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ON MINIMIZING THE MAXIMUM EIGENVALUE
OF A SYMMETRIC MATRIX*

MICHAEL L. OVERTON’f

Abstract. An important optimization problem that arises in control is to minimize o(x), the largest eigenvalue
(in magnitude) of a symmetric matrix function of x. If the matrix function is affine, 9(x) is convex. However,
9(x) is not differentiable, since the eigenvalues are not differentiable at points where they coalesce. In this paper
an algorithm that converges to the minimum of 9(x) at a quadratic rate is outlined. Second derivatives are not
required to obtain quadratic convergence in cases where the solution is strongly unique. An important feature
of the algorithm is the ability to split a multiple eigenvalue, if necessary, to obtain a descent direction. In these
respects the new algorithm represents a significant improvement on the first-order methods ofPolak and Wardi
and ofDoyle. The new method has much in common with the recent work ofFletcher on semidefinite constraints
and Friedland, Nocedal, and Overton on inverse eigenvalue problems. Numerical examples are presented.
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1. Introduction. Many important optimization problems involve eigenvalue con-
straints. For example, in structural engineering we may wish to minimize the cost of
some structure subject to constraints on its natural frequencies. A particularly common
problem, which arises in control engineering, is

(1.1) min qg(x)
XEm

where

(1.2) o(x) max [Xi(A(x))l,
l_i_n

A(x) is a real symmetric n n matrix-valued affine function of x, and

?i(A(x)), 1, n)
are its eigenvalues. Since A(x) is an affine function, it may be written

A(x) Ao + , x,A,.
k=l

The function o(x) is convex, since the largest eigenvalue of a matrix is a convex function
of the matrix elements. An important special case is

(1.3) A ee
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where ek is the kth column of the identity matrix so that

(1.4) A(x) Ao + Diag (x).

Note that the problem of minimizing the maximum singular value of a nonsymmetric
matrix-valued affine function G(x) may be written in the form (1.1) since the eigen-
values of

0 G(x)]G(x)T 0

are (plus and minus) the singular values of G(x). (Undoubtedly savings could be gained
by treating the singular value problem more directly.)

The difficulty in minimizing o(x) is that the function is not differentiable, since the
eigenvalues are not differentiable quantities at points where they coalesce. Furthermore,
we can usually expect the solution to be at a nondifferentiable point, since the minimi-
zation of o(x) will generally drive several eigenvalues to the same minimum value.

In this paper we outline an algorithm that solves (1.1) with an asymptotic quadratic
rate of convergence genetically. Furthermore, second derivatives are not always required
to obtain the quadratic convergence. In order to keep the paper fairly short we will not
give proofs of convergence and we will omit some details of the algorithm, but the main
ideas should be very clear. We believe this is the first time a quadratically convergent
algorithm, or indeed any practical high-accuracy algorithm, has been described for min-
imizing (x). An important feature of the algorithm is the ability to obtain a descent
direction from any point that is not optimal, even if this requires splitting eigenvalues
that are currently equal. (There are exceptions in degenerate cases.) This is also appar-
ently new.

In these respects the algorithm given here represents a significant improvement on
the first-order methods for the same problem described by Polak and Wardi (1982) and
Doyle (1982). The present paper is heavily influenced by two works, Fletcher (1985) and
Friedland, Nocedal, and Overton (1987), to which full acknowledgment is given. Personal
communication with Doyle was also very helpful. Another important early reference is
Cullum, Donath, and Wolfe (1975), who give a first-order method for a related problem.
Undoubtedly a variant of the algorithm given here could be derived for that problem.
Finally, we should not overlook the related structural engineering literature (see Olhoff
and Taylor (1983, p. 1146) for a useful survey).

2. Connections with the work of Fletcher and Friedland, Nocedal, and Overton. The
problem (1.1) may be rewritten as the nondifferentiable constrained optimization problem

(2.1) min w
g,X m

(2.2) s.t. --09 <. ki(A(x)) <. od, 1, n,

or equivalently

(2.3) min
[]q,X m

(2.5) wI + A(x) >= 0
(2.4) s.t. wI- A(x) >= 0,
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where ">=" in (2.4), (2.5) indicates a matrix positive semidefinite constraint. The second
formulation immediately suggests that the work ofFletcher (1985) is applicable. Fletcher
gives a quadratically convergent algorithm to solve

(2.6) max xk
i=

(2.7) s.t. A0- Diag (x) >= 0, x >= 0
and many of the components of his algorithm are therefore applicable to solving
(2.3)-(2.5). However, the algorithm is not directly applicable and there are several reasons
why it is possible to improve on Fletcher’s method in this case. One reason is that Fletcher’s
method solves a sequence of subproblems, each defined by a guess of the nullity of
A0 + Diag (x), until the correct nullity is identified. Such a strategy cannot easily be
extended to the case oftwo (or more) semidefinite constraints. One goal ofour algorithm
is to be able to adjust multiplicity estimates while always obtaining a reduction of o(x)
at each iteration. We are able to do this by computing an eigenvalue-eigenvector factor-
ization of A(x) at each iteration. By contrast, Fletcher’s method uses a block Choleski
factorization ofA0 + Diag (x), together with an exact penalty function to impose (2.7).

Also, because of the special form of (2.6), (2.7), Fletcher’s method does not require
a technique for splitting eigenvalues. In other words, given a matrix A0 + Diag (x),
satisfying (2.7), with nullity t, it cannot be advantageous, in the sense of increasing (2.6),
to reduce the multiplicity t. On the other hand it may be necessary to split a multiple
eigenvalue in our case, and the ability to recognize this situation and obtain an appropriate
descent direction is an important part of our algorithm.

Because we use an eigenvalue factorization of the matrix A(x) at each iterate x, our
method has much in common with the methods described by Friedland, Nocedal, and
Overton (1987). In the latter paper several quadratically convergent methods are given
to solve

(2.8) X(A(x)) 0, 1, t,

(2.9) Xi(A(x)) ti, i= + 1, ..., [

where (o, {ui}) are given distinct values and t, t" (and m, the number of variables) are
appropriately chosen. One of the contributions of that paper was to explain that the
condition (2.8), although apparently only conditions, actually genetically imposes
t(t + 1)/2 linearly independent constraints on the parameter space, and that effective
numerical methods must be based on this consideration. The present paper may be
viewed as generalizing the methods of Friedland, Nocedal, and Overton to solve

(2.10) min
,X [m

(2.11) s.t. X(A(x)) w, 1, ..., t,

(2.12) Xi(A(x)) -oo, n s + 1, n

where, as a product ofthe minimization process, it is established that 0 max (Xl,
with

(2.13) oa= h Xt> kt+ kn-s> kn-s+ kn
We shall subsequently refer to and s as the upper and lower (eigenvalue) multiplicities
of A(x). Note that it is possible that either or s is zero. The following notation will be
useful subsequently: let {ql(x), qn(X)} be any orthonormal set of eigenvectors of
A(x) corresponding to {,i}, and let Q [q, qt], Q2 [qn-s+, qn].
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3. Optimality conditions. As Fletcher points out, it is convenient to initially consider
the variable space to be the set of all n n symmetric matrices {A } and to consider the
positive semidefinite cone

(3.1) K={A]A>-O}.
Define an inner product on the set of symmetric matrices by

(3.2) A:B tr AB aobi.
i,j

The normal cone (Rockafellar (1970)) is defined by

(3.3) OK(A’) {BIA’:B sup A:B}.

Fletcher shows that a very useful expression for OK is

(3.4) OK(A’) {BIB -ZUZr, U Ur, U>= 0}
where the columns of Z span the null space of A’.

Now consider the restricted variable spaces

I;2 (o,x)loI- A(x) >-_ 0;

Iz {(w,x)looI+ A(x) >= O; oo;xm}.
(3.5)

(3.6)

By definition,

(3.7) OI(w’,x’) {(5,d)l(co’,x’)T(O,d) sup (w,x)T(O,d)}.
(,o,x) R

THEOREM 3.1.

(3.8) O/(w’, x’) {0, d)16 B:I; d -B:A,, k 1, m,

B e OK(oo’I- A(x’))}.
Proof The proof is omitted because it is almost identical to the proof of Fletcher’s

Theorem 4.1. Fletcher’s proof essentially covers the special case (1.3). One important
point worth mentioning is that Fletcher’s construction of a feasible arc may require an
augmenting term ae2I in the arc parameterization; in our case this may be absorbed by
the wI term in ooi A(x). V1

We can now state the optimality condition for x to solve (1.1).
THEOREM 3.2. A necessary and sufficient conditionfor x to solve (1.1) is that there

exist matrices U and V of dimension and s s, respectively, with U Ur >_- 0,
V Vr >_- 0, such that

(3.9) tr U+ tr V= 1,

(3.10) (QAQ1):U-(QfAQg_):v=o, k= 1, ,m.

Here t, s, Ql, Q2 are defined by (2.13) and the following remarks.

Proof Because of the equivalence of (1.1) with the convex problem (2.3)-(2.5), the
necessary and sufficient condition for optimality is

+gl+g2=O
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where gl E 0/1 and g2 E 0/(’_ (Rockafellar (1981, Chap. 5)). By Theorem 3.1 we therefore
require

+ tr B1 + tr B2 0,

-B1 :Ak + B2 :Ak 0, k 1, rn

where B - OK(wI A(x)), B2 c: OK(wI + A(x)), w max (Xl(A(x)), -Xn(A(x))). By (3.4)
we have

B -Q1UQ, B2 -Qz VQf

for some U >= 0 and V >_- 0, since Q is a basis for the null space of wI- A(x) and Q2
for wI + A(x). Now as Fletcher points out, U:(ZT;AZ) A:(ZUZ T) for any A
U tt, and Z E nt. (A proof is as follows: U:ZTAZ tr UZrAZ tr Z(UZrA)
(ZUZr):A, where the middle equality holds because tr ZP tr PZ, where Z nt,
p t n.) The theorem is therefore proved.

The matrices U and V in (3.9) and (3.10) play the role of Lagrange multipliers, as
will become clear in the next section. Because the optimality conditions U >_- 0, V >_- 0
are conditions on the matrices as a whole, rather than componentwise conditions, we
call U and V Lagrange matrices (cf. "Lagrange vectors" in Overton (1983)).

4. An algorithm based on successive quadratic programming. As explained by
Friedland, Nocedal, and Overton, a quadratically convergent method for solving the
nondifferentiable system (2.8), (2.9) may be obtained by applying a variant of Newton’s
method to the nonlinear but essentially differentiable system

(4.1) Q(x)rA(x)Q(x) wit,

(4.2) qi(x)TA(x)qi(x) #i, t + 1, {

where the columns of Q(x) are an orthonormal set ofeigenvectors ofA(x) corresponding
to w. Here/t denotes the identity matrix of order t. Let x* satisfy (4.1), (4.2). Note that
(4.1) is independent of the choice of basis for Q(x*). Also note that for points in a
neighbourhood ofx*, A(x) will generally have distinct eigenvalues (with small separation)
and hence Q(x), the matrix of eigenvectors corresponding to the multiple eigenvalue at
x*, will be a well-defined but ill-conditioned function of x which does not converge as
x -- x*. This does not cause any difficulties for the Newton method (see Friedland,
Nocedal, and Overton (1987) for details). In order to obtain quadratic convergence we
need the number of equations, t(t + 1)/2 + (t"- t), to equal the number of variables
(together with a nonsingularity condition). When we differentiate (4.1), (4.2), we find
that the appropriate system of equations to solve at each step of the Newton method is

Q(x)rA(x + d)Q(x) wit,

qi(x)rA(x + d)qi(x) #i, + 1, [

where x is the current iterate and x + d becomes the new iterate. (Although this may
look counterintuitive, note that the left-hand side of (4.2) is simply Xi(x), and hence the
latter equation is consistent with the well-known fact that the derivative of Xi(x) (with
respect to x) is qi(x)rAqi(x). Again, see Friedland, Nocedal, and Overton (1987) for
details.) Since A(x + d) is affine, these equations form a linear system in d. Once x + d
is obtained, an eigenvalue-eigenvector factorization ofA at the new point is required to
be able to start the next iteration.
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Now consider generalizing this method to solve (2.10)-(2.12), where we assume for
the moment that and s are known. We see that the Newton method should be applied
to the nonlinear problem

(4.3) min w

(4.4) s.t. wi O(x)7A(x)Q(x) o,

(4.5) wls + Qz(x)rA(x)Qz(x) o.

The appropriate subproblem to solve at each step ofthe Newton method is the quadratic
program (QP)

(4.6) min w + 1/2dWd
,d m

(4.7) s.t. wit- Ql(X)rA(x + d)Q(x) O,

(4.8) wls + Qz(x)VA(x + d)Qz(x) 0

where W is a matrix to be specified shortly.
Now define a Lagrangian function for (4.3)-(4.5) by

(4.9) L(w, X, U, V) w- U:(wlt- Q(x)A(x)Q(x)) v:(wI + Q:z(x)A(x)Qz(x))

where U Uv, V Vv. Since (4.7)-(4.8) represent a linearization of (4.4)-(4.5), we see
that the first-order necessary condition for x to solve (4.3)-(4.5), namely Vo,xL 0, is
that there exist symmetric matrices U and V such that (3.9)-(3.10) holdthe same op-
timality condition given in the previous section. (Similarly, if a sequence of QPs (4.6)-
(4.8) has been solved, converging to a solution of(4.3)-(4.5) and hence with d converging
to zero,, the optimality condition of the limiting QP is that there exist U and V such that
(3.9)-(3.10) hold.) The equivalence with the optimality conditions (3.9)-(3.10) is very
important, since it means that the Lagrange matrices required to check the optimality
conditions (3.9), (3.10) may be obtained by solving (4.3)-(4.5), or more specifically, by
solving a sequence ofQPs (4.6)-(4.8). This observation is the same as the one emphasized
by Fletcher and is the essential justification for an algorithm based on successive quadratic
programming (SQP). The key point is that (4.3)-(4.5) is much more tractable than the
original problem. A related point to note is that U and V are not required to be positive
semidefinite for an optimal solution to (4.3)-(4.5), since the constraints are equalities. If
U or V is indefinite, this is an indication that or s is too large and that it is necessary
to split a multiple eigenvalue, as will be explained in 5.

The number of constraints in (4.4), (4.5) is

s(s+ 1)
(4.10)

t(t + 1) .
2 2

If this quantity is equal to rn + (the number of variables in (4.3)), then, genetically,
the constraints themselves are enough to define a unique solution to (4.3)-(4.5) and the
SQP method will have local quadratic convergence regardless of the value of W. In this
case the solution of(1.1) is "strongly unique." If (4.10) is greater than rn + 1, then, except
in degenerate cases, (4.3)-(4.5) will be infeasible. In general we expect (4.10) to be less
than or equal to rn + 1, but we cannot expect equalityfor example, if rn 4, equality
is not possible. If (4.10) is less than rn + the proper choice of the matrix Wis necessary
for the SQP method to converge quadratically. It is clear that W should be set to the
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Hessian, with respect to x, of the Lagrangian function (4.9). It can be shown that this
matrix is given by

(4.11) W= U:G’- V:G
where

(4.12) G’= 2Qt(x)7"A,O__.t(x)(wJt ;kt(x))-’t(x)rAQt(x), 1,2,

and where the columns of Ql(X) consist of all eigenvectors in {q, qn} except those
in Qt(x) (l 1, 2), At(x) is a diagonal matrix whose entries consist of all eigenvalues in
{ k, k,} except those corresponding to Qt(x), and J In-t, J_ -In-s.

Some caution is required in the choice of U and V in (4.11). Since the values of U
and V at the minimum of (4.3)-(4.5) are not known, it is necessary to use Lagrange
matrix estimates. The obvious choice is to use the values obtained from the previous
QP. Unfortunately these are useless, because the eigenvector bases Q(x) and Q2(x) at
the current point will generally have no relation to those at the previous point (although
the range spaces of Q(x) and Q2(x) will converge as x converges to a minimizing point).
Therefore, after Q(x), Q2(x) have been computed, but before solving the QP, it is necessary
to obtain first-order Lagrange matrix estimates by minimizing the 2-norm ofthe residual
of (3.9), (3.10). This does not require a significant amount of extra work since the QR
factorization of the relevant coefficient matrix is needed anyway to solve the QP. (See
Murray and Overton (1980) for some comments on Lagrange multiplier estimates for
minimax problems and Nocedal and Overton (1985) for comments on first- and second-
order Lagrange multiplier estimates.) Alternatively, we could use the Cayley transform
method ("Method III") of Friedland, Nocedal, and Overton, which updates estimates of
the eigenvectors without recomputing them in such a way that even the eigenvector
estimates corresponding to multiple eigenvalues converge. This technique does not impede
quadratic convergence. It would be essential ifwe wanted to use a quasi-Newton method
to approximate the matrix W without computing (4.11), which might be necessary for
large problems. Note again, however, that W is not needed at all if (4.10) equals m + 1,
which may quite often be the case.

We now turn to the important question of how the upper and lower multiplicities
and s are to be determined. These can be effectively obtained dynamically. Suppose

that 1, s 0 initially. If the QP (4.6)-(4.8) were now to be solved, the solution would
very likely reduce the initially largest eigenvalue far below the others. It is therefore
sensible to incorporate into the QP inequality constraints on the other eigenvalues, namely

(4.13) -w <= q]’(x)A(x / d)qi(x) <= w, / <= <= n s.

We may now obtain updated estimates of and s by seeing which constraints are active
at the solution of the QP (4.6)-(4.8), (4.13). A reasonable strategy is to increase by the
number of constraints which are at their upper bound and to increase s by the number
at their lower bound. However, some caution should be used, since if and s become
too large, (4.3)-(4.5) will become infeasible. We therefore also keep more conservative
estimates and which are defined at the beginning of each iteration by

(4.14) o ki(x) <- TOL, 1, t,

(4.15) w + k(x) =< TOL, n + 1, n

assuming that t(t + 1)/2 + (+ 1)/2 -< rn + 1, where 0 o(x) and TOL is a reasonably
small number, e.g., 10-2. If necessary and s are reset to these more conservative values,
as will be explained shortly. However, if and s are always set to/and ginstead ofmaking
use of the active constraint information from the solution of the previous QP, the al-
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gorithm, though reliable, converges much more slowly, since quadratic convergence can-
not take place until the eigenvalue separation is reduced to TOL (unless the solution has
distinct eigenvalues). (A possible alternative approach to accelerating the selection ofthe
correct multiplicity estimates would be to use a special line search as is done in Over-
ton (1983).)

At each iteration we insist that a reduction in w is obtained. Even if t and s have
the correct values defined by (2.13), there is no guarantee that the solution d of (4.6)-
(4.8), (4.13) will give (x + d) < (x). Following Fletcher, we therefore use a "trust
region" strategy, incorporating into the QP bound constraints

(4.16) Idkl <= O, k 1, ..., m
where o is dynamically adjusted. It is clear that if o and TOL are sufficiently small,
then the solution d of the QP (4.6)-(4.8), (4.13), (4.16), with s , will give
(x + d) < p(x) unless d 0.

If TOL 0, t, s and the solution d of the QP is zero, the point x is a
minimum of (4.3)-(4.5). It therefore also solves (1.1) if the Lagrange matrices U and V
are positive semidefinite. If U or V is indefinite then it is both necessary and feasible to
split a multiple eigenvalue to make further progress, as will be explained in 5.

We conclude this section with a summary ofthe algorithm. It requires initial values
for TOL and o and a convergence tolerance e.

ALGORITHM.
0. Given x, evaluate Xi(x) }, qi(x) }. Define/-, by (4.14), (4.15). Set s 5.
1. Solve the QP (4.6)-(4.8), (4.13), (4.16), using first-order Lagrange matrix estimates

to define W. If the QP is infeasible, go to Step 2.2. If Ildll --< e, go to
Step 3.

2. Evaluate { hi(X + d)}. If ,(x + d) < ,(x), then
2.1 Increase and s, respectively, by the number of upper and lower bounds

which are active in (4.13), provided the new values give (4.10) less than or
equal to m + 1. Set x to x + d, evaluate {qi(x)}, and define {, by (4.14),
(4.15). Double O, and go to Step 1.

else
2.2 Reset t, s to . Divide o by two and go to Step 1.

3. If U >= 0 and V >- 0 then
3.1 STOP x is optimal.

else
3.2 Split a multiple eigenvalue and obtain reduction as described in the next

section. Adjust t, k-, t, s accordingly and go to Step 1.

This algorithm has worked well in practice (see the results in 6). Clearly it can be
defeated; in particular, if TOL is not small enough, the QP may be infeasible, and at
present there is no facility for reducing TOL. However, it seems likely that it will form
the basis of a more elaborate algorithm for which global convergence can be guaranteed.
Because (x) is convex, obtaining aglobally convergent algorithm is not difficult; what
is wanted is a globally convergent algorithm for which final quadratic convergence is
guaranteed (given nonsingularity assumptions).

5. Splitting multiple eigenvalues. Consider a simple example. Let m n 2, with

0
A A2(5.1) A= 0 0 -1 K 4
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for some value K. Since A(x) Ao + xlA + x2A2, the only point where A(x) has multiple
eigenvalues is x (0, 0)T, which is therefore a solution of (4.3)-(4.5) with 2, s 0.
If K is large enough, clearly x (0, 0)r is a minimum of (x), since xA + x2A2 is
indefinite for any nonzero x. On the other hand, if K is small enough, A2 is positive
definite, and d (0, 1)r is a descent direction from x (0, 0)r. It is therefore essential
to be able to distinguish between these situations and to find a descent direction if one
exists. It appears that an inability to do this has been one of the major deficiencies of

algorithms previously developed for (1.1) (Doyle (1986)).
In order to check optimality, we introduce the Lagrange matrix U(V is empty since

s 0). The system (3.9), (3.10) is

-1 0 U22 0
-4 - 2U2 0

where we arbitrarily choose Q1 L The solution is

(5.2) U

The optimality condition is U >= 0, i.e.,

5

We now show how to obtain a descent direction if I1 < . The solution is to solve
2

61- dkAk=--#uu r
k=l

where ta is the negative eigenvalue ofU and u is the corresponding eigenvector. This gives,
in the case of K 2.25,

-1

0 0
-4 dl 2.78 10-2

--a: d2

i.e., 6 -3.09 10-3, d (-1.85 10-2, -1.23 10-2)T. Now MA(x + d)) (0.941,
0.997)T so that o(x + d) < o(x) as required. Note that d (0, -1)T is not a descent
direction from x 0 in this case.

More generally, we have the following.
THEOREM 5.1. Let and s be defined by (2.13). Assume x is a minimum of(4.3)-

(4.5), so that (3.9), (3.10) hold for some symmetric matrices U qtt and V ,s.
Suppose that U is indefinite with a negative eigenvalue la and corresponding eigenvector
u. Then if(, d) solves

m

(5.3) Mt- , &QT AeQ, =-iuu T,
k=l

m

(5.4) 6Is + dkQAkQ2 O,
k=l
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we have that d is a descent direction for p(x). Furthermore, tofirst order the multiplicity
is reduced by exactly one along d, and the new set of eigenvectors for i o can be

taken, to first order, as

where the columns of t] are the eigenvectors of U, excluding u.
Remark. Equations (5.3)-(5.4) are genetically solvable if (4.10) is less than or equal

to m + 1. Other cases are degenerate situations for which obtaining a descent direction
is more difficult.

Proof Taking an inner product of U with (5.3) and V with (5.4) and adding them
together we obtain

m

6(tr U+ tr V)+ ] dk(-U:QAkQI + V:QAkQ2) _#2.
k=l

It therefore follows from (3.9), (3.10) that

(5.5) -u2.

Furthermore, for the same reason that (4.7) is a valid linearization of (4.4), (5.3), and
(5.4) show that the constraints (2.4), (2.5) hold to first order along the direction x + ad,
c >- 0 (since the fight-hand sides of (5.3), (5.4) are positive semidefinite). It follows from
(5.5) that d is a descent direction. Finally, the last statement is justified by multiplying
(5.3) by (u,/])T on the left and (u,/]) on the fight, obtaining

bit- , d,(u, r)TQA,Q(u, IQ)= -#

k=l 0

In other words, all eigenvalues but one are reduced by #2 (to first order) while the
other eigenvalue is reduced by #2 #.

More generally still, if U has more than one negative eigenvalue (or U and V both
have negative eigenvalues), we can reduce by more than one (or reduce both and s)
by replacing the fight-hand side of (5.3) (and (5.4)) by a sum of outer products corre-
sponding to the negative eigenvalues. This has an obvious analogy in nonlinear pro-
gramming, where if several Lagrange multipliers are negative at a stationary point we
can move offjust a single constraint (as does the simplex method for linear programming)
or move off several constraints at once. Also, in nonlinear programming we may move
off a constraint before minimizing on the corresponding manifold if the appropriate
Lagrange multiplier estimate is negative. Similarly, we should be able to use Lagrange
matrix estimates to avoid minimizing on the manifold defined by (4.4), (4.5).

6. Numerical examples. The algorithm has been implemented in Fortran and run
on a Pyramid Unix system at Australian National University. Double precision arithmetic
(about 15 decimal digits ofaccuracy) was used. The eigensystems ofA(x) were computed
using EISPACK (Smith et al. (1967)). The QPs were solved using the Stanford package
QPSOL (Gill et al. (1984)).

We give three examples that illustrate the effectiveness ofthe method. The parameters
e and TOL were given the values 10-7 and 10-2, respectively, and the initial trust region
radius 0 was set to 1. The tables shown below have the following meaning. There is one
row in the table for each time a reduction in o(x + d) is obtained, i.e., Step 2.1 is executed.
The values t , t, and s are those holding at the beginning of the iteration, i.e., following
the previous execution of Step 0 or 2.1. The quantity #QPs is the number of QPs that
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had to be solved before obtaining a reduction, i.e., the number of times Step was
executed. Step 3.2 was not executed in any of these examples.

Example 1. This is defined by (5.1) with K 3.
Initial x (1.0, 2.0)r with p(x) 12.32.

Iteration /- g s #QPs o(x + d)

0 0 6.541381
2 0 0 4.817767
3 0 2 0 1.000000

Final x (0.0, 2.0 10-5)T with X(x) (1.0, 1.0)T and

0.8716 -0.1884]U=
-0.1884 0.1284

Comments. Once the correct multiplicities are identified this particular problem is
solved in one step. The reason that U is different from (5.2) is that EISPACK chose a
basis Q 4: L Of course this does not affect the optimality condition.

Example 2. n 3, m 3,

Ao 1.0 0 1.2, A 2 0 A2 0 2, A3 0 0 0
1.1 1.2 0 0 0 0 0 2 2 0

Initial x (1.0, 0.9, 0.8)T with o(x) 7.605.

Iteration /- g s #QPs o(x + d)

0 0 1.616283
2 0 0 1.464941
3 0 2 1.145090
4 2 1.102385
5 2 2 1.101521
6 2 2 1.101520

Final x (-0.1163679, -0.2497934, 1.845989)T with

(x) (1.101520, 1.101520, 1.101520)r

and

U= [6.95 10-4] V=[0.4861 0.0229]0.0229 0.5132

Comments. Note that U is only barely positive definite, so that a small perturbation
to the problem would give an optimal point with ,l < w. As in Example 1, (4.10) equals
m + at the solution, so W is not needed for quadratic convergence, although it may
help to identify and s during the early iterations. Note also that following the first
iteration where the correct multiplicities were used to define the QP, the solution is
correct to two figures.
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Example 3. n= 10, m= 10, Ak=ekeff, k= 1,..., 10, and

0
1.1 0

2.1 0
2 3.1 0
2 3 4.1
2 3 4
2 3 4
2 3 4
2 3 4
2 3 4

0
5.1 0
5 6.1
5 6
5 6
5 6

(transpose)

0
7.1 0
7 8.1
7 8

0
9.1

Initial x (1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1)r with o(x) 38.09.

Iteration /- g s #QPs o(x + d)

0 0 37.08646
2 0 0 35.08646
3 0 0 31.08646
4 0 0 23.30168
5 23.06948
6 0 7 22.57218
7 3 22.55570
8 0 2 2 22.43732
9 0 3 3 22.39628
10 0 3 2 22.37459
11 2 2 22.37020
12 2 2 22.36642
13 2 2 22.36613
14 2 2 22.36612

Final x (-21.25583, -20.58868, -19.24580, -18.60455, -17.22383, -16.63475,
15.18517, 14.74159, 13.05307, 13.46085)r with

X(x) (22.36612, 17.32323, -20.48036, -21.34962, -21.69938,

-22.17358, -22.26831, -22.33351, -22.36612, -22.36612)r

and

0.3445 -5.017 X 10-3]U=[0.5], V=
0-3-5.017 0.1555

Comments. This problem is quite difficult to solve, since at the solution the interior
eigenvalues are nearly equal to n. Indeed, if a larger value of TOL had been used, the
QP probably would have become infeasible making it necessary to reduce TOL. During
the first few iterations, larger improvements were inhibited by the trust region radius,
which was successively doubled. At iteration 5 the QP solution indicated that t, s should
be set to 1, 9, but since this would have made (4.10) greater than m + 1, t and s were
not increased. As a result, seven QPs were required during iteration 6 until the trust
radius was small enough to make progress. Eventually quadratic convergence was obtained
once the correct multiplicities were identified. In this case the second derivative matrix
Wwas essential for quadratic convergence.
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In general we would not expect Step 3.2 to be required. The reason for this is that
when or s is increased to a value >_-2, the iterate x is essentially moving onto a manifold
which has dimension at least two lower than the current constraining manifold. This is
unlikely to happen by accident, but only likely to occur in the course ofmaking progress
towards optimality. However, the ability to split multiple eigenvalues is still important
in case it is needed because of starting at an unfortunate point or in the course of solving
ill-conditioned problems.

7. Final comments. A number of problems in addition to (1.1) may be solved by
related techniques. Clearly it is trivial to extend the algorithm given here to solve

min max max I,/(At)(x))l,
x _l_pl _i_n

where A)(x), AP)(x) are each affine matrix-valued functions, by simply introducing
additional constraints to the QP and corresponding Lagrange matrices. The algorithm
could also be extended to solve more general optimization problems involving constraints
on eigenvalues of various matrix functions. It would be necessary to introduce a penalty
function to measure progress towards the solution. Constraints on interior eigenvalues
could also be included (although these would not be convex).

Finally, it is possible to extend the algorithm to handle nonlinear matrix functions
A(x), although the resulting optimization problem is no longer necessarily convex. The
necessary changes are mainly to replace Ak by OA(x)/Oxk in the derivative formulas, and
to be aware of the need to verify second-order optimality conditions.

REFERENCES

J. CULLUM, W. E. DONaTH, aND P. WOLr (1975), The minimization of certain nondifferentiable sums of
eigenvalues ofsymmetric matrices, Math. Programming Study, 3, pp. 35-55.

J. DOYLE (1982), Analysis offeedback systems with structured uncertainties, IEEE Proc., 129, pp. 242-250.
(1986), private communication.

R. FLETCHER (1985), Semi-definite matrix constraints in optimization, SIAM J. Control Optim., 23, pp. 493-
513.

S. FRIEDLaND, J. NOCEDaL, aND M. L. OVE.TON (1987), Theformulation and analysis ofnumerical methods
for inverse eigenvalue problems, SIAM J. Numer. Anal., 24, pp. 634-667.

P. E. GILL, W. MURRAY, M. A. SAUNDERS, AND M. H. WRIGHT (1984), User’s Guide to QPSOL: a Fortran
packagefor quadratic programming, Systems Optimization Laboratory Report, Stanford University,
Stanford, CA.

W. MURRAY AND M. L. OVZTON (1980), A projected Lagrangian algorithmfor nonlinear minimax optimization,
SIAM J. Sci. Statist. Comput., 1, pp. 345-370.

J. NOCDaL aND M. L. OVErtTON (1985), Projected Hessian updating algorithms for nonlinearly constrained
optimization, SIAM J. Numer. Anal., 22, pp. 821-850.

N. OLHOFF AND J. E. TAYLOR (1983), On structural optimization, J. Appl. Mech., 50, pp. 1138-1151.
M. L. OV,TON (1983), A quadratically convergent methodfor minimizing a sum ofEuclidean norms, Math.

Programming, 27, pp. 34-63.
E. POLAK aND Y. WADI (1982), Nondifferentiable optimization algorithmfor designing control systems having

singular value inequalities, Automatica, 18, pp. 267-283.
R. T. ROCKrZELLaR (1970), Convex Analysis, Princeton University Press, Princeton, NJ.

(1981), The Theory of Subgradients and Its Applications to Problems of Optimization: Convex and
Nonconvex Functions, Research and Education in Mathematics 1, Heldermann-Verlag, Berlin.

B. T. SMITH, J. M. BOYLE, J. J. DONGARRA, B. S. GARBOW, Y. IKEBE, V. C. KLEMA, AND C. B. MOLER,
(1967), Matrix Eigensystem RoutinesmEISPACK Guide, Lecture Notes in Computer Science 6,
Springer-Verlag, Berlin, New York.


