
HIFOO - A MATLAB PACKAGE FOR
FIXED-ORDER CONTROLLER DESIGN AND

H∞ OPTIMIZATION

J. V. Burke 1 D. Henrion 2 A. S. Lewis 3

M. L. Overton 4

Abstract: H∞ controller design for linear systems is a difficult, nonconvex and
typically nonsmooth (nondifferentiable) optimization problem when the order of
the controller is fixed to be less than that of the open-loop plant, a typical
requirement in e.g. embedded aerospace control systems. In this paper we describe
a new matlab package called hifoo, aimed at solving fixed-order stabilization
and local optimization problems. It depends on a new hybrid algorithm for
nonsmooth, nonconvex optimization based on several techniques, namely quasi-
Newton updating, bundling and gradient sampling. The user may request hifoo

to optimize one of several objectives, including H∞ norm, which requires either the
Control System Toolbox for matlab or, for much better performance, the linorm
function in the slicot package. No other external package is required, but the
quadratic programming code quadprog from either mosek or the Optimization
Toolbox for matlab is recommended. Numerical experiments on benchmark
problem instances from the COMPleib database indicate that hifoo could be an
efficient and reliable computer-aided control system design (CACSD) tool, with a
potential for realistic industrial applications.

Keywords: Fixed-order Controller Design, H∞ Control, Nonconvex Optimization,
Nonsmooth Optimization, Computer-Aided Control System Design.

1. INTRODUCTION

Soon after the development of robust control the-
ory in the 1980s, it was realized that most phys-
ically meaningful and practically relevant analy-
sis and design problems are difficult to solve in

1 Department of Mathematics, University of

Washington, Seattle, WA 98195, USA. Email:

burke@math.washington.edu.
2 LAAS-CNRS, 7 Avenue du Colonel Roche, 31077

Toulouse, France and Department of Control Engineering,
Faculty of Electrical Engineering, Czech Technical Univer-
sity in Prague, Technická 2, 16627 Prague, Czech Republic.

Email: henrion@laas.fr.
3 School of Operations Research and Industrial Engineer-
ing, Cornell University, Ithaca, NY 14853, USA. Email:

aslewis@orie.cornell.edu.
4 Courant Institute of Mathematical Sciences, New
York University, New York, NY 10012, USA. Email:

overton@cs.nyu.edu.

practice and some are provably difficult in a for-
mal sense. See the excellent survey (Blondel and
Tsitsiklis, 2000) for comprehensive definitions and
classifications of difficult mathematical problems
arising in control.

In particular, the problem of designing a controller
stabilizing a linear plant is typically difficult when
the order of the controller is fixed to be less
than that of the open-loop plant. Static output
feedback (SOF) design is the particular case of
order 0. Despite many years of intense research
efforts, no polynomial-time algorithm or efficient
heuristic for SOF stabilization is known. Another
related difficult problem is fixed-order stabiliza-
tion with optimal H∞ performance; see (Helton
and Merino, 1998) for a historical perspective.

One source of difficulty is nonconvexity. In mathe-
matical terms, stability is equivalent to location of

the eigenvalues of a matrix (or equivalently roots
of a polynomial) in the open left half-plane. 5

When formulated in the Euclidean space of real
matrices (or polynomial coefficients), this stability
constraint is nonconvex. It follows that the set of
stabilizing controllers is typically nonconvex (and
sometimes even disconnected) in the parameter
space, as illustrated in (Ackermann, 2002).

An additional difficulty is nonsmoothness. Con-
sider, to be specific, the spectral abscissa (maxi-
mum of the real parts of the eigenvalues) of a non-
symmetric real matrix. The spectral abscissa is
nonsmooth at points in matrix space where more
than one real eigenvalue or conjugate pair achieve
the maximum real part, and is non-Lipschitz if an
eigenvalue achieving the maximum real part has
multiplicity greater than one. However, the spec-
tral abscissa is differentiable as long as only one
simple eigenvalue (real or conjugate pair) achieves
the maximum real part, and in this case its gradi-
ent is easily computed by means of the associated
left and right eigenvectors. The difficulty is that,
in almost any interesting application, nonsmooth-
ness occurs at optimizers of the spectral abscissa
of a parameterized system (Burke et al., 2003).

The same difficulties with nonconvexity and non-
smoothness (but not non-Lipschitzness) apply to
other minimization objectives of interest, such as
the inverse of the complex stability radius or,
perhaps of most interest, H∞ performance. These
functions likewise are smooth at most, but not all,
points in parameter space, and are typically not
smooth at minimizers.

In order to overcome or address nonconvexity,
researchers have developed various techniques:
• convex approximations (with polytopes, ellip-
soids, linear matrix inequalities (LMI)) of noncon-
vex stability regions. Typically these approxima-
tions are obtained from pessimistic or conservative
sufficient stability conditions, and it is difficult to
evaluate how far they are from being necessary
conditions;
• LMI formulations of analysis and design con-
ditions, introducing lifting variables. This has the
drawback of introducing many artificial variables,
even though the original problem has only a few
genuine decision variables;
• nonconvex programming (global optimization,
local BMI solvers, nonsmooth optimization). Sys-
tematic, exhaustive search global optimization is
typically very expensive, while purely local meth-
ods lack any guarantee of finding a global solution;
see (Henrion and Šebek, 2004) for a short survey
and references.

In this paper we follow the local optimization ap-
proach. We present a new matlab package called

5 We restrict the discussion to continuous-time systems.

hifoo (H-Infinity Fixed-Order Optimization). It
uses recently developed nonsmooth, nonconvex
optimization techniques that are implemented in
a supporting package called hanso (Hybrid Algo-
rithm for Non-Smooth Optimization).

The outline of the paper is as follows. In sec-
tion 2 we set the notation and recall the basics
of fixed-order stabilization and H∞ optimal con-
trol. We describe the control problems that are
addressed by hifoo. In section 3 we briefly sum-
marize the optimization techniques that are used
by the supporting package hanso. The external
software that is used is is summarized in section 4.
The powerful, yet user-friendly, input/output for-
mat of hifoo is explained in section 5. Finally
in section 6 we describe some simple examples
of the use of hifoo on some benchmark prob-
lems extracted from the comprehensive database
COMPleib (Leibfritz, 2005), and summarize some
experimental results.

2. PROBLEM STATEMENT

We consider the state-space model of a linear
system ẋz

y

 =

 A B1 B2

C1 D11 D12

C2 D21 D22

 xw
u

 (1)

where x ∈ Rn is the state, u ∈ Rm is the control
input (actuators), y ∈ Rp is the control output
(sensors), w is the performance input signal and z
is the performance output signal. For simplicity
we assume that there is no direct feedthrough
term, i.e.

D22 = 0.

The open-loop system is to be controlled by an-
other linear system[˙̂x

u

]
=
[
Â B̂

Ĉ D̂

] [
x̂
y

]
(2)

called the controller, where x̂ ∈ Rn̂ is the con-
troller state. Note that the controller input is the
system control output y, and the controller output
is the system control input u.

Combining the open-loop system (1) with the
controller (2), we obtain the so-called closed-loop
system ẋ˙̂x

z

 =
[
AK BK
CK DK

] xx̂
w

 (3)

where

[
AK BK
CK DK

]
=

 A 0 B1

0 0 0
C1 0 D11

+

 0 B2

I 0
0 D12

[Â B̂

Ĉ D̂

] [
0 I 0
C2 0 D21

]

is an affine function of the controller matrix

K =
[
Â B̂

Ĉ D̂

]
.

The transfer function between the performance
input signal w and the output signal z is given
by

T (s) = CK(sI −AK)−1BK +DK . (4)

The control problems addressed by hifoo can be
formulated as follows:

Fixed-order stabilization: Given open-loop
system (1) and a nonnegative integer n̂, find a
controller (2) of order n̂ such that closed-loop sys-
tem (3) is stable (equivalently, all eigenvalues of
AK are in the open left half-plane). This problem
is called static output feedback stabilization when
n̂ = 0.

Fixed-order H∞ optimization: Among the
solutions to the fixed-order stabilization problem,
find a controller that locally minimizes the H∞
norm of the transfer function T (s) defined in (4).

Fixed-order stability radius optimization:
Among the solutions to the fixed-order stabiliza-
tion problem, find a controller that locally maxi-
mizes the complex stability radius of the matrix
AK (equivalently, minimizes the H∞ norm of the
transfer function (sI −AK)−1).

Fixed-order spectral abscissa optimization:
Find a controller that locally minimizes the spec-
tral abscissa of AK (equivalently, pushes its eigen-
values as far to the left of the imaginary axis as
possible).

Stabilization is implemented by applying opti-
mization to the spectral abscissa objective, stop-
ping as soon as a stabilizing controller (i.e., one
for which the spectral abscissa of AK is negative)
is found. Following (Burke et al., 2003), the same
process is used before initiating optimization of
the H∞ norm or the complex stability radius
as these quantities are not defined (or may be
taken to be ∞ or 0 respectively) when AK has
an eigenvalue in the closed right half-plane.

The number of variables in the controller matrix
K is often quite small (less than 50 for many
relevant engineering applications).

3. OPTIMIZATION ALGORITHM

All of the objective functions mentioned in the
previous section are nonconvex and nonsmooth,
and it is often the case that the objectives are not
differentiable at local minimizers. The supporting
package hanso is designed to locally optimize
functions of this kind, using a hybrid algorithm
which combines:
• a quasi-Newton algorithm (BFGS) initial phase
which, rather surprisingly, typically works very
effectively even in the presence of nonsmooth-
ness when implemented with the appropriate line
search, and very often provides a fast way to
approximate a local minimizer, and
• a local bundle phase which attempts to verify
local optimality for the best point found by BFGS,
and if this does not succeed,
• a gradient sampling phase (Burke et al., 2005;
Burke et al., 2006) to refine the approximation
of the local minimizer, returning a rough local
optimality measure.

All three of these optimization techniques share
two key attributes:
• They require the use of gradients. All the opti-
mization objective functions supported by hifoo

have gradients that are readily computable using
eigenvector or singular vector information that is
already obtained in the process of computing the
objective function. These gradients are computed
by routines in hifoo and provided to hanso. No
effort is made to identify the exceptional points
where the gradients fail to exist.
• The algorithms are not defeated by the fact
that the gradients do not exist at exceptional
points (typically including optimizers) or, to say
the same thing somewhat more informally, they
are not defeated by the discontinuities in the
gradients at exceptional points. On the contrary,
these algorithms exploit these discontinuities. The
BFGS phase builds a highly ill-conditioned Hes-
sian approximation matrix, and the bundle and
gradient sampling final phases search for a point in
parameter space for which a convex combination
of gradients at nearby points has small norm.

4. SOFTWARE REQUIREMENTS

hifoo runs under matlab. Version 0.92 is freely
available for download at

www.cs.nyu.edu/overton/software/hifoo

and uses the following external matlab packages:
• hanso (required, freeware, see hifoo web page)
• a convex quadratic programming solver called
quadprog (required only for the local bundle and
gradient sampling phases of hanso, which are
omitted if quadprog is not installed), either from
− mosek (limited freeware, www.mosek.com), or

− the matlab Optimization Toolbox
• anH∞ norm computation routine (required only
for optimizing theH∞ norm and complex stability
radius objectives), either
− the linorm function of the slicot package
(commercial, www.slicot.de, but with a limited
free availability for noncommercial use with hi-

foo), or
− the norm and ss functions of the matlab

Control System Toolbox
• COMPleib (freeware, www.compleib.de), a
database of benchmark open-loop systems in
state-space format (optional).

hifoo checks the presence of the external routines
and, by default, prints informative messages about
what software is being used. The function linorm
is strongly recommended in preference to norm
because of its much faster performance, and if
both are available, linorm is used.

5. INPUT/OUTPUT FORMAT

hifoo has a user-friendly interface accepting var-
ious input formats. The only required input pa-
rameter, which must be provided first, is plant,
which may have any of the following 3 formats:
• a structure whose fields A, B1, B2, C1, C2, D11,
D12, D21 define the open-loop system matrices (all
required only when the H∞ norm is optimized; for
other objectives the only required fields are A, B2,
C2); the names B and C can be used instead of B2,
C2 respectively, or
• an LTI state-space system object in the Control
System Toolbox ss format; when the H∞ norm
is optimized the partitioning of [B1 B2], [C1 C2]
must be specified in the fields InputGroup.U1,
InputGroup.U2 and the fields OutputGroup.Y1,
OutputGroup.Y2; for other objectives, if the par-
titioning is not specified, it is assumed that B1

and C1 are empty; or
• a string specifying the COMPleib problem
name if the plant specification is supported by the
COMPleib library.

In addition to plant, hifoo accepts four optional
parameters which may be provided in any order:
• order, a nonnegative integer specifying n̂, the
order of the controller to be computed. The de-
fault is n̂ = 0 (static output feedback).
• obj, a character specifying the minimization
objective, as follows:
− ’h’: the H∞ norm of the transfer function (4)
(the default);
− ’r’: the inverse of the complex stability radius
of the matrix AK (equivalently, the H∞ norm of
the transfer function (sI−AK)−1); if the matrices
B1, C1 and Dij are provided they are ignored;
− ’s’: the spectral abscissa (maximum of the
real parts of the eigenvalues) of the matrix AK ;

if the matrices B1, C1 and Dij are provided they
are ignored;
− ’+’: stabilize (find a point where AK is stable,
but do not optimize the spectral abscissa); if the
matrices B1, C1 and Dij are provided they are
ignored.
• init, an initial guess for the controller, which
may be either
− a structure whose fields a, b, c, d give initial
guesses for Â, B̂, Ĉ, D̂, or
− an LTI state-space system object in the Control
System Toolbox ss format. Since the optimization
algorithm is local, the results are often highly
dependent on a starting guess, which may be pro-
vided by the user. If the order of the initial guess
is less than the desired order, the initial guess
is augmented to have the desired order without
increasing the objective value. Thus hifoo can
be called repeatedly to get successively better 6

controllers as the order is increased. If the order
of the initial guess is greater than the desired
order, the initial guess is truncated arbitrarily. By
default, several initial guesses are generated ran-
domly, and even when init is provided, it is sup-
plemented with random perturbations. Because
of the random initializations, successive runs of
hifoo typically produce different controllers.
• options, a structure with optional fields de-
termining various optimization details; see the
online help for details. Fields likely to be of most
interest to users are penalty, for penalizing the
norm of the controller to prevent it from being
chosen to be too large, barrier, for moving H∞
norm minimizers away from the imaginary axis
into the left half-plane, normtol and evaldist,
for controlling the optimization accuracy, cpumax,
for limiting the running time of the algorithm,
and prtlevel, which specifies the desired level of
printed output.

hifoo returns up to 3 output parameters in the
following order:
• K, the best controller found, which is either a
structure with fields a, b, c, d defining the matri-
ces Â, B̂, Ĉ, D̂, or a Control System Toolbox LTI
state-space system object; the format is chosen to
be compatible with that used by init when pro-
vided, and otherwise compatible with that used
by plant.
• f, the corresponding objective function value
(∞ if no stable controller was found and obj is
’h’ or ’r’; the spectral abscissa (negative if a stable
controller was found) when obj is ’+’)
• loc, a local optimality measure with 2 fields:
dnorm, the norm of a vector in the convex hull
of gradients of the objective at and near the final
controller, and evaldist, the maximum distance

6 Or, at least, no worse, assuming the externally provided
function computing the H∞ norm is continuous with
respect to the data, a somewhat idealized assumption.

that any of these gradients were evaluated from
the final controller; the smaller loc.dnorm and
loc.evaldist are, the more confidence one may
have that a local minimizer has been approxi-
mated. (When obj is ’+’, loc is not relevant so
both fields are set to NaN.)

6. EXAMPLES

6.1 Two mass-spring system

We start with the well-known benchmark example
of two masses connected with a spring (Wie and
Bernstein, 1992), with (normalized) state-space
matrices

[
A B2

C2 0

]
=

0 0 1 0 0
0 0 0 1 0
−1 1 0 0 1

1 −1 0 0 0
0 1 0 0 0

corresponding to the open-loop transfer function
(s4 + 2s2)−1 between signals u and y. Suppose we
would like to place the closed-loop poles as far left
in the complex plane as possible with a second-
order controller, i.e. we would like to find K that
minimizes the spectral abscissa of the matrix AK
with n̂ = 2.

Using the Control System Toolbox as an interface,
a typical hifoo session would be as follows (we
suppress the default output produced by hifoo):

>> P = ss([0 0 1 0;0 0 0 1;...
-1 1 0 0;1 -1 0 0],[0 0 1 0]’,...
[0 1 0 0],0);
>> K = hifoo(P,2,’s’);
>> tf(K)

We find the controller

6.8308175s2 − 1.8486865s− 0.28043397
s2 + 4.2752492s+ 6.0786141

.

The closed-loop poles, obtained with the com-
mands 7

>> T = feedback(P,-K);
>> eig(T)

are placed at −0.7073±i0.2979, −0.7073±i0.2980,
−0.7231 ± i0.5343 so the achieved spectral ab-
scissa is −0.7073. We observe the typical eigen-
value clustering phenomenon characteristic of the
neighborhood of a local minimizer of the spec-
tral abscissa (Burke et al., 2003). Note that we
display the controller coefficients to 8 significant
digits because clustered eigenvalues are typically
very sensitive to perturbations. In other words,

7 Note the negative sign in front of the controller transfer,

since we have used positive feedback notation in section 2.

controllers obtained by optimizing the spectral
abscissa are typically quite non-robust.

We can call hifoo again with the controller just
obtained as an initial guess:

>> K = hifoo(P,2,’s’,K);

This yields another controller with an improved
closed-loop spectral abscissa of −0.7380. One
more run of hifoo produces a controller

8.073790s2 − 1.7330367s− 0.23544720
s2 + 4.5435259s+ 6.7343390

further pushing the spectral abscissa to −0.7572.

Solving the pole placement equation by hand,
assigning all the poles to the same negative real
number −α (a unique pole of multiplicity six), we
obtain analytically α =

√
15
5 ≈ 0.7746 and the

controller

43
5 s

2 − 54
√

15
125 s− 27

125

s2 + 6
√

15
5 s+ 7

≈ 8.6000s2 − 1.6731s− 0.2160
s2 + 4.6476s+ 7

.

We can see that hifoo found numerically a very
similar controller and that the achieved spectral
abscissa was not far from the one derived analyt-
ically. In fact, subsequent work based on (Burke
et al., 2006) shows that this contoller is locally
optimal (Henrion and Overton, 2006).

6.2 H∞ static output feedback design

Consider the COMPleib aircraft model AC2, with
5 states, 3 control inputs and 3 control outputs:

>> clear P
>> [P.A,P.B1,P.B2,P.C1,P.C2,...
P.D11,P.D12,P.D21,nx,nu,ny] = ...
COMPleib(’AC2’);

>> PP = ss(P.A,[P.B1 P.B2],[P.C1;P.C2],...
[P.D11 P.D12;P.D21 zeros(ny,nu)]);

First we compute a full-order H∞ controller with
the hinfsyn function of the Robust Control Tool-
box for matlab (Release 14SP1)

>> KF = hinfsyn(ss(P.A,[P.B1 P.B2],...
[P.C1;P.C2],[P.D11 P.D12;...
P.D21 zeros(ny,nu)]),nu,ny);

The default design algorithm is based on solv-
ing an algebraic Riccati equation. With this
controller, we unexpectedly obtain an unstable
closed-loop system:

>> TF = lft(PP,KF,nu,ny);
>> max(real(eig(TF)))
ans =

1.4563e-011

An alternative algorithm based on LMI is avail-
able in hinfsyn:

>> KF = hinfsyn(ss(P.A,[P.B1 P.B2],...
[P.C1;P.C2],[P.D11 P.D12;...
P.D21 zeros(ny,nu)]),...
nu,ny,’method’,’lmi’);
>> TF = lft(PP,KF,nu,ny);
>> max(real(eig(TF)))
ans =
-8.0716e-005
>> norm(TF,inf)
ans =

0.1115

The resulting closed-loop system is now stable,
and the achieved H∞ norm is equal to 0.1115.

Now let us try to use hifoo to synthesize an H∞
static output feedback controller for this system

>> K0 = hifoo(P); % or, hifoo(’AC2’)

and let us analyze the closed-loop system

>> T0 = lft(PP,K0.d,3,3);
>> max(real(eig(T0)))
ans =
-4.2263e-004
>> norm(T0,inf)
ans =

0.1115

We see that, for this example, the closed-loop H∞
performance achieved by static output feedback is
the same as the one achieved with the fifth-order
controller, which is the best achievable in closed-
loop.

6.3 Fixed-order H∞ design

As a final example, consider the COMPleib air-
craft model AC4, with 4 states, 1 control input
and 2 control outputs. We compute a sequence of
order 0, order 1, order 2, and order 3 controllers,
optimizing H∞ performance, by:

>> [K,f0,loc0]=hifoo(’AC4’);
>> [K,f1,loc1]=hifoo(’AC4’,1,K);
>> [K,f2,loc2]=hifoo(’AC4’,2,K);
>> [K,f3,loc3]=hifoo(’AC4’,3,K);

Notice that the controller output from each call
to hifoo is input as an initial guess for opti-
mizing the controller of one order higher. The
optimal values found for order 0 (0.9355) and
order 3 (0.5573) are very consistent over multiple
runs, and the corresponding optimality certifi-
cates (loc0 and loc3) indicate that the results
are close to locally optimal. The order 2 controller
typically achieves nearly the same performance as
the order 3 controller, and sometimes the order 1

controller does too, though this is less consistent.
By contrast, the full-order routine hinfsyn fails
on this example.

ACKNOWLEDGMENTS

We are grateful to Bill Helton and Alexandre
Megretski for insightful discussions. The slicot

norm routine linorm was kindly provided by
NICONET e.V. through the help of Peter Ben-
ner. Any kind of commercial use of this rou-
tine requires a license agreement with Synoptio
GmbH, Berlin, see synmath.synoptio.de. The
first, third and fourth authors are supported
in part by the U.S. National Science Founda-
tion. The second author acknowledges support by
Project 102/05/0011 of the Grant Agency of the
Czech Republic and Project ME 698/2003 of the
Ministry of Education of the Czech Republic.

REFERENCES

Ackermann, J. (2002). Robust control: the param-
eter space approach. 2nd ed., Springer-Verlag,
Berlin, Germany.

Blondel, V. D. and J. N. Tsitsiklis (2000). A
survey of computational complexity results in
systems and control. Automatica, 36(9):1249-
1274.

Burke, J. V., A. S. Lewis, M. L. Overton (2003). A
nonsmooth, nonconvex optimization approach
to robust stabilization by static output feedback
and low-order controller. Proc. IFAC Symp.
Robust Control Design, Milan, Italy.

Burke, J. V., A. S. Lewis and M. L. Overton
(2005). A robust gradient sampling algorithm
for nonsmooth, nonconvex optimization. SIAM
J. Optim., 15:751-779.

Burke, J. V., D. Henrion, A. S. Lewis, M. L. Over-
ton (2006). Stabilization via nonsmooth, non-
convex optimization. To appear in IEEE Trans.
Autom. Control.

Helton, J. W. and O. Merino (1998). Classical
control using H∞ methods. SIAM, Philadelphia.

Henrion, D. and M. L. Overton (2006). Maximiz-
ing the closed loop asymptotic decay rate for the
two-mass-spring control problem. Submitted to
Automatica.

Henrion, D. and M. Šebek (2004). Overcoming
nonconvexity in polynomial robust control de-
sign. Proc. Symp. Math. Theory of Networks
and Systems, Leuven, Belgium.

Leibfritz, F. (2005). COMPleib: constraint matrix
optimization problem library. Version 1.1, Univ.
Trier, Germany. www.compleib.de.

Wie, B. and D. S. Bernstein (1992). Benchmark
problems for robust control design. AIAA J.
Guidance, Control and Dynamics, 15(5):1057–
1059.

