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Let A be a matrix with distinct eigenvalues and let w(A) be the

distance from A to the set of defective matrices (using either the 2-

norm or the Frobenius norm). Define�ε , the ε-pseudospectrum of

A, to be the set of points in the complex planewhich are eigenvalues

ofmatricesA + Ewith‖E‖ < ε, and let c(A)be the supremumof all

εwith theproperty that�ε hasndistinct components.Demmel and

Wilkinson independently observed in the 1980s that w(A)� c(A),
and equality was established for the 2-norm by Alam and Bora in

2005. We give new results on the geometry of the pseudospectrum

near points where first coalescence of the components occurs,

characterizing such points as the lowest generalized saddle point of

the smallest singular value of A − zI over z ∈ C. One consequence

is that w(A) = c(A) for the Frobenius norm too, and another is

the perhaps surprising result that the minimal distance is attained

by a defective matrix in all cases. Our results suggest a new

computational approach to approximating the nearest defective

matrix by a variant of Newton’s method that is applicable to both

generic and nongeneric cases. Construction of the nearest defective

matrix involves some subtle numerical issues which we explain,

and we present a simple backward error analysis showing that

a certain singular vector residualmeasures howclose the computed
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matrix is to a truly defective matrix. Finally, we present a result

giving lower bounds on the angles of wedges contained in the

pseudospectrum and emanating from generic coalescence points.

Several conjectures and questions remain open.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction and history

A matrix is defective if it is not diagonalizable. Given a complex n-by-n matrix A, we consider the

quantity

w(A) = inf {‖A − B‖ |B is defective },
wherewerestrict thenormtobe the2-normor theFrobeniusnorm. Inotherwords,w(A) is thedistance
to the set of matrices whose Jordan canonical form has a block of size 2 or more, or equivalently,

which have a nonlinear elementary divisor. An eigenvalue associatedwith such a Jordan block is called

defective as its geometric multiplicity (the number of linearly independent eigenvectors associated

with it) is less than its algebraic multiplicity. By a multiple eigenvalue we mean one whose algebraic

multiplicity is greater than one. The distance to the set of matrices with a defective eigenvalue is

the same as the distance to the set of matrices with a multiple eigenvalue, since an arbitrarily small

perturbation to a matrix with a nondefective multiple eigenvalue makes the eigenvalue defective. In

this paper we show for the first time (in Theorem 6 below) that as long as A has distinct eigenvalues,

a defective matrix B attaining the infimum in the definition of w(A) always exists. We refer to such a

B as the nearest defective matrix, although it is not necessarily unique.

The search for insight into the distance w(A) goes back to the 1960s. In his classic work [27],

Wilkinson defined the condition number of a simple eigenvalue λ as 1/|y∗x|, where y and x are,

respectively, normalized left and right eigenvectors associated with λ; this is infinite for a double

defective eigenvalue as y∗x = 0. He observed that even if the eigenvalues are well separated from

each other, they can still be very ill-conditioned, and gave an example of a matrix A illustrating the

point. He then wrote “It might be expected that there is a matrix close to Awhich has some nonlinear

elementary divisors and we can readily see that this is true …".

In his Ph.D. thesis [9], Demmel introduced w(A) under the name diss(A, path) as well as a second

quantity that we will denote by c(A) under the name diss(A, region). The former is defined to be the

distance from a fixed matrix A to the nearest matrix with multiple eigenvalues, path referring to the

path traveled by the eigenvalues in the complex plane under a smoothly varying perturbation to A, and

diss being an abbreviation for dissociation. The second quantity is defined as the largest ε such that “the

area swept out by the eigenvalues under perturbation" – that is the set of z in the complex plane that

are eigenvalues ofmatrices differing from A by norm atmost ε, the set now commonly known as the ε-
pseudospectrumofA – consists of n disjoint regions, or connected components. Demmel observed that

for all norms,w(A)� c(A), because under the first definition, two eigenvalues must travel to the same

point z under the same perturbation, while under the second definition, two eigenvalues must travel

to the same point z under the same size perturbation. He indicated that w(A) > c(A) for a specially

chosen norm, and mentioned that it is an open question as to whether equality holds in the case of

the 2-norm and the Frobenius norm. Demmel discussed these issues further in [10], where the first

definition diss(A, path) remains unchanged, but the second definition diss(A, region) is replaced by a

more informal discussion of pseudospectral components.2

About the same time Wilkinson made a detailed study of the distance to the nearest defective

matrix in [29]. Hewrote: “A problem of primary interest to us is the distance, measured in the 2-norm,

2 Demmel’s quantities diss(A, path) and diss(A, region) were actually defined more generally in terms of coalescence of eigen-

values from two specified partitions of the spectrum of A, and their associated pseudospectral components, but by taking the

minimum of these quantities over all partitions, we obtain the ones that are relevant in our context.
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of ourmatrix A frommatrices having amultiple eigenvalue" and “We expect that [when the eigenvalue

conditionnumber is large]Awill be, at least in somesense, close to amatrixhaving adouble eigenvalue.

A major objective of this paper is to quantify this statement." He went on to give many examples and

bounds, but there is, surprisingly, still no mention of pseudospectra. The same is true of another well-

known paper of Wilkinson on the same subject [28]. In their book [25], Trefethen and Embree discuss

the early history of pseudospectra and speculate as to why, with his life-long interest in eigenvalues

and rounding errors, Wilkinson did not arrive at the idea of pseudospectra much earlier than he did.

In fact, itwas only in his last paper [30] thatWilkinsondiscussed thenotion of pseudospectra, under

the name “fundamental domain." He defined D(ε), for any operator norm, as the set of points in the

complex plane satisfying ‖(A − zI)−1‖−1 � ε, establishing that this precisely identifies all zwhich can

be induced as eigenvalues by perturbations Ewith ‖E‖ � ε. He emphasized “the sheer economy of this

theorem."Thisobservationmaybecalled the fundamental theoremofpseudospectra: that, foroperator

norms, the definition of pseudospectra in terms of norm-bounded perturbations is equivalent to the

definition using the norm of the resolvent, which reduces, in the case of the 2-norm, to σn(A − zI)� ε,
where σn denotes smallest singular value. The importance of this equivalence has been emphasized

by Trefethen for many years;Wilkinson’s emphatic comments in this regard seem to be the first in the

literature, although Varah [26] comes close: his observation is explicit only in one direction, however,

and is only for the 2-norm.

Wilkinson’s paper [30] continues: “The behaviour of the domain D(ε) as ε increases from zero is

of fundamental interest to us … When ε is sufficiently small [and A has distinct eigenvalues], D(ε)
consists of n isolated domains … A problem of basic interest to us is the smallest value of ε for which

one of these domains coalesceswith one of the others…." Like Demmel, hewas aware that coalescence

of two components of D(ε) at z for a particular ε shows that each of two eigenvalues can be moved to

the same z by a perturbation of norm ε but that this does not imply that a single perturbation exists

that can induce a double eigenvalue. Towards the end of the paper (pp. 272–273) he gave an example

suggesting that, for the ∞-norm,w(A)might be larger than c(A), and also hinted that equality might

hold, possibly in general, for the 2-norm.

At a conference at the National Physical Laboratory inmemory ofWilkinson, Demmel [11] returned

to the subject of the nearest defective matrix. Specifically, he observed that the fact that a matrix with

an ill-conditioned eigenvalue must be near a defective matrix is a special case of the more general

property of many computational problems that the distance from a particular problem instance to a

nearest ill-posed problem is inversely related to the condition number of the problem instance. He also

commented that “a simple guaranteed way to compute the distance to the nearest defective matrix

remains elusive."

In summary, Demmel and Wilkinson independently observed in the 1980s that, in general,

w(A)� c(A), and Demmel raised the question of whetherw(A) = c(A) for the 2-norm and the Frobe-

nius norm. Subsequent work on the nearest defectivematrix, notably by Lippert and Edelman [16] and

Malyshev [19], did not address this question, which was finally answered affirmatively for the 2-norm

byAlamandBora [1]. That the same equality holds for the Frobenius norm is proved for the first time in

the present paper (Theorem 6). Furthermore, neither Demmel nor Wilkinson made a clear statement

as to whether equality might hold for �p operator norms with p /= 2, and indeed this remains an open

question. It is conjectured by Alam and Bora [1, p. 294] that w(A) = c(A) for all operator norms.

For more information on the history of the distance to the nearest defective matrix, including a

comprehensive catalogue of lower and upper bounds, see [2].

2. Coalescence of pseudospectra and generalized saddle points

Weassume throughout thatA ∈ Cn×n is fixed andhas ndistinct eigenvalues,with n > 1. Following

[25], the open ε-pseudospectrum of a matrix A ∈ Cn×n is defined, for ε > 0, by

�ε = {z ∈ C |det(A + E − zI) = 0 for some E with ‖E‖ < ε }.
It is easily proved using the singular value decomposition (SVD) that, for both the 2-norm and the

Frobenius norm,

�ε = {z ∈ C |σn(A − zI) < ε },
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where σn denotes smallest singular value. For each ε > 0, the pseudospectrum �ε has at most n

(connected) components, each of which is an open set and contains at least one eigenvalue of A.

It is a consequence of continuity of eigenvalues that for ε small enough,�ε has n distinct compo-

nents. Define

c(A) = sup {ε |�ε has n components }.
Note that, by definition, c(A) is the same for both the 2-norm and the Frobenius norm. Clearly, if �ε
has n components, then for all perturbation matrices E ∈ Cn×n with ‖E‖ < ε, the matrix A + E has

n distinct eigenvalues and, in particular, A + E is not defective. Hence, as discussed in the previous

section, it is intuitively clear that, for all norms,

w(A)� c(A).

Theorem 1 below states that w(A) = c(A) for the 2-norm and gives a characterization of a nearest

matrix withmultiple eigenvalues, but first we state a key lemma used in the proof.Whenever we refer

to singular vectors, we mean with unit length in the 2-norm, as is standard.

Lemma 1. Suppose A − zI has smallest singular value ε > 0, with corresponding left and right singular

vectors u and v satisfying (A − zI)v = εu. Then z is an eigenvalue of B = A − εuv∗ with geometric mul-

tiplicity one and corresponding left and right eigenvectors u and v, respectively. Furthermore, if u∗v = 0,

then z has algebraic multiplicity greater than one, so it is a defective eigenvalue.

Proof. Let A − zI have singular value decomposition U�V∗, where u and v are, respectively, the last

columns of U and V . Clearly A − zI − εuv∗ has nullity one, so z is an eigenvalue of B with geometric

multiplicity one, with

(B − zI)v = (A − zI)v − εu = 0, (B − zI)∗u = (A − zI)∗u − εv = 0.

The last part follows from the well-known property that the left and right eigenvectors corresponding

to a simple eigenvalue cannot be mutually orthogonal [13, Lemma 6.3.10]. �

Theorem 1 (R. Alam and S. Bora). For the 2-norm, w(A) = c(A). Furthermore, there exists at least one

point z̃, which we call a first-coalescence point, which lies in the closure of two distinct components of

�ε̃ , where ε̃ = σn(A − z̃I) = c(A). Let A − z̃I have singular value decomposition A = U�V∗ and define

B = A − ε̃ UDV∗,whereD is the rank-onematrixdiag(0, . . . , 0, 1) if themultiplicityof the smallest singular

valueof A − z̃I is oneand the rank-twomatrixdiag(0, . . . , 0, 1, 1)otherwise.Then z̃ is amultiple eigenvalue

of B and no other matrix with multiple eigenvalues is closer to A in the 2-norm. If the multiplicity of the

smallest singular value of A − z̃I is one, the corresponding left and right singular vectors u and v satisfy

u∗v = 0, so B is defective, and is a nearest defective matrix in the Frobenius norm as well as the 2-norm,

so w(A) = c(A) for both norms in this case. In general, for the Frobenius norm, w(A)� c(A).

This result is given in [1, Theorem5.1]. See also [6],where adifferent proof of the inequalityw(A)� c(A)
is provided.

An important part of Theorem 1 is the orthogonality of the left and right singular vectors in the case

that the smallest singular value ofA − z̃I is simple. Let us define f : R2 → R by f (x, y) = σn(A − (x +
iy)I). If σn−1(A − z̃I) > σn(A − z̃I) = f (x̃, ỹ) > 0, with z̃ = x̃ + iỹ, then f is differentiable, in fact real

analytic, at (x̃, ỹ), with

∂ f

∂x
(x̃) = −�(u∗v), ∂ f

∂y
(ỹ) = �(u∗v),

where u and v are, respectively, the left and right singular vectors corresponding to σn(A − z̃I) and
� and �, respectively, denote real and imaginary parts.3 Identifying C with R2, we may rewrite

f (�(z),�(z)) as f (z) = σn(A − zI) and rewrite the partial derivative formulas concisely as

3 This is a consequence of the equivalence of the SVD to a 2n by 2n Hermitian eigenvalue problem and results on derivatives of

eigenvalues that go back to Rayleigh.
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δ = 10: Generic Coalescence at Lowest Saddle Point
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δ = 0: Tangential Coalescence at Lowest Saddle Point
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Fig. 1. Coalescence of pseudospectral components for the matrix A(δ). Solid curves denote contours of

f (x, y) = σn(A − (x + iy)I). For small contour levels ε, the ε-pseudospectrum consists of 4 components, one surrounding each

eigenvalue (shown as black dots). When the contour level is increased to ε̃ = c(A) (the middle value plotted), coalescence of

components occurs. On the left, the case δ = 10, for which the first-coalescence point is a smooth saddle point of f . On the

right, the case δ = 0, for which A(δ) is block diagonal and coalescence takes place tangentially, so that the first-coalescence

point is a nonsmooth saddle point of f . The legend showing the contour levels uses a logarithmic scale (base 10). The critical

value ε̃ was computed in both cases using Method k described in Section 4.

∇f (z̃) = −v∗u.
Thus, the assumption that the smallest singular value of A − z̃I is simple implies that z̃ is a stationary

point of the function f (z) = σn(A − zI), or,more precisely, a saddle point, since it is obviously neither a

localminimizer nor a localmaximizer. Thus, if itwere the case that the smallest singular value ofA − z̃I

is always simple, the first-coalescence point z̃ could be characterized simply as a lowest saddle point of

the smooth function f (z). Indeed, Lippert and Edelman [16] claimed that, in the case of the Frobenius

norm, thenearest defectivematrix isA − σuv∗,whereσ , u and v are, respectively, the smallest singular

value and corresponding left and right singular vectors of A − z̃I, with the orthogonality property

u∗v = 0, and where z̃ is the lowest critical point of f (z), provided that the smallest singular value of

A − z̃I is simple.

It sometimes happens that the smallest singular value of A − z̃I is double, that is σn−1(A − z̃I) =
σn(A − z̃I). In this case, the function f (z) is usually4 not differentiable at z̃. This case always occurs

when A is normal, in which case the boundaries of the pseudospectral components are circles and

coalescence of components can only occur when two component boundaries are tangent to each

other. It can also occur when A is not normal.

The two cases are well illustrated by the example

A(δ) =
⎡⎢⎢⎣
0.25 10 0 δ
0 i 0 0

0 0 0.5 10

0 0 0 1 + i

⎤⎥⎥⎦
with δ = 10 (a typical example whose first-coalescence point z̃ is a smooth saddle point with σn(A −
z̃I) simple) and δ = 0 (a nongeneric example for which, because of the block diagonal structure,

coalescence takes place tangentially and for which σn(A − z̃I) is double). Both cases are, respectively,

illustrated, courtesy of EigTool [31], in the left and right sides of Fig. 1.

In the double singular value case, construction of a nearest matrix with multiple eigenvalues is

easy for the 2-norm: simply subtract a rank-two term from A instead of a rank-one term, as stated

4 Conjecture 1 below speculates that f is never differentiable at z̃ in this case.
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in Theorem 1; however, construction of a nearest defective matrix, or a nearest matrix with multiple

eigenvalues for the Frobenius norm, is not so simple. We address this issue in the next section.

Wewill first establish in this section that although f may not be differentiable at a first-coalescence

point z̃, nonetheless such a point is always a lowest saddle point of f (z) = σn(A − zI), provided we

generalize the familiar notion of smooth saddle point to a possibly nonsmooth saddle point, as follows.

We continue to identify C with R2 in the following definition.

Definition 1. The Clarke generalized gradient [8,4] of a locally Lipschitz function φ : C → R at a point

ẑ is the set

∂φ(ẑ) = convex hull

{
lim
zk→ẑ

∇φ(zk) |φ is differentiable at zk

}
.

A stationary point of φ is a point ẑ at which 0 ∈ ∂φ(ẑ). A saddle point of φ is a stationary point of φ
that is not a local extremum. If φ is differentiable at a saddle point ẑ and ∂φ(ẑ) = {∇φ(ẑ)}, then ẑ is

said to be a smooth saddle point; otherwise, it is said to be a nonsmooth saddle point. A lowest saddle

point is a saddle point ẑ for which φ(ẑ) is minimal.

Wewill need the following lemma of Burke, Lewis and Overton (see [5, p. 88] and its corrigendum).

Lemma 2. If z ∈ cl�ε and if v∗(A − zI)v /= 0 for some right singular vector v of A − zI corresponding to

σn(A − zI), then the open disk with center v∗Av and radius |z − v∗Av| is contained in�ε.

Denoting the open disk in the complex plane with center c ∈ C and containing b ∈ C on its boundary

by D(c, b), Lemma 2 states that z ∈ �ε implies that the disk D(v∗Av, z) ⊂ �ε , where v is a right

singular vector corresponding to σn(A − zI). (If c = b, thenD(c, b) = ∅.) Generically, points z ∈ C are

nondegenerate in the sense that there is a right singular vector v corresponding to the smallest singular

value of A − zI for which v∗(A − zI)v /= 0, i.e. for which D(v∗Av, z) /= ∅. However, matrices typically

also have degenerate points including all smooth stationary points of f (z) = σn(A − zI).
The main result of the next theorem, the existence of tangent disks inside the coalescing pseu-

dospectral components, is illustrated by the example shown on the right side of Fig. 1.

Theorem 2 (Tangent disks). Let z̃ be a first-coalescence point satisfying ε̃ = f (z̃), z̃ ∈ cl�, z̃ ∈ cl �̂, z̃ /∈
�, and z̃ /∈ �̂, where� and �̂ are distinct components of�ε̃. Suppose that there does not exist a sequence
of points zk ∈ �ε̃ converging to z̃ such that limk→∞ ∇f (zk) = 0. Then we have the following:

1. Let zk ∈ � and ẑk ∈ �̂ be sequences both converging to z̃. Let vk and v̂k be right singular vectors

corresponding to σn(A − zkI) and σn(A − ẑkI), respectively, and assume, by taking subsequences if

necessary, that vk and v̂k converge to limits v and v̂, respectively. Then v and v̂ are both right singular

vectors forσn(A − z̃I), and� and �̂, respectively, contain nonempty disksD(v∗Av, z̃) andD(v̂∗Av̂, z̃),
whose closures are mutually tangent at z̃.

2. The first-coalescence point z̃ is not in the closure of any other component of�ε̃.
3. The right singular vectors v and v̂ are linearly independent, and the smallest singular value of A − z̃I

has multiplicity two.
4. Let g = −v∗u and ĝ = −v̂∗û, where u = (A − z̃I)v/ε̃ and û = (A − z̃I)v̂/ε̃ are, respectively, left

singular vectors for σn(A − z̃I). Then g and ĝ are, respectively, limits of∇f (zk) and∇f (ẑk), and they

satisfy μg + (1 − μ)ĝ = 0 for some μ ∈ (0, 1).
Proof. Since singular values are continuous, it follows that

σn(A − z̃I) = lim
k→∞ σn(A − zkI) = lim

k→∞ ‖(A − zkI)vk‖2 = ‖(A − z̃I)v‖2 .

Hence, v is a right singular vector of A − z̃I corresponding to its smallest singular value. By Lemma 2,

each of the disks Ck = D(v∗
k Avk, zk) lies in some component of �ε̃ . Each of the points zk ∈ � lies on

the boundary of its disk Ck , so each Ck lies in�. The radius of Ck is
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∣∣zk − v∗
k Avk

∣∣ = ∣∣v∗
k (A − zkI)vk

∣∣ = f (zk)
∣∣v∗

k uk
∣∣ = f (zk) |∇f (zk)|

where uk is the left singular vector corresponding to vk and the right-hand side is well defined because

zk ∈ �, so σn(A − zkI) is simple. Both f (zk) = σn(A − zkI) and ∇f (zk) are bounded away from zero,

the former as it converges to ε̃ and the latter by assumption. Hence, the limiting disk

C = lim
k→∞ Ck = D(v∗Av, z̃)

exists, has positive radius and is contained in�.

Similarly, by choosing a sequence of points ẑk ∈ �̂ one can infer that there is a nonempty disk

Ĉ = D(v̂∗Av̂, z̃) ⊂ �̂where v̂ is a right singular vector of A − z̃I corresponding to its smallest singular

value. The point z̃ is a common boundary point of both the disks C ⊂ � and Ĉ ⊂ �̂. This proves the

first claim.

It follows that z̃ cannot lie in the closure of a third component of �ε̃ , because that would also

contain an open disk whose boundary includes z̃. However, at least two of any three open disks that

share a common boundary point have nonempty intersection. This contradicts the fact that each disk

is contained in a separate component. This proves the second claim.

The disks C and Ĉ are disjoint and, in particular, their centers, v∗Av and v̂∗Av̂, are different. So, the

unit-length vectors v and v̂ cannot be scalar multiples of each other. Hence, v and v̂ are linearly inde-

pendent right singular vectors corresponding to σn(A − z̃I) and therefore σn(A − z̃I) has multiplicity

at least two. The multiplicity cannot be more than two, because in that case, there would be a rank-

three perturbationmatrix Ewith ‖E‖2 = ε̃ for which A + Ewould have eigenvalue z̃ of multiplicity at

least three. However, it follows from theminimality property ofw(A) that for all δ ∈ (0, 1), A + δE has

simple eigenvalues each of which lies in a different component of�δε̃ . This in turn implies that every

neighborhood of z̃ has nonempty intersection with at least three components of�δε̃ in contradiction

to the first claim. This proves the third claim.

The function f (z) = σn(A − zI) is smooth at z ∈ � and z ∈ �̂, because the smallest singular value

is simple in these open sets. We have

f (zk)∇f (zk) = −f (zk)v
∗
k uk = −v∗

k (A − zkI)vk = zk − v∗
k Avk,

the “spoke" of Ck , say sk , that radiates from its center to the boundary point. Similarly,

f (ẑk)∇f (ẑk) = ẑk − v̂∗
k Av̂k,

the spoke of Ĉk , say ŝk , that radiates from its center to the boundary point. In the limit sk and ŝk converge

to the spokes of the disks C and Ĉ that run from their centers to the common boundary point z̃. Thus

the gradients, respectively, have limits g = −v∗u and ĝ = −v̂∗û. As the closures of C and Ĉ are tangent

at z̃, these limits satisfy ĝ = −κg for some real κ > 0. Settingμ = κ/(κ + 1) completes the proof of

the theorem. �

The saddle point result now follows easily.

Theorem 3 (Lowest saddle points). The first-coalescence points, defined in Theorem 1, are lowest saddle

points of f (z) = σn(A − zI) in the sense of Definition 1.

Proof. Let z̃ be a first-coalescence point with ε̃ = f (z̃). Suppose there exists a sequence zk ∈ �ε̃
converging to z̃ such that limk→∞ ∇f (zk) = 0. It follows that z̃ is a stationary point of f according

to Definition 1. On the other hand, if no such sequence exists, the final claim of Theorem 2 shows that

z̃ is a stationary point of f , again according to Definition 1. In either case, z̃ is in the closure of two

pseudospectral components, so it can be neither a local maximum nor a local minimum of f . Hence, z̃

is a saddle point of f . Suppose it is not a lowest saddle point. Then there exists another saddle point y

with f (y) < ε̃, and therefore with σn(A − yI) simple, and so with ∇f (y) = −v∗u = 0, where u and v

are corresponding left and right singular vectors of A − yI. It follows from Lemma 1 that A − f (y)uv∗
has a defective eigenvalue, contradicting the fact that w(A) = ε̃ for the 2-norm. Thus, z̃ is a lowest

saddle point of f . �
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We conjecture the following.

Conjecture 1. Let z̃ be a first-coalescence point with ε̃ = f (z̃). If there exists a sequence zk ∈ �ε̃ converg-
ing to z̃ with limk→∞ ∇f (zk) = 0, then σn(A − z̃I) has multiplicity one, so ∂ f (z̃) = {∇f (z̃)} = {0}. On
the other hand, if no such sequence exists, then in addition to the conclusions of Theorem 2, we have that g

and ĝ are unique (independent of the sequences zk and ẑk), and that

0 ∈ ∂ f (z̃) = {
μg + (1 − μ)ĝ |μ ∈ [0, 1] }

.

If this conjecture holds, the multiplicity of the smallest singular value at a first-coalescence point

completely determines the geometry of coalescence, with a simple singular value occurring if and only

if the saddle point is smooth, and a double singular value occurring if and only if the pseudospectrum

contains tangent disks at the coalescence points, with the Clarke generalized gradient consisting of a

line segment in C containing the origin in the latter case.

It is possible that z is a saddle point of f , with a sequence zk ∈ �f (z) with zk → z and∇f (zk) → 0,

andwithσn(A − zI)havingmultiplicity two. For example, consider the “reversediagonal"matrix5 with

entries 1,1,3,2 andwith z = 0. However, 0 is not a lowest saddle point of f , so it is not a first-coalescence

point, and hence this example is not a counterexample to Conjecture 1.

Before continuingwith our development,wemention two recent papers by Boulton et al. [7] and by

Lewis and Pang [17] that address related issues of coalescence of pseudospectral components. There

is little overlap between these papers or between either paper and the present paper, except that

characterization of coalescence via generalized saddle points is also established in [17, Section 8],

using the terminology “resolvent-critical", via variational analysis of semialgebraic functions. Another

tool exploited by Lewis and Pang [17] is the convexity of the field of values (numerical range) of a

matrix, which we also use in the proof of Theorem 5 below.

3. Analytic paths and orthogonality of singular vectors

Let us now strengthen the assumption of Theorem 2. For sequences zk ∈ � and ẑk ∈ �̂ that lie on

an analytic path, we can draw a stronger conclusion about the limiting singular vectors.

Theorem 4 (Analytic path). Suppose that the assumption of Theorem 2 holds, and suppose that zk =
z(tk), ẑk = z(t̂k), where z(t) : (0, 1) → C is an analytic pathwith z(t̃) = z̃ for exactly one t̃ ∈ (0, 1), with

z(t) ∈ � for t ∈ (0, t̃), z(t) ∈ �̂ for t ∈ (t̃, 1), and z′(t̃) /= 0, and where tk is a real sequence converging

to t̃ from below and t̂k is a real sequence converging to t̃ from above. As previously, let v and v̂, respectively,

be limits of vk, the right singular vectors of σn(A − zkI), and v̂k, the right singular vectors of σn(A − ẑkI).
Then v and v̂ are orthogonal, that is v∗v̂ = 0. Likewise the corresponding limiting left singular vectors

u = (A − z̃I)v/ε̃ and û = (A − z̃I)v̂/ε̃ satisfy u∗û = 0. Furthermore, there existω ∈ C and ω̂ ∈ C with

|ω| = |ω̂| = 1 such that

(ωu)∗(ω̂v̂)+ (ω̂û)∗(ωv) = 0.

Proof. Wefirst note that such analytic paths z(t) exist: for example, we could define the path to be the

line segment joining the centers of the two tangent disks whose existencewas established in Theorem

2. Consider the family of matrices A − z(t)I. By [3,15]6 there exists an “analytic SVD", that is, matrices

X(t),�(t) and Y(t)which are analytic with respect to t, satisfying

A − z(t)I = X(t)�(t)Y(t)∗, X(t)∗X(t) = I, Y(t)∗Y(t) = I,

and with �(t) real and diagonal. Thus the absolute values of the diagonal entries of �(t) are the

singular values of A − z(t)I. We know from Theorem 2 that the multiplicity of the smallest singular

5 This example was provided by J.-M. Gracia to show the necessity of the corrigendum in [5].
6 The assumption in [3] that the matrix family is real is not necessary; see [15, Section II.6.1]. What is essential is that the

parameter t is real.
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value is twoat t = t̃, so bypermuting the signed singular values andmultiplying by a constant diagonal

unitary matrix if necessary, we may assume that the following two conditions hold:

1. The last two diagonal entries of�(t̃) are each equal to ε̃ = σn(A − z̃I).
2. Let x, x̂ and y, ŷ be the last two columns of X(t̃) and Y(t̃), respectively. Then ζ x∗ŷ is real, where

ζ = z′(t̃). (This is accomplished, if necessary, by replacing x by sign(ζ x∗ŷ)x and yby sign(ζ x∗ŷ)y,
where “sign" denotes complex sign.)

Differentiating the decomposition A − z(t)I = X(t)�(t)Y(t)∗ with respect to t at t̃, we have

−ζ I = X′(t̃)�(t̃)Y(t̃)∗ + X(t̃)�′(t̃)Y(t̃)∗ + X(t̃)�(t̃)(Y ′(t̃))∗.
Multiplying this equation by X(t̃)∗ from the left and by Y(t̃) from the right, we have

−ζX(t̃)∗Y(t̃) = X(t̃)∗X′(t̃)�(t̃)+�′(t̃)+�(t̃)Y ′(t̃)∗Y(t̃).
Setting R = X(t̃)∗X′(t̃) and S = Y ′(t̃)∗Y(t̃), and equating the (n − 1, n) and (n, n − 1) entries of this
matrix equation, we have

−ζ x∗ŷ= ε̃(Rn−1,n + Sn−1,n)

−ζ x̂∗y= ε̃(Rn,n−1 + Sn,n−1).

Differentiating X(t)X(t)∗ = I and Y(t)Y(t)∗ = I at t = t̃ we see that R and S are skew-Hermitian ma-

trices. Therefore the right-hand sides of the two equations above are the negative-complex-conjugates

of each other, and hence so are the left hand sides. But the left-hand side of the first equation is real,

so both sides of both equations must be real. Adding the equations, we have, since ζ is nonzero,

x∗ŷ + x̂∗y = 0.

Since σn(A − zkI) is simple and zk = z(tk), the right singular vectors of A − zkI satisfy ωkvk =
ym(tk) with |ωk| = 1, where ym(tk) is the mth column of Y(tk) and, by continuity of �(t) at t̃, m is

either n − 1 or n. Since vk converges to v, a right singular vector corresponding to σn(A − z̃I), we

have either ωv = y or ωv = ŷ, where |ω| = 1. Similarly, since the right singular vectors v̂k of A − ẑkI

converge to v̂, we have either ω̂v̂ = y or ω̂v̂ = ŷ, where |ω̂| = 1. By Theorem 2, v and v̂ are linearly

independent, so onemust be a unit modulusmultiple of y and the other of ŷ. Hence, they aremutually

orthogonal, and without loss of generality we can take ωv = y, ω̂v̂ = ŷ. Thus the left singular vectors

satisfyωu = x and ω̂û = x̂ and are alsomutually orthogonal. The final claim follows from the property

x∗ŷ + x̂∗y = 0. �

It follows easily from this result that there always exists an orthogonal pair of left and right singular

vectors at a first-coalescence point. Recall that, as throughout the paper, when we refer to singular

vectors, we mean with unit length in the 2-norm.

Theorem 5 (Orthogonal left and right singular vectors). Let z̃ be a first-coalescence point with ε̃ = f (z̃).
Then there exist left and right singular vectors ũ and ṽ satisfying (A − z̃I)ṽ = ε̃ũ with ũ∗ṽ = 0.

Proof. First suppose that the assumption of Theorem 2 does not hold, so that there is a sequence

zk ∈ �ε̃ converging to z̃ such that limk→∞ ∇f (zk) = 0. Then, by selecting a subsequence, we may

assume that the sequence of left and right singular vectors uk and vk corresponding to σn(A − zkI)
converge to limits u and v, respectively, and these must be, respectively, left and right singular vec-

tors corresponding to σn(A − z̃I). Since ∇f (zk) = −v∗
k uk → 0, we have ũ∗ṽ = 0 by setting

ũ = u, ṽ = v.

Suppose now that no such sequence zk exists, so that Theorems 2 and 4 apply. Then, because

of the orthogonality properties u∗û = v∗v̂ = 0 established in Theorem 4, all left and right singular

vectors ũ and ṽ for σn(A − z̃I) have the form ũ = cu + sû, ṽ = cv + sv̂ for some |c|2 + |s|2 = 1, and

hence
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ũ∗ṽ =
[
c

s

]∗ [
u û

]∗ [
v v̂

] [
c

s

]
.

Thus the set of possible values for the inner products ũ∗ṽ is exactly the field of values of a fixed 2-by-2

matrix. The field of values is convex [14] and c = 1, s = 0 gives u∗v while c = 0, s = 1 gives û∗v̂. By
Theorem 2, zero is a convex combination of these two complex numbers. Hence, zero is in the field of

values, proving that c, s exist defining ũ, ṽwith ũ∗ṽ = 0. In fact, using the final result of Theorem 4, we

have the explicit formulas c = ±ω√
μ and s = ± ω̂√

1 − μ, where μ is defined by the last part of

Theorem 2. �

This result immediately leads to answers to several questions left open in [1]. First, it shows that,

for the Frobenius norm as well as for the 2-norm, w(A) = c(A). Second, it shows that as long as A has

distinct eigenvalues (as assumed throughout the paper) the minimal distance to the set of defective

matrices is attained, which was previously known only for the case of a simple smallest singular value.

Theorem 6 (Nearest defective matrix in Frobenius norm). For the Frobenius norm, w(A) = c(A).
Furthermore, for both the 2-norm and the Frobenius norm, the minimal distance to the set of defective

matrices is attained.

Proof. We know from Theorem 1 that w(A)� c(A). Let B = A − ε̃ũṽ∗ with ũ∗ṽ = 0 as defined in

Theorem 5. By Lemma 1, B is defective, and for both norms, ‖A − B‖ = ε̃ = c(A) = w(A). �

An obvious class of matrices for which σn(A − z̃I) has multiplicity two consists of those matrices

A satisfying

A = Q

[
A1 0

0 A2

]
Q∗,

withQ∗Q = I andwith the property that the two components� and �̂ inwhose closure z̃ lies contain

one eigenvalue of A1 and one eigenvalue of A2, respectively. The normal matrices form a subclass of

this class, since normal matrices are unitarily diagonalizable. A nonnormal example was already given

in Section 2 and illustrated on the right side of Fig. 1. Intuitively, tangential coalescence at a first-

coalescence point z̃, with a doubleminimum singular value, must apply for this class of matrices since

the ε-pseudospectra of A are simply the union of the ε-pseudospectra of A1 and of A2, and these cannot

“interact" for ε < ε̃ = f (z̃). We have verified this experimentally for many examples. In the case that

A is normal, its ε-pseudospectra are simply the union of disks of radius ε around its eigenvalues,

so tangential coalescence is clear. Assuming then that the assumption of Theorem 2 applies to this

class, and taking Q = I for simplicity, each of the right singular vectors vk is a block vector with its

nonzeros corresponding to the block of A whose eigenvalue is in �, and therefore its limit v has the

same property, as does the limit u of the left singular vectors. Likewise v̂ and û are block vectors with

nonzeros corresponding to the other block. Therefore, u∗v̂ = û∗v = 0. Clearly, this extends to any

unitary Q . Notice that the condition u∗v̂ = û∗v = 0 is stronger than the property stated at the end of

Theorem 4.

Note further that the same condition holds for a broader class of matrices, as illustrated by the

following example. Consider a matrix A from the class just described, with n = 4 and a unique first-

coalescence point z̃ with ε̃ = f (z̃), and set

C = A + δ(u1 + u2)(v1 + v2)
∗

where v1, v2 are right singular vectors ofA − z̃I corresponding to the largest two singular values and u1,

u2 are the corresponding left singular vectors. Thus, v1, v2, v and v̂ are all mutually orthonormal, as are

u1, u2, u and û. By construction, (C − z̃I)v = ε̃u and (C − z̃I)v̂ = ε̃û, so z̃ is a first-coalescence point

for C as long as |δ| is sufficiently small, with u, û, v, v̂ unchanged. It is easily verified experimentally,

by choosing A to have randomly generated blocks A1 and A2, modified if necessary so that � and �̂

contain eigenvalues from different blocks, that constructing C in this way typically results in a matrix

that is not unitarily block diagonalizable. (For n = 4 this is easily verified by computing the Schur
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factorizations corresponding to all possible orderings of the eigenvalues; in Matlab, this can be done

using the ordschur function.)

These observations raise the question:

Question 1. Suppose that the assumption of Theorem 2 holds, or, more restrictively, that the assump-

tion of Theorem 4 holds. Does it follow that the property u∗v̂ = û∗v = 0 must hold?

Notice that if the answer to Question 1 is positive, the formula for ũ and ṽ in Theorem 5 holds for any

unit scalars ω and ω̂.
We conclude this section by noting that, if in addition to making the assumption of Theorem 4,

we also assume that the right singular vectors for the second smallest singular values of A − zkI and

A − ẑkI converge, then the roles of the limiting singular vectors are reversed in the following sense.

Theorem 7 (Second smallest singular values). Suppose that the assumption of Theorem 4 holds, and

suppose further that the sequences of left and right singular vectors for σn−1(A − zkI) converge. Then
these limiting singular vectors, respectively, have the form ψ û and ψ v̂, with |ψ | = 1. Likewise if the

sequences of left and right singular vectors for σn−1(A − ẑkI) converge, then they have the form ψ̂u and

ψ̂v, with |ψ̂ | = 1. Furthermore, the gradients ∇σn−1(A − zkI) and ∇σn−1(A − ẑkI) converge to −v̂∗û
and−v∗u, respectively. Finally, the convex combinationsμ∇σn(A − zkI)+ (1 − μ)∇σn−1(A − zkI)and
(1 − μ)∇σn(A − ẑkI)+ μ∇σn−1(A − ẑkI) both converge to zero, where μ is as in Theorem 2.

Proof. Let v, vk, v̂ and v̂k be as in Theorem 4. Note that v∗v̂ = 0. For k large enough, σn−1(A − zkI)
is simple and hence the corresponding right singular vectors are unique up to unit modulus scalars.

Further, for eachk thesevectors areorthogonal tovk andhence the limitsof thesevectors areorthogonal

to v. Since the multiplicity of σn(A − z̃I) is two and v∗v̂ = 0, these limits must be unit modulus

multiples of v̂. Similarly, the limits of right singular vectors corresponding to σn−1(A − ẑkI) are unit

modulusmultiples of v. The corresponding results for the left singular vectors follow. The formulas for

the gradients are then immediate, and the last statement follows from Theorem 2. �

This theorem will be useful in the formulation of a numerical method in the next section.

4. Numerical approximation of first-coalescence points

We have seen in Section 2 that, in all cases, nearest defective matrices are determined by first-

coalescence points, and these are lowest generalized saddle points of f (z) = σn(A − zI). There are

two key issues in the numerical computation of such points : global and local. We will not address

the first, which is how to identify a lowest saddle point; however, recent work has been done in this

direction by Lewis and Pang [18] (based on ideas in [21]) and Mengi [20] (based on ideas in [19]). We

will address the second issue: supposing that we have an approximation to a desired saddle point z̃,

how do we compute it accurately?

In the generic case that σn(A − z̃I) is simple, the obvious answer is to apply Newton’s method to

the equation∇f (z) = 0. To avoid confusionwe revert to usingR2 instead ofC: thus the equation to be

solved is g(x, y) = ∇f (x, y) = 0, where f (x, y) = σn(A − (x + iy)I), and the desired solution is (x̃, ỹ),
where z̃ = x̃ + iỹ. We know that ∇f (x, y) = −[�(v∗u); �(v∗u)], where u and v are, respectively, left

and right singular vectors corresponding to σn(A − (x + iy)I). To implement Newton’s method we

also need the Hessianmatrix of second derivatives of f (x, y), sayH(x, y), whose entries are given in the

following lemma. The proof applies more general results in [24] to the parametrization A − (x + iy)I.

Lemma 3 (J.-G. Sun). Suppose that σ is a positive, simple singular value of A − zI with corresponding

left and right singular vectors u and v. Define D = (σ 2I − (A − zI)∗(A − zI))† and E = (σ 2I − (A −
zI)(A − zI)∗)† where † indicates the Moore–Penrose pseudo-inverse. The second partial derivatives of

σ = σ(z) = σ(x + iy) are
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∂2σ

∂x2
=σu∗Du + σ v∗Ev + 2� (

v∗(A − zI)Du
) + σ−1 (�(u∗v)

)2
∂2σ

∂x∂y
=2�(v∗(A − zI)Du)+ σ−1�(u∗v)�(u∗v)

∂2σ

∂y2
=σu∗Du + σ v∗Ev − 2� (

v∗(A − zI)Du
) + σ−1 (�(u∗v)

)2
where �(·) and �(·) indicate real and imaginary parts, respectively.

Newton’s method applied to g(x, y) = 0 is quadratically convergent to (x̃, ỹ) as long as σn(A − z̃I)
is simple and H(x̃, ỹ) is nonsingular. A practical implementation needs to enforce reduction of some

merit function, such as ‖g(x, y)‖2. This is easily done by a backtracking line search: if the Newton

update [x; y] − αH(x, y)−1g(x, y) with α = 1 does not result in reduction in ‖g‖, replace α by α/2,
repeating until a reduction is obtained. Let us refer to this algorithm as Method g. Its weakness is

that convergence to the desired saddle point z̃ = x̃ + iỹ may not occur if the initial approximation

is not good enough, and in particular, if the singular value separation σn−1(A − z̃I)− σn(A − z̃I) is
small, the norm of the Hessian H(x̃, ỹ) is large and the radius of convergence of Newton’s method is

small.

Now let us consider the case where σn(A − z̃I) is double and assume that Theorem 2 applies. We

refer to this case henceforth as the nongeneric case, equivalently the case where the coalescence of

pseudospectra is tangential. Method g is almost certain to fail in this situation, even when initialized

very close to z̃, since not only is ∇f undefined at z̃, but also (by the assumption of the theorem) there

is no sequence zk converging to z̃ with ∇f (zk) → 0. However, Theorem 7 suggests applying Newton’s

method to the following function mapping R3 to R3,

h(x, y,μ) =
[
μ∇σn−1(A − (x + iy)I)+ (1 − μ)∇σn(A − (x + iy)I)

σn−1(A − (x + iy)I)− σn(A − (x + iy)I)

]
= 0.

Note that the definition of h is consistent with the corresponding equation at the end of Theorem 7

that holds on �, not the one that holds on �̂. This is an arbitrary choice that must be made one way

or the other as in practice one does not know in which component an iterate lies. Inside� and �̂, we

know that the smallest singular value is simple, and sufficiently close to z̃, the second smallest singular

value must also be simple, so the function h is well defined. We may therefore compute its Jacobian

(derivative), again using the formulas for second derivatives of simple singular values in Lemma 3.

Again we may use Newton’s method with a backtracking line search. This time the Newton equation

has three variables (the corrections to x, y and μ), but it is natural to carry out the line search in the

(x, y) space, defining μ (given x and y) by the least squares approximation to the first two equations

in h(x, y,μ) = 0, projecting μ if necessary to lie in [0,1]. We call this Method h.

For sufficiently good starting points, we generally observe quadratic convergence of Method h, but

it is not obvious how to state and prove a quadratic convergence theorem, as the singular values are

not differentiable at z̃ and hence h is not well defined in the limit. One possibility is to follow the

approach in [22], exploiting the existence of an analytic SVD along lines passing through z̃, as was

done in the proof of Theorem 4. This allows one to define, for any real θ ∈ [0,π), a function hθ (t,μ) =
h(x̃ + t cos θ , ỹ + t sin θ ,μ)which is differentiable in (t,μ). Following [22], given any iterate [x; y;μ]
close to the optimal point [x̃; ỹ; μ̃] with z = x + iy in � or �̂, one can prove a quadratic contraction

in the error provided that the Jacobian of hθ is invertible at (0, μ̃) for θ = arg(x − x̃ + i(y − ỹ)). To
some extent this explains quadratic convergence in practice, which typically takes place very rapidly,

although to prove a quadratic convergence theorem one would need to know that the inverse of the

Jacobian of hθ is bounded with respect to θ : there seems no reason to suppose this is the case [12].

Another issue is that the iterates x + iy may not remain in � and �̂. The function h remains well

defined anywhere that the singular values are distinct, but we know nothing about the properties of

sets on which this is true outside � and �̂. On the other hand, given the tangent disks geometry, the

closer the iterates are to z̃, the more likely it seems that they will indeed lie in the pseudospectral
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components � and �̂. In any case, we routinely observe quadratic convergence for Method h in the

nongeneric case, as we do for the method to be described next.

Clearly, Method h will fail for generic matrices for which the smallest singular value σn(A − z̃I) is
simple. We therefore introduce a third method which combines the advantages of Methods g and h.

Consider the following function mapping R3 to R3,

k(x, y,μ) =
[
μ∇σn−1(A − (x + iy)I)+ (1 − μ)∇σn(A − (x + iy)I)

μ(σn−1(A − (x + iy)I)− σn(A − (x + iy)I))

]
= 0.

The only difference between the functions k and h is that the third component of k has amultiplicative

factor μ. This formulation exploits the well-known concept of complementarity familiar from con-

strained optimization: for k(x, y,μ) to be zero, either μ is zero, in which case the first two equations

imply that g(x, y) = 0, or μ is not zero, in which case h(x, y,μ) = 0. The Jacobian of k is readily

computed (again assuming distinct singular values), and the resulting backtracking implementation

of Newton’s method is very similar to the one outlined for the function h. We call this Method k.

The beauty of Method k is that it is applicable to both the generic (multiplicity one) and nongeneric

(multiplicity two) cases.

To complete the description of these three local methods, we need to define the starting point and

the termination criteria. Addressing the latter point first, we terminate the iterations when either the

norm of the function g, h or k drops below 10−15 (a very demanding tolerance) or the line search fails

to return a reduction in the norm, indicating that the limiting accuracy has been reached. Regarding

the starting point, a good choice is as follows. Let pj be the eigenvalue condition number for the

eigenvalue λj of A (recall that p
−1
j is the modulus of the inner product of normalized left and right

eigenvectors for λj). We define the starting point z0 = x0 + iy0 by the following convex combination

of two eigenvalues,

z0 = p
ĵ
λ
k̂
+ p

k̂
λ
ĵ

p
ĵ
+ p

k̂

,

where the index pair (ĵ, k̂) minimizes |λj − λk|/(pj + pk) over all distinct pairs of eigenvalues. The

starting guess is derived from first-order perturbation bounds for simple eigenvalues. If A is perturbed

to A + E and ‖E‖ = η is small, then for an eigenvalue λj of A there exists an eigenvalue λ̃j of A + E

such that

|λ̃j − λj| � pjη + O(η2).

Thus for sufficiently small η, the component of�η containing λj is approximately a disk of radius pjη
centered at λj . Consequently, a point of coalescence of two components of�η containing eigenvalues,

say, λj and λk is expected to be approximated by the point of coalescence of the disks |z − λj| < pjη
and |z − λk| < pkη. This gives the starting guess z0 which is the point of coalescence of the disks for

the eigenvalues λ
ĵ
and λ

k̂
.

We now illustrate the behavior of the threemethods on some examples, using the standardMatlab

function svd to compute the singular value decomposition. We start with the same family illustrated

in Section 2,

A(δ) =
⎡⎢⎢⎣
0.25 10 0 δ
0 i 0 0

0 0 0.5 10

0 0 0 1 + i

⎤⎥⎥⎦ .
We ran Methods g, h and k on this matrix family using the following values for δ: 10−15, 10−12, 10−9,

10−6, 10−3 and 1. Mathematically speaking, A(δ) has generic, that is nontangential, coalescence of

pseudospectra at the first-coalescence point z̃ for almost all δ > 0, with σn(A − z̃I) simple, but nu-

merically speaking, setting δ sufficiently small is effectively the same as setting it to zero, in which

caseσn(A − z̃I) is double. Thus, it is not surprising thatMethod g fails to converge to the correct saddle

point for δ = 10−15.Whatmight be surprising is that because the convergence radius is so small when
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Fig. 2. The 2-norm of k(x, y,μ) as a function of the iteration count, for twomatrix families A(δ)which are block diagonal when

δ = 0. On the left, the n = 4 family. On the right, the n = 100 family.

the singular value separation is small, Method g fails for much larger values of δ as well, including all

values listed above except δ = 1, converging to a saddle point that is not the lowest saddle point. On the

other hand, Method h works successfully for δ = 10−15, but increasingly more poorly as δ increases.
In contrast, Method k works well in all cases, as seen on the left side of Fig. 2, which plots ‖k‖2 as

a function of the iteration count for each value of δ. Note the rapid, indeed quadratic, convergence

for δ = 10−15. For the middle-sized values of δ, convergence is slower; this is because the condition

number of the Jacobian of the function k is enormous. A large condition number delays convergence of

Method k even for δ = 1, but in that case, quadratic contractions in ‖k‖2 eventually occur at iterations

11 and 12. In every case convergence took place to the lowest saddle point.

We also ran the same experiments on a block diagonal familywith n = 100, constructed as follows.

First we randomly generated two blocks A1 and A2, each of order 50, and then we computed the pair

(ĵ, k̂) minimizing |λj − νk|, where λj is an eigenvalue of A1 and νk is an eigenvalue of A2. We then

set A0 = diag(A1, A2 + τ I), where τ = λ
ĵ
− ν

k̂
+ (1 + i)/(10n). In this way, as we verify empirically,

the smallest of the distances between all pairs of eigenvalues of A0 is likely to be attained by one

eigenvalue from each block of A0, and, likewise, the initial point z0 defined above is likely to be the

weighted average of λ
ĵ
and λ

ĵ
+ (1 + i)/(10n). We then define A(δ) to be A0 + δe1e

∗
n , that is the block

diagonal matrix A0 with an additional entry δ connecting the blocks in the top right corner. We then

ran all three methods on this matrix for the same values of δ used previously. The right side of Fig. 2

shows the results for Method k on a typical example; for each value of δ, convergence was obtained to

the same saddle point. On the other hand,Method g achieves comparable accuracy only for δ = 1, and

diverges to a higher saddle point for δ = 10−9, 10−12 and 10−15, while Method h achieves accuracy

comparable to Method k only for these three smallest values of δ. Because n is larger, rounding errors

prevent the machine precision accuracy that we observed for n = 4, but quadratic contractions are

still observed for the smallest and largest values of δ, while for the middle values, good accuracy is

obtained but convergence is slower because the Jacobian of k is very badly conditioned.

The conclusion to be drawn from this discussion is the following. Nongeneric cases (with tangential

coalescence) do not present any special difficulty as long as Method k is used, and this method works

well for generic cases too. Indeed, we observe quadratic convergence in both cases. The difficult cases

are the matrices that are close to nongeneric instances, and even in these cases, Method k works well,

although convergence ismarkedly delayed by ill-conditioning of the Jacobian of the function k(x, y,μ).
In contrast, in the nearly nongeneric cases (small δ), Methods g and h both fail consistently. This is
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because the function g(x, y) is so ill-conditioned that Newton’s method does not converge without an

extremely good starting point, and the third component of h(x, y,μ) cannot be set exactly to zero. Thus,
in summary, Method k is an effective way to stabilize Method g in the most difficult ill-conditioned

cases, extending the advantage of Method h for the nongeneric case to nearly nongeneric cases.

We should acknowledge, however, that Method k is not foolproof. It is not difficult to construct

small, highly ill-conditioned examples for which convergence takes place to a nonlowest saddle point

or even to a local maximum of σn(A − zI). In such cases, the procedure of the next section constructs

a nearby defective matrix, but not the nearest one.

5. Numerical construction of the nearest defective matrix

In this section, we discuss how to construct the nearest defective matrix B to A, assuming that a

lowest saddle point z̃ has been accurately approximated by Method k as discussed in the previous

section. In order to avoid overly cluttered notation, we adopt the following conventions in this section:

z̃ denotes the computed saddle point at the final iteration of Method k (after the final successful line

search); ε̃ denotes the computed smallest singular value of A − z̃I; u and v denote the computed left

and right singular vectors corresponding to the second smallest computed singular value of A − z̃I; û
and v̂ denote the computed left and right singular vectors corresponding to the smallest singular value

of A − z̃I, and μ denotes its value at the final iterate of Method k. (The reason for setting u, v, rather

than û, v̂, to the singular vectors for the second smallest singular value is to make the usage ofμ in the

definition of k consistent with the usage of μ in Theorem 2.)

The first idea that comes to mind is as follows: ifμ is zero (or small), set B = A − ε̃ûv̂∗; otherwise,

set B = A − ε̃ũṽ∗ where ũ and ṽ are defined as in Theorem 5. However, this is a problematic for

several reasons. The first is that, as explained in the previous section, numerically speaking one cannot

distinguish between generic and nongeneric cases, and in the cases where the smallest two singular

values are not well separated it will be difficult to decide whetherμ should be zero or not. The second

is that the scalars ω and ω̂ for which the final conclusion of Theorem 4 holds are not immediately

available, although any unit scalars will work if the answer to Question 1 is positive. The third reason

is the most subtle. In the nongeneric case with z̃ exact, it does not make sense to speak of individual

singular vectors corresponding to the smallest two singular values, but only of the two-dimensional

subspace of singular vectors for the double singular value. Therefore, in the nongeneric case where z̃ is

an accurate but not exact estimate of the saddle point, or the very nearly nongeneric case, the singular

vectors corresponding to the smallest two singular values cannot be resolved numerically [23]. One

can expect only that the subspace spanned by the computed right singular vectors corresponding

to the smallest two singular values is an accurate approximation of the span of the singular vectors

corresponding to the actual smallest two singular values. The same is true of the left singular vectors.

Thus, the computed vectors u, û, v, v̂ are not likely to accurately approximate the limiting vectors

defined in the proof of Theorems 2 and 4. Consequently, even if the answer to Question 1 is positive,

the formula for ũ and ṽ given in Theorem 5 may be completely wrong.

A partial remedy is to terminate Method k before z̃ is approximated too accurately, so that the

individual singular vectors can be resolved numerically. However, a better idea is as follows. Note

that the final vectors u, û, v, v̂ must satisfy the key properties (A − z̃I)v = ε̃u, (A − z̃I)v̂ = ε̃û and the

orthogonality properties u∗û = v∗v̂ = 0 to high precision, from standard error analysis for computing

the SVD. Therefore, the desired singular vectors ũ and ṽ for which ũ∗ṽ = 0 must satisfy ũ = cu +
sû, ṽ = cv + sv̂ to high precision, for some |c|2 + |s|2 = 1. Define the 2 × 2 matrix

W = [
u û

]∗ [
v v̂

]
.

We wish to compute complex numbers c and s with |c|2 + |s|2 = 1 satisfying[
c

s

]∗
W

[
c

s

]
= 0.

Note that, letting wjk denote the entries of W , the equation μw11 + (1 − μ)w22 = 0 is valid to high

precision because it is enforced by Method k.
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Table 1 The computed residual for the two matrix families A(δ) which are block diagonal

when δ = 0. The second and fourth columns show the residual computed using only the

singular vectors corresponding to the smallest singular value. The third and fifth columns

show the residual computed using the singular vectors corresponding to the smallest two

singular values, via Algorithm1. The first residual is smallerwhen δ is small and the second is

smaller when δ is large, motivating the use of Algorithm 2 to construct the nearest defective

matrix.

δ r(ũ, ṽ) (n = 4) r(û, v̂) (n = 4) r(ũ, ṽ) (n = 100) r(û, v̂) (n = 100)

1.0e-015 5.5e-015 1.2e-001 1.2e-013 4.6e-001

1.0e-012 3.2e-015 5.1e-002 4.3e-014 2.5e-001

1.0e-009 2.5e-012 7.9e-006 1.2e-011 4.2e-005

1.0e-006 2.5e-009 8.3e-009 1.2e-008 1.9e-007

1.0e-003 2.5e-006 4.6e-012 1.2e-005 9.6e-011

1.0e+000 3.5e-014 3.5e-014 1.2e-002 2.1e-013

The following algorithm computes c and s, given the computed W .

Algorithm 1

1. If w11 = 0, return c = 1, s = 0; if w22 = 0, return c = 0, s = 1.

2. If w12 + w21 = 0, return c = √
μ, s = ±√

1 − μ.

3. Set ψ = wjj/|wjj|, where |wjj| = max(|w11|, |w22|), and replace W by ψ̄W. This does not change

the solution set for c, s, but it makes wjj real. Furthermore, since the ratio w11/w22 is the real number

(μ− 1)/μ before the scaling by ψ , this remains true after the scaling, and therefore both scaled

diagonal entries are real.

4. Set ξ = (α − iβ)/
√
α2 + β2, where α = �(w12 − w21) and β = �(w12 + w21), and replace W

by D∗WD, where D = diag([1, ξ ]). The newW satisfies �(w11) = �(w22) = �(w12 + w21) = 0,

and hence [γ ; δ]∗�(W)[γ ; δ] = 0 for any real γ , δ.
5. Wenowneed tofind realγ , δwithγ 2 + δ2 = 1 satisfying [γ ; δ]∗Re(W)[γ ; δ] = 0. This is achieved

byγ = 1/
√

1 + t2, δ = t/
√

1 + t2,where t is a solutionof thequadratic equationw11 + �(w12 +
w21)t + w22t

2 = 0.

6. Return [c; s] = D[γ ; δ] = [γ ; δξ ].
Let us define a “singular vector residual" mapping Cn × Cn to R by

r(p, q) = |p∗q| + ‖(A − z̃I)q − ε̃p‖ + ‖(A − z̃I)∗p − ε̃q‖.
If r(p, q) = 0, then B = A − ε̃pq∗ is defective by Lemma 1. Table 1 compares r(ũ, ṽ) = r(cu + sû, cv +
sv̂) (where c, s are computed by Algorithm 1) with r(û, v̂) (using only the computed singular vectors

corresponding to the smallest singular value) for the families A(δ) from Section 4. We see that, as

expected, for nearly nongeneric matrices (δ small), r(ũ, ṽ) may be much smaller than r(û, v̂). On the

other hand, for matrices that are not nearly nongeneric (δ large), r(ũ, ṽ) may actually be larger than

r(û, v̂). We therefore advocate the following algorithm for constructing the nearest defective matrix.

Recall that u, v, û, v̂ were all defined at the beginning of this section.

Algorithm 2

1. Set ũ = cu + sû, ṽ = cv + sv̂, where c, s are computed by Algorithm 1.

2. If r(ũ, ṽ)� r(û, v̂), set B = A − ε̃ũṽ∗; otherwise, set B = A − ε̃ûv̂∗.

The following simple backward error analysis tells us that if r(p, q) is small, B is close to a defective

matrix.
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Theorem 8 (Backwards error). For sufficiently small positive η = r(p, q),

B = A − ε̃pq∗ = SCS−1 + E,

where C is defective, ‖S∗S − I‖ = O(η), and ‖E‖ = O(η).

Proof. Let S = [q p Y], where Y ∈ Cn×(n−2) has orthonormal columns and Y∗q = Y∗p = 0. Since

the first two columns of S are not exactly orthogonal, we may use Gram-Schmidt to orthogonalize S,

resulting in S = Q + beT2, where Q is unitary, b = p − d/‖d‖ and d = p − (q∗p)q. Note that ‖d‖2 =
1 − θ2, where θ = |q∗p| � η. Thus ‖b‖ = ‖p − d(1 + θ2/2 + O(θ4))‖ = θ + O(θ2). It follows that

S = Q + O(θ), S∗S = I + O(θ), and S−1 = S∗ + O(θ). But immediately from the definition of S, we

have S∗BS = C + E, where ‖E‖ = O(η) and

C =

⎡⎢⎢⎢⎢⎢⎢⎣
z̃ ∗ ∗ · · · ∗
0 z̃ 0 · · · 0

0 ∗ ∗ · · · ∗
...

...
...

. . .
...

0 ∗ ∗ · · · ∗

⎤⎥⎥⎥⎥⎥⎥⎦ .

The eigenvalue z̃ of C has right eigenvector e1 and left eigenvector e2, so it has algebraic multiplicity

at least two and geometric multiplicity at least one. Furthermore, we know from Lemma 1 that for

η = 0, the geometric multiplicity is one, so it is clear that when η is sufficiently small, the geometric

multiplicity is one, and hence C is defective. �

Our Matlab code implementing the methods and algorithms discussed in this paper is publicly

available.7

6. The angle of pseudospectral wedges

Section 2 is primarily concerned with the local geometry of the pseudospectrum�w(A) near first-

coalescence points z̃when σn(A − z̃I) hasmultiplicity two, as illustrated in the example shown on the

right side of Fig. 1. The following, perhaps surprising, result addresses this issue in the generic case,

that is when σn(A − z̃I) is simple, as illustrated on the left side of Fig. 1. This theorem applies to any

smooth saddle point of f , not only lowest saddle points, so we state it in that generality.

Theorem 9 (Angle of wedges). Suppose z̃ satisfies σn−1(A − z̃I) > σn(A − z̃I) = ε, with corresponding

left and right singular vectors u and v satisfying u∗v = 0, and so, by virtue of Lemma 1, A − εuv∗ has

an eigenvalue z̃ with geometric multiplicity one and algebraic multiplicity at least two. Suppose that the

algebraic multiplicity is two. Then, for all ω < π/2,�ε contains 2 wedges of angle at least ω emanating

from z̃, that is

z̃ ±
{
ρeiθ/2

∣∣∣θ ∈ [θ̃ − ω, θ̃ + ω], ρ � ρ̃
}
,

for some real θ̃ and positive real ρ̃.

Proof. We have A − εuv∗ = MJM−1 where, without loss of generality, v is the first column ofM,αu∗
is the second row ofM−1 for some nonzero α, and the leading block in the Jordan form J is8[

z̃ 1

0 z̃

]
.

7 www.cs.nyu.edu/overton/software/neardefmat/.
8 The second column of M and first row of M−1 are not unique, even up to multiples, but the scalar α is unique given the

decision to normalize the first column ofM to equal v.
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Fig. 3. Pseudospectra of an upper Jordan block of dimension 3 perturbed by setting the bottom left entry to 10−3. Left: a first

glance at the pseudospectra indicates that the nearest defective matrix is the Jordan block itself, with 3 wedges of angle π/3
meeting at zero. Right: a closer look indicates that there are 3 first-coalescence points (marked by circles), each corresponding

to a nearest defective matrix with a double eigenvalue.

Let y∗ be the first rowofM−1 and let x be the second column ofM. Thus, y∗v = αu∗x = 1 and y∗x = 0.

Define E(δ) = εuv∗ − δxy∗. Then M−1(A − E(δ))M is block diagonal with leading block[
z̃ 1

δ z̃

]
,

which has eigenvalues z̃ ± √
δ. On the other hand, for small complex numbers δ, we have

‖E(δ)‖2 = ε − �(u∗(δxy∗)v)+ o(δ) = ε − �(δ/α)+ o(δ).

Thus, ‖E(δ)‖2 < ε when �(δ/α) > 0 and δ is sufficiently small. It follows that, for such δ, the eigen-

values of A − E(δ) that are close to z̃, namely z̃ ± √
δ, lie in the pseudospectrum �ε . The result thus

holds, with θ̃ the complex argument of α and ρ̃ sufficiently small. �

This theorem says that, at coalescence points z̃ corresponding to geometric multiplicity one and

algebraic multiplicity two, the angle of the wedges in the ε-pseudospectrum emanating from z̃ can-

not be less than π/2. We may think of the tangent disks geometry described by Theorem 2 as

being the limit case for a sequence of matrices for which the angle of the wedges is arbitrarily

close to π .

Theorem 9 is easily extended to the case that the algebraic multiplicity is m > 2, stating that for

all ω < π/m, the pseudospectrum�ε contains m wedges of angle at least ω emanating from z̃. Such

geometry seems quite counterintuitive and we are almost certain that this case cannot occur, but

in the absence of a proof it cannot yet be ruled out. As a final example, let A be an upper Jordan

block of dimension three with the perturbation 10−3 in the bottom left corner. Clearly, w(A)� 10−3.

The left side of Fig. 3 shows a pseudospectral plot which seems, at first glance, to indicate that

w(A) = 10−3, with the nearest defective matrix having a triple eigenvalue and with �w(A) con-

taining three wedges of angle arbitrarily close to π/3 meeting at a first-coalescence point. In fact,

however, w(A) = 0.99999985 × 10−3, and a closer look at the pseudospectra on the right side of

Fig. 3 indicates the presence of three first-coalescence points z̃, each corresponding to a nearest

defective matrix with a double eigenvalue. Furthermore, for each such z̃, the pseudospectrum �w(A)

contains two wedges of angle arbitrarily close to 2π/3 emanating from z̃, which is consistent with

Theorem 9.
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7. Conclusions

We have presented several new results on the geometry of pseudospectra near coalescence points,

specifically Thereoms 2 and 9 for the nongeneric and generic cases, respectively, and we have estab-

lished thatw(A), the distance to the nearest defectivematrix, equals c(A), the smallest singular value of

A − zI at a first-coalescence point, for the Frobenius norm as it is for the 2-norm.We also showed that

the distance to the nearest defective matrix is always attained when A has distinct eigenvalues, and

that first-coalescence points are lowest generalized saddle points of f (z) = σn(A − zI). We presented

a local method to approximate a lowest saddle point that is applicable to generic, nongeneric and

the (especially difficult) nearly nongeneric cases, and explained how to avoid rounding pitfalls in

constructing thenearestdefectivematrix.Wealsopresentedasimplebackwarderroranalysis, allowing

one to conclude that if a certain residual is small, a computed approximation to the nearest defective

matrix is close to an exactly defective matrix.

We believe that these ideas will, if combined with a global technique to find the lowest saddle

point, finally result in a reliable algorithm to accurately compute the nearest defective matrix. On the

theoretical side, several interesting points remain open, particularly Conjecture 1 and Question 1.
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