results of the paper concern Nesterov’s second nonsmooth example. For this we will need the usual sign
function:

1 x>0,
sign(x) = 10 :x =0,
-1 :x<0O.

We start by stating a simple lemma.

Lemma 2. Let S be defined as in (3). There are 2"~! — 1 points in S such that x; = 0 for some j < n. Let X be such a point. Then
X; takes non-integer values between —1and 1fori < j,x; =0fori=jx;= —1fori=j4+ landx; =1ifn>i>j+ 1.In
particular, x; < 1 (withx; =0if j=1).

Proof. For j < n fixed, it is easy to see that there are 2! points in S such that x; = 0. Summing over j, we obtain
21 1= Z}‘;ll 2/~1 points. The rest of the proof is straightforward. O

Theorem 2. Nesterov’s second nonsmooth Chebyshev-Rosenbrock function f, defined in (2), is Clarke stationary at the 2"~1 — 1
points in the set S with a vanishing x; for some j < n.

[x1—1]

Proof. Let x be such a point. Then, using Lemma 2, we see that around x the function is equal to 1_4"1 and furthermore

X; # 0if i # j. These observations allow us to write f in a simpler form eliminating most of the absolute values. We first
prove the case j = n — 1. We will show that in an arbitrarily small neighborhood of x the gradient vector (if defined) can
take arbitrary signs in each coordinate. This will ensure that 0 € 3 (%) by (4).

Around X, the function f (x) may be rewritten as

1—x;

fx) =

where ¢; = —sign(x;),i = 1,2, ...,n — 2, depend only on the point x and are fixed, (note thatx; £ 0 fori <j=n—1).
Since X € S and X,_1 = 0, all the absolute value terms appearing in (6) are equal to 0 at x. By the continuity of f atx, it is
possible to find points x arbitrarily close to x such that each of the absolute value terms evaluated at x has arbitrary sign and
at those points

+ %2 + 2c1x1 + 1] + - - -+ [Xp—1 + 2Ca—2Xp—2 + 1] + X0 — 2|X;—1| + 1] (6)

1 T
Vf(x) = I:—Z +2c1dy, dy + 2¢dy, ..., dy—p + 265 1dn—, dn71i|

where ¢,_; := —sign(x,_1) and each of dq, d>, ..., d,_1 can be chosen to be +1 or —1 as desired. Hence, it is possible to
have Vf (x) in any of the 2" quadrants of R". Consequently, O lies in the convex combination of these gradient vectors and
we conclude from (4) that 0 € 3 (%).

The casej < n — 1 is handled similarly. For a choice of x around x, we get

1 T
Vfx) = [—4 + 2c1dy, di + 200dy, . .., dj—1 + 2¢d;, dj 4 2dj4q, djp1 — 2dj12, .. dn—l]

where¢; = —sign(x),i =1, 2, ..., j—1,arefixed(whenj > 1)and¢; = —sign(x;), d, da, ..., d,_; are free parameters to
choose from {—1, 1}. Suppose d; = d?, dj;1 =d,, ..., doy = d)_, are fixed. By choosing ¢;, di, . . ., dj_1 appropriately,
the signs of the first j components of Vf (x) vector can be chosen to be positive or negative. Thus, by convexity,

T —
[0.....0.d) +2d) ,. &, —2d,,. ....d) ] €0 ().
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Choosing dj = —d}, djy1 = —d},,, ..., dy1 = —d)_,, we have
T .
[0.....0, —(d&) +2d) ), —(d), —2d,,). ..., —d)_|] € df().

and so by convexity 0 € 9°f (), completing the proof. O

The following theorem characterizes all the stationary points of f in the sense of both subdifferentials.

Theorem 3. Nesterov’s second nonsmooth Chebyshev-Rosenbrock function f is Mordukhovich stationary only at the global
minimizer x* = [1,1, ..., 1]". Furthermore, f is Clarke stationary only at x* and the 2"~' — 1 points in S with a vanishing
x; for some j < n. None of the Clarke stationary points of f except the global minimizer are local minimizers of f and there exists
a direction of linear descent from each of these points.

Proof. If x ¢ S, f is smooth at x and we have 0 & aMf(x) = d°f(x) = {Vf(x)} since the partial derivative of f with respect
to x, at x is 1.

Whenx = x* € S, we have 0 € 3f (x) C Mf(x) C 3fC(x).Ifx € S, x # x* (x; # 1) andx; # 0forj=1,2,...,n—1,
then the set S is a manifold around x. The function f is partly smooth with respect to S at x, with fis(x) = %, the restriction
of f to S, smooth around x, and x is not a critical point of fis. It follows from [5, Proposition 2.4] that 0 ¢ aff {oMf (x)}. This
implies directly that 0 ¢ 3™f(x) and 0 & 9°f (x) = conv {3"f(x)}, using (5).

The remaining case is when x € S is such that x; = 0 for some j < n. We have x; < 1.Let § > 0 be small and x% be the
unique point near x such that x¥* € S and x? = x; + 8. It follows from the definition of S that x> = x 4+ §v where v is a fixed

vector independent of § > 0 for § sufficiently small. Since fis(x) = 1_4"1 around x, we have f (x*) = f(x+8v) = f(x) — %8 <

f(x) which shows that v is a direction of linear descent. Furthermore, we have 0 ¢ éf (x) since the existence of the descent

direction at x implies
— Sv) — 1
lim inffi(z) f® < lim inff—(x+ v) —f® = —
o |z — x| 510 8| 4|v|

We want to prove that 0 ¢ 3"f (x). This requires an investigation of the regular subdifferential f)f (y) for y near x. Let y
be a point near x, y # x. We have x; = 0, so we distinguish two cases: y ¢ S, {y € Sand y; # 0}. (Ify € S and y; = 0, then,
for y to be near x, we would need y = x.)

1.y & S: Vf(y) exists, we have éf(y) = {Vf(y)} and the n-th coordinate of Vf(y) is +1. This shows that there exists no
sequence y™ — x such that y™ ¢ S for all m with af (") = {Vf (™)} 2 v™ — 0.
2. y € Sandy; # 0: We have, for y sufficiently close to x, thaty, # Ofork =1, ..., nand

S={x:Fx)=0, i=1,...,n—1}

where Fij(x) = x;11 — 2|x;| + 1is smooth at y. Hence, S is a manifold around y and it is easy to see that f is partly smooth

aty with respect to S. The restricted function fis(x) = ];"1 is smooth at y and since y; < 1,y is not a critical point of f, so

from [5, Proposition 2.4] we conclude that 0 ¢ aff {9Mf(y)} whichleadsto 0 ¢ éf (). Furthermore, by [5, Proposition 2.2],
we have

of () C VEW) +Ns(¥) (7)
where g(x) = 1;"1 and Ns(y) is the normal space to S at y. The normal space to S at y coincides with the normal cone to
S at y so by [9, Example. 6.8]

Ns(y) = Range(VF)

where
oF; n—1,n
VFO/)T — I:l(y)] c R(nfl)xn
9% " Jijm
is the Jacobian matrix. We have
—2sign(y1)
1 —2sign(y;)
VF(y) = 1 e R>*-D (8)

—2sign(yn-1)
1
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and Vg(y) = [—1/4,0,...,0]". From (7) and (8), we see that 0 € éf(y) is possible only if [1/4, 0, ..., 0]" € Ns(y). A
straightforward calculation shows that this is impossible. We conclude that 0 ¢ df (y). The next step is to investigate the

possible limits of v™ € 5f(y’") as the sequence y™ € S approaches x. Let y™ be a sequence such that y™ — x,y™ € S and
y™ =£ x for all m (this implies y}” # 0 for all m as before). Without loss of generality, assume y]’-" > 0 for all m. For fixed

k € {1,2,...,n}, the quantity sign(y;') does not depend on m and is nonzero. Thus, G := VF(y™) does not depend on
m. Let v € R" be such that 3f (y™) 5 v™ — v. From (7), we have v™ = [—1/4,0, ..., 0]" + Gc™ for some c™ € R*1.
Since v™ — v and G has full rank, we have c™ — ¢ € R* 'and v = [-1/4,0, ..., 0]" + Gc. As previously, v = 0 is
impossible.

We conclude that 0 & aMf (x). Since we already know from Theorem 2 that 0 € 3f (x), this completes the proof of the
theorem. 0O

It follows immediately from Theorem 3 that f is not regular at the 2"~! — 1 non-locally-minimizing Clarke stationary
points of f: see the comments after Definition 3.

3. Numerical experiments

Nesterov has observed that Newton’s method with an inexact line search, when applied to minimize the smooth function
f initiated at X, takes many iterations to reduce the value of the function below a small tolerance €. Indeed, the number of
iterations is typically exponential in n, although quadratic convergence is observed eventually if the method is run for long
enough. Our experimental results are mainly obtained using the BFGS quasi-Newton algorithm with a line search based
on the Armijo and “Wolfe” conditions, a well-known method generally used to optimize smooth functions [4]. However,
as explained in [14], BFGS with the same line search is surprisingly effective for nonsmooth functions too. For the results
reported below, we used a publicly available MATLAB implementation.'

For smooth but nonconvex functions such as f there is no theorem known that guarantees that the BFGS iterates will
converge to a stationary point, and pathological counterexamples have been constructed [15,16], although, unlikef. these
are not analytic. However, it is widely accepted that BFGS generally produces sequences converging to local minimizers of
smooth, nonconvex functions [17], so it is not surprising that this is the case forf, with superlinear convergence to x* in the
limit. As with Newton's method, many iterations are required. For n = 8, starting at X and with the initial inverse Hessian
approximation H set to the identity matrix I, the BFGS method requires about 6700 iterations to reducef below 10~1°, and
for n = 10, nearly 50,000 iterations are needed.

For nonsmooth functions, there is no general convergence theory for the BFGS method, but as discussed in [14], when
applied to locally Lipschitz functions the method seems to always generate sequences of function values converging linearly
to Clarke stationary values, and our experiments confirm this observation for small n for both nonsmooth functions studied
in this paper. To apply BFGS to Nesterov’s first nonsmooth variant f , we cannot use X for the initial point as the method
immediately breaks down, f being nondifferentiable at . Instead, we initialize x randomly, retaining the identity matrix for
initializing H. The left panel of Fig. 1 shows the iterates generated by BFGS for the case n = 2 using 7 random starting points:
all sequences of iterates converge to the global minimizer x* = [1, 1]7. However, the accuracy to which BFGS can minimize
f drops rapidly as n increases. Because of the difficulty of the problem combined with the limited machine precision, the
method breaks down, that is the line search fails to return a point satisfying the Armijo and Wolfe conditions, at an iterate x
that is close to .M but not very near x*. When the calculations are carried out to higher precision, more accurate results are
obtained [18]. For example, for n = 4, using standard IEEE “double” precision (about 16 decimal digits), from most starting
points, BFGS reduces f to final values ranging from 103 to 1072, while using “double double” precision (about 32 decimal
digits), from the same starting points, the final values that are obtained range from 10~ to 1073,

For Nesterov’s second nonsmooth variant f, we find that BFGS generates iterates approximating Clarke stationary points,
but not necessarily the minimizer x*. The iterates for the case n = 2, again for 7 randomly generated starting points, are
shown in the right panel of Fig. 1. Most of the runs converge to the minimizer [1, 1]7, but some terminate near the Clarke
stationary point [0, —1]7. For n < 6, given enough randomly generated starting points, BFGS finds, that is approximates
well, all 2"~ Clarke stationary points. The left and right panels of Fig. 2 plot final values of f found by 1000 runs of BFGS
starting with random x and H = I, sorted into increasing order, for the cases n = 5 and n = 6 respectively. Most runs find
either the minimizer or one of the 2"~! — 1 nonminimizing Clarke stationary points, although a few runs break down away
from these points. For n = 7, the method usually breaks down without finding any Clarke stationary point, presumably
because of the limitations of machine precision.

Experiments with the gradient sampling algorithm [19] and Kiwiel’s bundle code [20] give similar results. Both of these
methods have well established convergence theories ensuring convergence to Clarke stationary points. However, it remains
an open question whether the nonminimizing Clarke stationary points are points of attraction for any of these algorithms. For
small n, the computations usually terminate near Clarke stationary points, because eventually rounding error prevents the

1 http://www.cs.nyu.edu/overton/software/hanso.
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Nesterov—Chebyshev—Rosenbrock, n = 5

Nesterov—Chebyshev—Rosenbrock, n = 6
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different starting points different starting points

Fig. 2. Left: sorted final values of f for 1000 randomly generated starting points, when n = 5: BFGS finds all 16 Clarke stationary points. Right: same with
n = 6: BFGS finds all 32 Clarke stationary points.

method from obtaining a lower point in the line search. But this does not establish whether, in exact arithmetic, the methods
would actually generate sequences converging to the nonminimizing Clarke stationary points. Indeed, experiments in [18]
suggest that the higher the precision used, the more likely BFGS is to move away from the neighborhood of a nonminimizing
Clarke stationary point and eventually find a lower one, perhaps the minimizer.

Another observation is the difficulty of finding descent directions from the nonminimizing Clarke stationary points using
random search. Although we know that such descent directions exist by Theorem 3, numerical experiments show that
finding a descent direction by random search typically needs exponentially many trials. For example, when n = 5, usually
100,000 random trials do not suffice to find a descent direction. This illustrates the difficulty faced by an optimization method
in moving away from these points.

4. Conclusion

Nesterov’s Chebyshev-Rosenbrock functions provide very interesting examples for optimization, both in theory and in

practice. Specifically, the smooth functionf, the first nonsmooth function f and the second nonsmooth function f are very
challenging nonconvex instances of smooth functions, partly smooth functions and non-regular functions respectively. As far
as we know, Nesterov’s function f is the first documented case for which methods for nonsmooth optimization result in the
approximation of Clarke stationary points from which there exist directions of linear descent. This observation is primarily
due to Kiwiel [20]. Furthermore, since all first-order nonsmooth optimization methods, including bundle methods [21], the
gradient sampling method [19] and the BFGS method [ 14], are based on sampling gradient or subgradient information, the
results given here for f suggest that limitation of convergence results to Clarke stationary points may be unavoidable, in the
sense that one may not in general be able to expect stronger results such as convergence only to Mordukhovich stationary
points. Nonetheless, it remains an open question as to whether the nonminimizing Clarke stationary points of f are actually
points of attraction for methods using exact arithmetic.
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