
doi:10.1093/imanum/drv046

Hybrid expansion–contraction: a robust scaleable method
for approximating the H∞ norm

Tim Mitchell and Michael L. Overton∗

Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York,
NY 10012, USA

∗Corresponding author: tim.mitchell@cims.nyu.edu overton@cims.nyu.edu

[Received on 23 October 2014; revised on 28 April 2015]

We present a new scaleable algorithm for approximating the H∞ norm, an important robust stability
measure for linear dynamical systems with input and output. Our spectral-value-set-based method uses
a novel hybrid expansion–contraction scheme that, under reasonable assumptions, is guaranteed to con-
verge to a stationary point of the optimization problem defining the H∞ norm, and, in practice, typi-
cally returns local or global maximizers. We prove that the hybrid expansion–contraction method has
a quadratic rate of convergence that is also confirmed in practice. In comprehensive numerical experi-
ments, we show that our new method is not only robust but exceptionally fast, successfully completing a
large-scale test set 25 times faster than an earlier method by Guglielmi, Gürbüzbalaban & Overton (2013,
SIAM J. Matrix Anal. Appl., 34, 709–737), which occasionally breaks down far from a stationary point
of the underlying optimization problem.

Keywords: complex stability radius; pseudospectra; robust stability.

1. Introduction

Consider the continuous-time linear dynamical system with input and output defined by

ẋ(t) = Ax(t) + Bw(t),

z(t) = Cx(t) + Dw(t),
(1.1)

and the discrete-time analogue

xk+1 = Axk + Bwk ,

zk = Cxk + Dwk ,
(1.2)

where A ∈ C
n×n, B ∈ C

n×p, C ∈ C
m×n, D ∈ C

m×p and w is a disturbance feedback depending linearly
on the output z (Hinrichsen & Pritchard, 2005, p. 538). We assume that the matrix A is Hurwitz stable
(all its eigenvalues are in the open left half-plane) in the continuous-time case or Schur stable (all its
eigenvalues are in the open unit disc) in the discrete-time case.

In this paper, we present a new spectral-value-set-based algorithm for approximating the H∞ norm
of the transfer function associated with these systems, which to compute exactly is tantamount to finding
a global optimum of a nonconvex and nonsmooth optimization problem. Our new method is intended
to be used for large and sparse systems where it is not feasible to use the standard Boyd–Balakrishnan–
Bruinsma–Steinbuch (BBBS) algorithm (Boyd & Balakrishnan, 1990; Bruinsma & Steinbuch, 1990)
due to its cubic cost per iteration. There has been a recent flurry of interest in approximating the H∞

c© The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

IMA Journal of Numerical Analysis (2016) 36, 985–1014

Advance Access publication on September 15, 2015 D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

T. MITCHELL AND M. L. OVERTON

norm for large and sparse systems without reducing the dimensions of the original matrices, notably by
Guglielmi et al. (2013) and, for related descriptor systems, by Benner & Voigt (2014) and Freitag et al.
(2014). Though the last of these algorithms relies on solving linear systems, and is thus unlikely to scale
as well as the first two methods, all three methods are much faster than the BBBS algorithm for large
problems and are able to compute good approximations to the H∞ norm.

In the continuous-time case, the algorithm of Guglielmi et al. (2013), which we call the GGO
method, consists of an inner iteration to approximate the so-called ε-spectral value set abscissa (defined
in Section 2) for a given ε > 0, and an outer iteration to vary ε using a Newton-bisection method to
approximate the complex stability radius (also defined below), which is the reciprocal of the H∞ norm.
Because there is no guarantee that the inner iteration will return the correct value of the spectral value
set abscissa, the authors state that the method is an idealized algorithm (Guglielmi et al., 2013, p. 729).
The crux of the matter, however, is that even if the inner iteration does deliver locally optimal values of
the spectral value set abscissa subproblem (the most that can be reasonably assumed), the outer Newton-
bisection method is still not guaranteed to converge to a stationary point of the underlying optimization
problem. In practice, the GGO algorithm occasionally breaks down far from such a stationary point,
leading to a poor approximation of the H∞ norm.

While our new spectral-value-set-based algorithm also makes use of the ε-spectral value set
abscissa approximation subroutine of the GGO method, we instead propose a novel hybrid expansion–
contraction iteration which not only provides provably breakdown-free convergence but also, generi-
cally, has a quadratic rate of convergence. Furthermore, we present improvements to the main subrou-
tine shared by both methods, accelerating its linear convergence and extending it to systems where both
p and m may be large.

The paper is organized as follows. In the next section, we define spectral value sets and then
explain their fundamental properties and their relationship to the H∞ norm. In Section 3, we outline
the algorithm given in Guglielmi et al. (2013) and explain how it may break down. Then in Section 4,
we present our new method along with its theoretical guarantees. In Section 5, we present a key lemma
underpinning the convergence rate analysis of our method given in Section 4.2. In Section 6, we show
how both methods can be extended to handle systems with a large number of inputs and/or outputs and
accelerated via vector extrapolation methods. We provide implementation notes in Section 7 and present
numerical results in Section 8.

2. Spectral value sets and their relationship to the H∞ norm

This section follows the development in Hinrichsen & Pritchard (2005, Section 5.1) and Guglielmi et al.
(2013, Section 2). We use the following notation: R

+ denotes the set of non-negative real numbers while
R

++ denotes the set of strictly positive real numbers, σ(·) is the spectrum of a matrix and ‖ · ‖ is the
2-norm. The dimension of the identity matrix I depends on the context.

Given matrices A, B, C, D defining the linear dynamical system (1.1), consider the perturbed system
matrix1

M (Δ) = A + BΔ(I − DΔ)−1C for Δ ∈ C
p×m, (2.1)

1 To motivate this formula, write w = Δz and observe that it then follows from (1.1) that ẋ = M (Δ)x or from (1.2) that
xk+1 = M (Δ)xk (Hinrichsen & Pritchard, 2005, p. 538).

986

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

HYBRID EXPANSION–CONTRACTION

assuming I − DΔ is invertible, and the associated transfer matrix (Hinrichsen & Pritchard, 2005, p. 549)

G(λ) = C(λI − A)−1B + D for λ ∈ C\σ(A).

Definition 2.1 Let ε ∈ R
+ such that ε‖D‖ < 1, and define the spectral value set

σε(A, B, C, D) =
⋃

{σ(M (Δ)) : Δ ∈ C
p×m, ‖Δ‖ � ε}.

The sets σε are called spectral value sets in Hinrichsen & Pritchard (2005) and Karow (2003), and
are also sometimes known as structured pseudospectra. In the special case B = I, C = I, D = 0, the sets
σε are called pseudospectra (Trefethen & Embree, 2005). In contrast to the references just mentioned,
our use of nonstrict inequalities above implies that the set σε(A, B, C, D) is compact for fixed ε.

In fact, Δ above can be taken to have rank 1, as stated in the next result relating eigenvalues of
a perturbed system matrix to singular values of an associated transfer matrix. This lemma follows
from Hinrichsen & Pritchard (2005, Theorem 5.2.9 and Remark 5.2.20 (iii)) or Guglielmi et al. (2013,
Theorem 2.1 and Corollary 2.4). See Guglielmi et al. (2013, Theorem 2.9) for a discussion of the rela-
tionship between the eigenvectors of the perturbed system matrix and singular vectors of the transfer
matrix.

Lemma 2.2 Let ε ∈ R
+ such that ε‖D‖ < 1. Then

σε(A, B, C, D)\σ(A) ≡
⋃

{σ(M (Δ)) : Δ ∈ C
p×m, ‖Δ‖ � ε, rank(Δ) = 1} (2.2)

≡
⋃

{λ ∈ C\σ(A) : ‖G(λ)‖ � ε−1}. (2.3)

Furthermore, given λ ∈ C\σ(A) with ‖G(λ)‖ = ε−1, we can obtain Δ with rank 1 such that ‖Δ‖ = ε

and λ ∈ σ(M (Δ)) by setting Δ = εuv∗, where εG(λ)u = v and εv∗G(λ) = u∗, that is, u and v are, respec-
tively, right and left singular vectors of G(λ) corresponding to its largest singular value ε−1.

Definition 2.3 Suppose that λ ∈ C\σ(A) is given with ‖G(λ)‖ = ε−1. We say that the simplicity con-
dition holds at λ with respect to ε if

(1) the largest singular value ε−1 of G(λ) is simple;

(2) letting u and v be corresponding right and left singular vectors and setting Δ = εuv∗, the eigen-
value λ of M (Δ) is simple.

Definition 2.4 The spectral abscissa of the matrix A is

α(A) = max{Re(λ) : λ ∈ σ(A)}.

For ε ∈ R
+ with ε‖D‖ < 1, the spectral value set abscissa is

αε(A, B, C, D) := max{Re(λ) : λ ∈ σε(A, B, C, D)} (2.4)

≡ max{Re(λ) : λ ∈ σ(A) or ‖G(λ)‖ � ε−1}, (2.5)

with the equivalence following by Lemma 2.2 and α0(A, B, C, D) = α(A).

987

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

T. MITCHELL AND M. L. OVERTON

Definition 2.5 The spectral radius of the matrix A is

ρ(A) = max{|λ| : λ ∈ σ(A)}.

For ε ∈ R
+ with ε‖D‖ < 1, the spectral value set radius is

ρε(A, B, C, D) := max{|λ| : λ ∈ σε(A, B, C, D)} (2.6)

≡ max{|λ| : λ ∈ σ(A) or ‖G(λ)‖ � ε−1}, (2.7)

with the equivalence following by Lemma 2.2 and ρ0(A, B, C, D) = ρ(A).

We now define the stability radius (Hinrichsen & Pritchard, 2005, Section 5.3) (often known as
the complex stability radius: ‘complex’ because complex perturbations are admitted even if the data
are real, and ‘radius’ in the sense of the perturbation space, not the complex plane). It is the largest
ε such that the spectral value set σε(A, B, C, D) is defined and contained in the left half-plane (for the
continuous-time system (1.1)) or in the unit disc (for the discrete-time system (1.2)).

Definition 2.6 The stability radius for (A, B, C, D) is

ε� :=
⎧⎨
⎩

sup{ε : ε‖D‖ < 1 and αε(A, B, C, D) < 0} (continuous-time case),

sup{ε : ε‖D‖ < 1 and ρε(A, B, C, D) < 1} (discrete-time case).

When B = C = I and D = 0 this quantity is also known as the distance to instability (Hinrichsen &
Pritchard, 2005, Section 5.3.5; VanLoan, 1985) for the matrix A.

Now we define the H∞ norm.

Definition 2.7 The H∞ norm of the transfer matrix function G is

‖G‖∞ :=

⎧⎪⎪⎨
⎪⎪⎩

sup
ω∈R

‖G(iω)‖ (continuous-time case),

sup
θ∈[0,2π]

‖G(eiθ)‖ (discrete-time case).
(2.8)

Both the algorithm of Guglielmi et al. (2013) and the one presented here exploit the following
well-known property.

Lemma 2.8 The stability radius and the H∞ norm are reciprocals of each other, that is,

ε� = ‖G‖−1
∞ . (2.9)

For a proof, see Guglielmi et al. (2013, Lemma 2.17). Note that since we assumed that A is stable,
the stability radius is always positive and the H∞ norm is always finite.

2.1 Locally rightmost and outermost points of spectral value sets

We now consider locally rightmost or locally outermost points of spectral value sets and how they relate
to the norm of the transfer function.

988

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

HYBRID EXPANSION–CONTRACTION

Definition 2.9 A rightmost (outermost) point of a set S ⊂ C is a point where the maximal value of the
real part (modulus) of the points in S is attained. A locally rightmost (locally outermost) point of a set
S ⊂ C is a point λ which is a rightmost (outermost) point of S ∩ N for some neighborhood N of λ.

Remark 2.10 Since σε(A, B, C, D) is compact, its locally rightmost or locally outermost points, that
is, the local maximizers of the optimization problems in (2.4) and (2.6), lie on its boundary. There can
be only a finite number of these; otherwise, the boundary would need to contain an infinite number of
points with the same real part or modulus, which can be ruled out by an argument similar to Guglielmi
& Overton (2011, Lemma 2.5), exploiting Hinrichsen & Pritchard (2005, Lemma 5.3.30).

In the following, we make use of the simplicity condition of Definition 2.3. This lemma is taken
from Guglielmi et al. (2013, Lemma 2.21), although the assumptions are stated differently.

Lemma 2.11 Suppose that λ ∈ C\σ(A) is given with ‖G(λ)‖ = ε−1 and that the simplicity condition
holds at λ with respect to ε. A necessary condition for λ to be a local maximizer of the optimization
problem in (2.5) is

v∗C(λI − A)−2Bu ∈ R
++, (2.10)

where u and v are, respectively, right and left singular vectors corresponding to the largest singular value
ε−1 of G(λ).

We have not seen the following lemma stated explicitly before, although it is clear from a geomet-
rical perspective.

Lemma 2.12 Suppose that λ ∈ C\σ(A) is given with ‖G(λ)‖ = ε−1 and that the simplicity condition
holds at λ with respect to ε. If λ satisfies the first-order necessary condition of Lemma 2.11 and
Re(λ) = 0, then Im(λ) is a stationary point of ‖G(iω)‖, and furthermore, if λ is a locally rightmost
point of σε(A, B, C, D) with Re(λ) = 0, then Im(λ) is a local maximizer of ‖G(iω)‖.

Proof. Under the assumptions, it is straightforward to differentiate ‖G(iω)‖ and show that the deriva-
tive is zero at ω = Im(λ) using the techniques given in the proof of Guglielmi et al. (2013, Lemma 2.21).
For the second part, suppose that λ is a locally rightmost point of σε(A, B, C, D) with Re(λ) = 0 and
write λI = Im(λI). Suppose λI is not a local maximizer of ‖G(iω)‖, that is, there exists δ ∈ R

++ such
that ‖G(iλI)‖ < ‖G(i(λI + tδ))‖ for all t ∈ [0, 1]. By Lemma 2.2, all points i(λI + tδ) ∈ σε(A, B, C, D)

and since λ = iλI is a locally rightmost point of σε(A, B, C, D) by assumption, for some sufficiently
small value t̂ ∈ R

++ we have that the points i(λI + tδ) for 0 � t < t̂ must also be locally rightmost. Thus,
σε(A, B, C, D) must have an infinite number of locally rightmost points, contradicting Remark 2.10. �

The next lemma, the discrete-time variant of Lemma 2.11, follows from Guglielmi et al. (2013,
Lemma 2.29).

Lemma 2.13 Suppose that λ ∈ C\σ(A) is given with ‖G(λ)‖ = ε−1 and that the simplicity condition
holds at λ with respect to ε. A necessary condition for λ to be a local maximizer of the optimization
problem in (2.7) is

λ(v∗C(λI − A)−2Bu) ∈ R
++, (2.11)

where u and v are, respectively, right and left singular vectors corresponding to the largest singular value
ε−1 of G(λ).

Lemma 2.14 Suppose that λ ∈ C\σ(A) is given with ‖G(λ)‖ = ε−1 and that the simplicity condition
holds at λ with respect to ε. If λ satisfies the first-order necessary condition of Lemma 2.13 and

989

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

T. MITCHELL AND M. L. OVERTON

|λ| = 1, then
 λ is a stationary point of ‖G(eiθ)‖, and furthermore, if λ is a locally outermost point of
σε(A, B, C, D) with |λ| = 1, then
 λ is a local maximizer of ‖G(eiθ)‖. Here
 denotes complex argument.

The proof is similar to the proof of Lemma 2.12.

3. The algorithm of Guglielmi, Gürbüzbalaban and Overton

Since the spectral value set abscissa and radius, αε(A, B, C, D) and ρε(A, B, C, D), are monotonically
increasing functions of ε, the stability radius (the reciprocal of ‖G‖∞ by Lemma 2.8) can be found by
finding the root of

g(ε) :=
⎧⎨
⎩

αε(A, B, C, D) (continuous-time case),

ρε(A, B, C, D) − 1 (discrete-time case).
(3.1)

However, like the standard BBBS algorithm for computing the H∞ norm, computing either
αε(A, B, C, D) or ρε(A, B, C, D) to guaranteed precision2 apparently requires a cubic order of opera-
tions and thus the benefit of this alternative formulation of calculating the H∞ norm is not immediately
apparent. In order to scale to large-dimensional problems, the GGO algorithm introduces two related
methods, SVSA1 and SVSR1, to instead, respectively approximate αε(A, B, C, D) and ρε(A, B, C, D),
by generalizing the fast methods of Guglielmi & Overton (2011) for approximating the pseudospectral
abscissa and radius of a large sparse matrix. The benefit is that the GGO algorithm can forgo computing
the norm of the transfer function, which involves the potentially expensive calculation of (λI − A)−1B
at any iterate λ, and instead requires only the computation of a rightmost (or outermost) eigenvalue
of M (Δ) evaluated for a sequence of rank 1 matrices, for which sparse eigenvalue solvers based on
matrix–vector products such as Lehoucq & Sorensen (1996) may be used.

Then, using SVSA1 or SVSR1 as a subroutine to attempt to compute either αε(A, B, C, D) or
ρε(A, B, C, D) respectively, the GGO algorithm uses a hybrid Newton-bisection algorithm to try to find
the root ε� of g. However, as both SVSA1 and SVSR1 often converge to points that are, respectively,
only locally rightmost or outermost, there is no guarantee that the Newton-bisection method will con-
verge to ε�, although, when it does not, it still typically converges to a local maximizer of (2.8). Unfor-
tunately, as we will describe in Section 3.2, the GGO method can also sometimes critically break down
before convergence to even a local maximizer is reached.

3.1 Approximating the spectral value set abscissa and radius

The SVSA1 and SVSR1 algorithms are based on the following observation: by (2.2),
σε(A, B, C, D)\σ(A) may be characterized solely by rank-1 perturbations and thus for Δ = εuv∗, by
(2.1) and Guglielmi et al. (2013, Lemma 2.8),

M (Δ) = A + BΔ̃C where Δ̃ = εuv∗

1 − εv∗Du
, (3.2)

where ε ∈ R
++ with ε‖D‖ < 1 and vectors u ∈ C

p, v ∈ C
m are normalized so that ‖u‖ = ‖v‖ = 1. So,

focusing on the continuous-time case, the idea of the SVSA1 algorithm is to construct a sequence of
rank-1 perturbations uj(vj)∗ that ‘push’ the rightmost eigenvalue of M (Δ) as far to the right as pos-
sible. At each step of the iteration, using the current uj and vj, the algorithm computes the rightmost

2 For the case B = C = I, D = 0, see Burke et al. (2003) and Mengi & Overton (2005).

990

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

HYBRID EXPANSION–CONTRACTION

eigenvalue of M (εuj(vj)∗) as well as its corresponding right and left eigenvectors, which together com-
prise what we call an eigentriple. Then, as explained in Guglielmi et al. (2013, Section 3), the next
iterates uj+1 and vj+1 are obtained by explicitly solving a nonlinear maximization problem defined
by the eigentriple information. If necessary, a line search is then invoked to modify uj+1 and vj+1

to ensure that α(M (εuj+1(vj+1)∗)) > α(M (εuj(vj)∗)). The line search is explained in Guglielmi et al.
(2013, Section 3.5); some improvements for accelerating the line search and increasing its robustness
are given in Mitchell (2014, Sections 2.2 and 4.3, Procedures 2, 3 and 4).

Remark 3.1 For the SVSA1 and SVSR1 algorithms, let λj denote the rightmost or outermost eigen-
value of M (εuj(vj)∗), respectively. The algorithms as they appear in Guglielmi et al. (2013) are not
provided with initial perturbation vectors u0 and v0 defining an initial λ0, but instead with eigenvec-
tor information that initializes the process. The result is that, although the line search ensures that, for
j = 1, 2, . . . , Re(λj+1) > Re(λj) or |λj+1| > |λj| respectively, no guarantee is made with respect to an ini-
tial eigenvalue λ0. We therefore modify the algorithms so that they can instead be initialized with ε, u0,
v0 and λ0 (though λ0 can be recomputed from ε, u0 and v0); the line search then ensures that monotonic-
ity also holds with respect to λ0. Though this seemingly minor modification usually has no significant
impact, negative or positive, on the GGO algorithm, and does not prevent its potential breakdown case,
ensuring monotonicity from a given starting point λ0 is a crucial property needed for the new method
we propose in this paper. As such, and for brevity, in the context of the GGO algorithm, we will use
SVSAR to refer to SVSA1 or SVSR1 respectively, or, in the context of our new method, to refer to
their fully monotonic modified versions described in this remark, including the additional line search
improvements referenced above.

Despite its monotonicity properties, SVSAR is known to converge, linearly, only to rightmost points
of σε(A, B, C, D) if ε is sufficiently small, and there is no guarantee that such points will be globally
rightmost. In practice though, without assuming ε is small, we observe that SVSAR does often converge
to a globally rightmost point of σε(A, B, C, D) (in the cases where we have been able to test this) and
furthermore, in cases where we have observed that it does not, it still typically finds locally rightmost
points which provide good approximations to the globally optimal value. Assuming this is always the
case would be too strong, so instead we make the following assumption, which we will use in the next
section.

Assumption 3.2 Suppose the SVSAR algorithm is given as input ε > 0 satisfying ε‖D‖ < 1 and unit-
norm vectors u0 and v0 with λ0 the rightmost or outermost eigenvalue of M (ε0u0(v0)∗). Then it returns
unit-norm vectors u and v and λ ∈ C such that ‖G(λ)‖ = ε−1 with corresponding right and left singular
vectors u and v, with λ satisfying the simplicity condition with respect to ε, and such that

(1) in the continuous-time case, λ is a rightmost eigenvalue of M (εuv∗) and the first-order necessary
condition of Lemma 2.11 holds;

(2) in the discrete-time case, λ is an outermost eigenvalue of M (εuv∗) and the first-order necessary
condition of Lemma 2.13 holds.

Of course, the SVSAR and GGO algorithms as well as our new algorithm all depend on a much
more basic assumption, which was implicit in Guglielmi & Overton (2011) and Guglielmi et al. (2013),
but which we state here for completeness.

991

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

T. MITCHELL AND M. L. OVERTON

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.785

0.79

0.795

0.8

0.805

0.81

0.815

0.82

0.825

0.83

−7 −6 −5 −4 −3 −2 −1 0 1 2
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Fig. 1. Left: example CM3. Right: example CM4. Each panel plots the norm of the transfer function evaluated along the imaginary
axis with the resulting approximations (ω̃, ε̃) returned by the GGO algorithm as crosses. In CM3, the GGO algorithm appears to
have returned an accurate value of ω̃ to be a maximizer of ‖G(iω)‖ but its computed value of ε̃ is inaccurate as (ω̃, ε̃−1) does not
lie on the graph of ‖G(iω)‖. In CM4, this situation is worse as it can clearly be seen that neither ω̃ or ε̃ are accurate.

Assumption 3.3 For any matrix A, an eigenvalue solver (typically sparse) always returns at least one
eigenvalue λ ∈ σ(A) such that Re(λ) = α(A) or |λ| = ρ(A), depending on whether the largest real part
or largest modulus is requested, respectively.

3.2 The breakdown case of the GGO algorithm

If it were the case that SVSAR always delivered the true value of αε(A, B, C, D) or ρε(A, B, C, D),
the Newton-bisection scheme of the GGO algorithm would accurately deliver the correct value of
‖G‖∞ = ε−1

� , namely, the maximum value of the norm of the transfer function on the imaginary axis
or unit circle, even though (3.1) may be nonsmooth. However, as the approximations found by SVSAR
may underestimate αε(A, B, C, D) and ρε(A, B, C, D), this cannot be assumed and there seems little hope
of finding an efficiently scaleable algorithm that computes the spectral value set abscissa and radius
accurately. Furthermore, even under Assumption 3.2 or the stronger assumption that SVSAR always
converges to locally rightmost or outermost points of σε(A, B, C, D), the GGO algorithm may still break
down before finding even a locally maximal value or stationary point of the norm of the transfer function
evaluated on the imaginary axis or unit circle. Though this breakdown is briefly discussed in Guglielmi
et al. (2013, p. 731), we describe the underlying conditions which cause it in more detail here as the first
author of the present paper discovered and analysed the breakdown case (Guglielmi et al., 2013, p. 736)
and the nature of the deficiency suggests that a new approach is needed. We focus on the continuous-
time case.

We first consider the two instances of breakdown on problems CM3 and CM4 reported in Guglielmi
et al. (2013) where notably only bisection steps were taken and every Newton step was rejected. In
Fig. 1, we plot ‖G(iω)‖ and the approximations produced by the GGO algorithm. Supposing that
SVSAR always converges to at least locally rightmost points when the spectral value set abscissa is
requested, one would hope that the GGO algorithm would return local, or possibly global, maximizers
of the norm of the transfer function evaluated along the imaginary axis. However, here we see that the
approximations returned by GGO do not even lie on the graphs of the functions. While the approxima-
tion for CM3 seems at least to accurately approximate the vicinity of a local maximizer even though it

992

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

HYBRID EXPANSION–CONTRACTION

−2 −1.5 −1 −0.5 0 0.5 1 −2

−2

−1.5 −1 −0.5 0 0.5 1

−1.5 −1 −0.5 0 0.5 1

−6

−4

−2

0

2

4

6

−2 −1.5 −1 −0.5 0 0.5 1
−6

−4

−2

0

2

4

6

iters = 43
e = 0.080

iters = 79
e = 0.100

iters = 18
e = 0.080

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

iters = 22
e = 0.090

Fig. 2. Progression of breakdown of the GGO algorithm on a synthetic example. Iterates of SVSAR are shown as dashed-dotted
lines, spectral value set boundaries are shown as solid curves, and the eigenvalues of A are shown as small dots. Top left: GGO
finds, a locally rightmost point λ1 in the left half-plane for ε1 = 0.08 and sets εlb = 0.08. Top right: GGO attempts ε2 = 0.1
finds new locally rightmost point λ2 in the right half-plane and sets εub = 0.1. Bottom left: GGO rejects leftward Newton step
εN

2 towards imaginary axis, since εN
2 < εlb, and instead, via bisection steps, finds a locally rightmost point λ3 in the right half-

plane and updates εub = 0.09. Bottom right: GGO continually rejects leftward Newton steps εN
k towards the imaginary axis, since

εN
k < εlb and erroneously Re(λk) → γ > 0 and εk → 0.08 as k → ∞, with slow convergence due to only bisection steps being

taken, though we depict only two bisection steps and the last step for clarity. The value for εk and the number of SVSAR steps to
find a locally rightmost point for that level are listed in the bottom right corner of each panel.

underestimates its function value, the approximation for CM4 seems particularly egregious as it clearly
neither locates a maximizer nor approximates a maximal function value well.

As the spectral value sets of CM3 and CM4 have quite needle-like shapes that make further visualiza-
tion difficult, we present an analogous synthetic example in Fig. 2 with the caption describing the pro-
gression of breakdown of the GGO algorithm, even when SVSAR always finds locally rightmost points.
Even under the unrealistic assumption that SVSAR always converges to globally rightmost points, there
is no guarantee that the points found by SVSAR as ε is changed will all lie upon one continuous path of

993

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

T. MITCHELL AND M. L. OVERTON

locally rightmost points. Nonetheless, as long as the points are globally rightmost, the Newton-bisection
iteration employed by the GGO algorithm is immune to any inconsistency of the points actually lying
upon multiple paths. In practice, we observe that when SVSAR delivers only locally rightmost points,
the GGO algorithm often still converges to local maximizers of (2.8) and these often provide good
approximations to the H∞ norm for problems for which this can be tested. However, this convergence
is not guaranteed. Indeed, the inconsistency of encountering multiple paths of locally rightmost points
can prevent the the GGO algorithm from converging to a local maximizer of (2.8). This inconsistency is
caused as much by the inherent behaviour of the SVSAR routine as by the nature of spectral value sets
themselves. As shown in Fig. 2, the breakdown of the GGO algorithm is precipitated by the fact that
the paths of locally rightmost points encountered do not all exist for every εk that the method computes;
relatedly, it is not always the case that each path of locally rightmost points necessarily even crosses the
imaginary axis. The consequence for the GGO algorithm is that its iterates of lower and upper bounds
may, respectively, remain valid only for two different paths of locally rightmost points and thus, the
bounds may erroneously converge, typically by bisection steps only, to a value ε̃ that does not corre-
spond to where either path crosses the imaginary axis. In such a case, we say that the GGO algorithm
incurs a bound mismatch error.

4. Hybrid expansion–contraction: a breakdown-free algorithm

We now present our new H∞ norm approximation algorithm, replacing the Newton-bisection outer
iteration of the GGO algorithm with a novel hybrid expansion–contraction scheme.

Key Observation 4.1 Lower bounds on ε� reported by SVSAR cannot be trusted. However, upper
bounds reported by SVSAR always bound ε�.

In particular, as shown in the top left panel of Fig. 2, finding a locally rightmost point of
σε(A, B, C, D) in the left half-plane gives no indication of whether or not σε(A, B, C, D) crosses the
imaginary axis.

Thus, our new approach to finding a local optimizer of the norm of the transfer function using
SVSAR is to forgo the use of any approximations to lower bounds on ε�, since they may be unreliable,
and to instead focus on monotonically reducing some initial given upper bound εub > ε� as much as
possible, hopefully to ε�.

Recalling (3.2), consider the matrix family with respect to the single parameter ε for fixed unit-norm
vectors u and v:

Muv(ε) := M (εuv∗) = A + BΔ̃uv(ε)C, where Δ̃uv(ε) := εuv∗

1 − εv∗Du
(4.1)

with ε ∈ R
+, ε‖D‖ < 1. Note that by definition, all eigenvalues of Muv(ε) lie in σε(A, B, C, D).

Key Observation 4.2 In the continuous-time case, let εub ∈ R
++, εub‖D‖ < 1 and fixed vectors u ∈ C

p

and v ∈ C
m with unit norm be given such that α(Muv(εub)) > 0. Then since Muv(0) = A is Hurwitz stable,

by continuity of α(Muv(ε)) there exists ε̂ such that 0 < ε̂ < εub and α(Muv(ε̂)) = 0. Similarly, in the
discrete-time case, if ρ(Muv(εub)) > 1 then since Muv(0) = A is Schur stable, by continuity of ρ(Muv(ε))

there exists ε̂ such that 0 < ε̂ < εub and ρ(Muv(ε̂)) = 1.

Thus, given εub, u and v which demonstrate that εub > ε�, that is, the matrix Muv(εub) has at least one
eigenvalue in the right half-plane or outside the unit circle respectively, it is clear that we may always

994

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

HYBRID EXPANSION–CONTRACTION

Fig. 3. A single contraction and expansion iteration of the HEC (hybrid expansion-contraction) method, along with its limit point
λ̃, a locally rightmost point of σε̃(A, B, C, D), which provides a local maximizer to ‖G(iω)‖. The solid curves are the boundaries of
σε(A, B, C, D) for εk , εk+1 = ε̂k and ε̃, the vertical line is the imaginary axis, λ(ε) is a continuous path of locally rightmost points
of σε(A, B, C, D), and λuk vk (ε) is the rightmost eigenvalue of Muk vk (ε) defined in (4.1), so guk vk (ε) = α(Muk vk (ε)) = Re(λuk vk (ε)).
The labelled arrows C and E respectively represent the contraction of the locally rightmost point λk to the eigenvalue λ̂k on the
imaginary axis by reducing εk to ε̂k with uk and vk fixed, and the subsequent expansion from λ̂k to the locally rightmost point
λk+1 of σε̂k

(A, B, C, D) via SVSAR updating the corresponding rank-1 perturbation to uk+1 and vk+1.

contract εub to ε̂ such that ε� � ε̂ < εub by finding a root of the function guv where

guv(ε) :=
⎧⎨
⎩

α(Muv(ε)) (continuous-time case),

ρ(Muv(ε)) − 1 (discrete-time case).
(4.2)

Unlike the hybrid Newton-bisection outer iteration in GGO where the lower bounds cannot be trusted,
we have a priori true lower and upper bounds of 0 and ε for finding a root of guv using a hybrid
Newton-bisection routine. Furthermore, although the continuous function guv may be nonsmooth at a
finite number of points, we rarely if ever encounter these in practice. Note that, for all ε, guv(ε) � g(ε),
where g is defined in (3.1). The derivatives of both g and guv are given in Section 5. The function g is
monotonically increasing, but guv might not be. Hence, it is possible that guv has several roots, but this
causes no difficulty.

Given an initial perturbation defined by εub and vectors u and v such that (4.2) is non-negative
indicating εub � ε�, a hybrid expansion–contraction iteration is the combined process of moving
the rightmost or outermost eigenvalue of Muv(εub) back to the boundary of the stability region by
contracting εub to ε̂ while keeping the perturbation vectors u and v fixed, and then subsequently
pushing the rightmost or outermost eigenvalue of M (ε̂uv∗) away from the boundary again, either
rightward or outward from the origin, by now keeping ε̂ fixed and modifying only the perturba-
tion vectors u and v via the SVSAR iteration. The algorithm repeats this expansion–contraction
process in a loop until SVSAR can no longer find a new perturbation that moves an eigenvalue
off the stability boundary into the unstable region. A single iteration of the algorithm is depicted
in Fig. 3.

We now define the algorithm formally. We discuss how to obtain ε0, u0 and v0 in Section 4.4.

995

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

T. MITCHELL AND M. L. OVERTON

Algorithm HEC (hybrid expansion–contraction)
Input: ε0 ∈ R

++ with ε0‖D‖ < 1 and unit-norm vectors u0 and v0 such that gu0v0(ε0) > 0, along with
λ0, a rightmost eigenvalue of Mu0v0(ε0) in the right half-plane in the continuous-time case (an outermost
eigenvalue of Mu0v0(ε0) outside the unit circle in the discrete-time case).

For k = 0, 1, 2, . . . ,

(1) Contraction: call a Newton-bisection zero-finding algorithm to compute ε̂k ∈ (0, εk] so that
gukvk (ε̂k) = 0, along with λ̂k , a rightmost eigenvalue of Mukvk (ε̂k) on the imaginary axis in the
continuous-time case (an outermost eigenvalue of Mu0v0(ε0) on the unit circle in the discrete-
time case).

(2) Expansion: call the SVSAR algorithm with input ε̂k , uk , vk and λ̂k to compute uk+1, vk+1, λk+1

satisfying Assumption 3.2 and Re(λk+1) � Re(λ̂k) = 0 in the continuous-time case (|λk+1| �
|λ̂k| = 1 in the discrete-time case).

(3) Set εk+1 = ε̂k .

In practice, we pass the right and left eigenvectors as well as eigenvalues computed by the contrac-
tion phase into the expansion phase and vice versa. See Mitchell (2014, Procedure 5, p. 41) for more
details.

4.1 Convergence of hybrid expansion–contraction

We now present our main convergence theorem, which depends on Assumptions 3.2 and 3.3. The idea
is that, in the continuous-time case, since α(Mukvk (εk)) � 0 for all k, and α(Mukvk (ε̂k)) = 0 for all k, and
since εk+1 = ε̂k with εk monotonically decreasing, it must happen that α(Mukvk (εk)) → 0.

Theorem 4.3 Given valid initial data, Algorithm HEC generates a sequence {εk} converging mono-
tonically to a limit ε̃ and a sequence {λk} having at least one cluster point λ̃, where ‖G(λ̃)‖ = ε̃−1,
with Re(λ̃) = 0 or |λ̃| = 1 for the continuous- and discrete-time cases, respectively. Assuming that the
simplicity condition of Definition 2.3 holds at λ̃ with respect to ε̃, we also have the following.

(1) In the continuous-time case, λ̃ satisfies the first-order necessary condition to be a local maximizer
of the optimization problem in (2.5) given in Lemma 2.11 for ε = ε̃, and, in addition, Im(λ̃) is
a stationary point of ‖G(iω)‖ with stationary value ε̃−1. Furthermore, if λ̃ is a locally rightmost
point of σε̃(A, B, C, D), then Im(λ̃) is a local maximizer of ‖G(iω)‖ with locally maximal value
ε̃−1.

(2) In the discrete-time case, λ̃ satisfies the first-order necessary condition to be a local maximizer
of the optimization problem in (2.7) given in Lemma 2.13 for ε = ε̃, and, in addition,
 λ̃ is a
stationary point of ‖G(eiθ)‖ with stationary value ε̃−1. Furthermore, if λ̃ is a locally outermost
point of σε̃(A, B, C, D), then
 λ̃ is a local maximizer of ‖G(eiθ)‖ with locally maximal value ε̃−1.

Proof. We give the proof only for the continuous-time case. The algorithm ensures that {εk} is a
monotonically decreasing non-negative sequence so it must converge to a limit ε̃, and so it follows that
ε̂k = εk+1 converges to the same limit. The algorithm also ensures that Re(λk) � 0 for all k. Suppose
that Re(λk) does not converge to zero. Then there is a subsequence {λki} for which Re(λki) is bounded
below by some γ > 0. By definition of the expansion step, using Assumption 3.2, λki is an eigenvalue
of Muki vki

(εki), so it follows that α(Muki vki
(εki)) � γ . By taking a further subsequence if necessary,

996

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

HYBRID EXPANSION–CONTRACTION

we may assume without loss of generality that uki v
∗
ki

converges to a limit ũṽ∗. It follows that the matrix
Muki vki

(εki) converges to a limit Mũṽ∗(ε̃), and therefore, since the spectral abscissa is continuous, that
α(Muki vki

(εki)) converges to α(Mũṽ∗(ε̃)), which must be greater than or equal to γ . But since ε̂ki also
converges to ε̃, α(Muki vki

(ε̂ki)) must converge to the same limit α(Mũṽ∗(ε̃))—which is a contradiction
since, by definition of the contraction step, α(Muki vki

(ε̂ki)) = 0 for all i. So, Re(λk) must converge to zero.
Although the sequence {λk} might not converge, it is bounded and hence has at least one cluster

point λ̃. Clearly, Re(λ̃) = 0. By Assumption 3.2, for all k, we have ‖G(λk)‖ = ε−1
k , the simplicity

condition holds at λk with respect to εk , and the first-order necessary condition

v∗
kC(λkI − A)−2Buk ∈ R

++

holds. It follows that ‖G(λ̃)‖ = ε̃−1 and, provided that the simplicity condition holds at λ̃ with respect
to ε̃, that the limiting first-order necessary condition

ṽ∗C(λ̃I − A)−2Bũ ∈ R
++

also holds, where ũ and ṽ are, respectively, right and left singular vectors corresponding to ε̃−1, the
largest singular value of G(λ̃). The possibility that the left-hand side is zero is excluded by the simplicity
condition, because, by Guglielmi et al. (2013, Equation (2.18)), this would imply the orthogonality of
the right and left eigenvectors of M (ε̃ũṽ∗) corresponding to the eigenvalue λ̃. The result then follows
from applying Lemma 2.12 with λ = λ̃. �

4.2 Quadratic convergence rate of hybrid expansion–contraction

We now explain how the hybrid expansion–contraction algorithm is actually an adaptively positively
or negatively damped Newton method, in contrast to the Newton-bisection outer iteration of the GGO
algorithm. We focus for the moment on the continuous-time case.

By definition of Algorithm HEC, we always have ε̃ � εk+1 = ε̂k � εk . In the Newton-bisection con-
traction phase, the first updated value from εk attempting to make gukvk (·) zero is the Newton update

εN
k = εk − gukvk (εk)

g′
ukvk

(εk)

where g′
ukvk

denotes the derivative of gukvk given in (5.5). The value gukvk (εk) is positive and as we shall
explain shortly, so is g′

ukvk
(εk), and thus εN

k < εk holds. Furthermore, for k large enough, the bisection
safeguards will not prevent the Newton step from being attempted since εN

k > 0 follows from ε̃ > 0.
If the rightmost eigenvalue, say λN

k , of Mukvk (ε
N
k) is in the left half-plane, as shown in the top left of

Fig. 4, it follows that a locally rightmost point computed by SVSAR with input εN
k , uk and vk could

also be in the left half-plane, which might potentially cause the breakdown scenario observed in the
GGO algorithm. Thus, the contraction phase instead finds ε̂k > εN

k such that α(Mukvk (ε̂k)) = 0 holds to
ensure that the next locally rightmost point, found by SVSAR with input ε̂, uk and vk resides in the right
half-plane (recalling that SVSAR is a monotonic method). On the other hand, if λN

k is in the right half-
plane, as shown in the top right of Fig. 4, it is guaranteed that the next locally rightmost point computed
by SVSAR will also be in the right half-plane and thus the contraction phase can take an even larger
reduction than that provided via εN

k by instead finding ε̂k < εN
k such that α(Mukvk (ε̂k)) = 0.

However, as explained in Section 5, εN
k is equivalent to the Newton step the GGO algorithm

would have taken from εk; this observation also explains why g′
ukvk

(εk) > 0. As a consequence, the

997

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

T. MITCHELL AND M. L. OVERTON

Fig. 4. Left: positive damping. Right: negative damping. As in Fig. 3, the top row depicts the boundaries of σε(A, B, C, D) but now
εk+1 = ε̂k and εN

k are, respectively, the next steps that HEC and the GGO algorithm would take from εk . Setting λN
k := λuk vk (ε

N
k),

the dashed arrows represent the change from eigenvalue λN
k to λ̂k as the contraction phase converges after taking its first step to

εN
k , and the solid arrows represent the expansion phase ‘pushing’ λ̂k off the imaginary axis and rightward to the locally rightmost

point λk+1. In the top left panel, we see that the initial contraction attempt overshoots the imaginary axis and thus it must be
damped in comparison with the Newton step of the GGO algorithm to ensure breakdown cannot occur. In the top right panel, we
see that the initial contraction attempt falls short of reaching the imaginary axis and thus hybrid expansion-contraction can take
an accelerated step compared with the Newton step taken by the GGO algorithm, that is, Re(λHEC

k+1) < Re(λGGO
k+1). In the bottom

row, the plots depict h(ε) := Re(λ(ε)), along with its root ε̃, corresponding to the two spectral value set plots in the complex
plane immediately above. The solid curve is h(ε), the root εN

k of the tangent line to h(ε) at εk is the Newton step of the GGO
algorithm while the root ε̂k of the dashed curve representing guk vk (ε) = Re(λuk vk (ε)), which is also tangent to h(ε) at εk , is the
HEC contraction step. While the positive damping example on the left depicts a scenario where εN

k < ε̃ holds since Re(λGGO
k+1) < 0,

note that this is not always the case. It can also happen that λN
k is in the left half-plane while λGGO

k+1 is in the right half-plane; in
this case, HEC will still positively damp the Newton step of the GGO algorithm but it will then follow that ε̃ < εN

k < ε̂k holds.

contraction phase of hybrid expansion–contraction is actually scaling the Newton step of the GGO
algorithm either by damping it sufficiently to avoid the potential breakdown that might occur if εN

k
were accepted or, alternatively, by enlarging the step size when possible. In fact, by finding ε̂k such that
α(Mukvk (ε̂k)) = 0, we see that the contraction phase is either damping the step εN

k the minimal amount

998

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

HYBRID EXPANSION–CONTRACTION

when α(Muv(ε
N
k)) < 0 or increasing it the maximal amount when α(Muv(ε

N
k)) > 0, subject to guarantee-

ing that breakdown cannot occur. In the bottom row of Fig. 4, we depict the differences between the
Newton step of the GGO algorithm and the damped solution used by HEC for the two examples in the
top row.

We now establish that the damping mechanism just described does not impede the quadratic con-
vergence rate of the GGO algorithm, that is, the HEC method is also quadratically convergent, under
assumptions that generally seem to hold in practice.

Theorem 4.4 Using the notation established in Theorem 4.3, suppose that Algorithm HEC has a unique
cluster point λ̃, with the simplicity condition holding at λ̃ with respect to ε̃. Let ũ and ṽ respectively
denote the right and left singular vectors corresponding to the largest singular value ε̃−1 of G(λ̃), so
that λ̃ is an eigenvalue of M (ε̃ũṽ∗), and assume that λ̃ is the rightmost (or outermost) eigenvalue of
M (ε̃ũṽ∗), so that gũṽ(ε̃) = 0. Finally assume that for all k � K, the points λk generated by Algorithm
HEC lie on a twice continuously differentiable path of locally rightmost (or locally outermost) points
λ(ε) of σε(A, B, C, D), defined on [ε̃, εK], with λk = λ(εk) for all k � K, converging to λ(ε̃) = λ̃. Then
the sequence εk converges to ε̃ quadratically.

Proof. Since the simplicity condition holds at λ̃ with respect to ε̃, by continuity it also holds at λk with
respect to εk for all k � K (increasing K if necessary). In what follows, assume that k � K.

Define the function h : [ε̃, εK] → R by h(ε) = Re(λ(ε)) in the continuous-time case or h(ε) = |λ(ε)|
in the discrete-time case. The function h is the same as g defined in (3.1) if λ(ε) is a path of rightmost
or outermost points of σε(A, B, C, D), not just locally rightmost or outermost. Note that h(ε̃) = 0 by
Theorem 4.3 and that h is monotonically increasing with respect to ε.

The key to proving the result is that, by Lemma 5.2 combined with Remark 5.3, the functions h and
gukvk and their derivatives both coincide at εk , so the Newton steps for h and gukvk are the same, namely

εN
k := εk − h(εk)

h′(εk)
= εk − gukvk (εk)

g′
ukvk

(εk)
. (4.3)

The GGO algorithm would set εk+1 := εN
k , so that quadratic convergence follows immediately from

the usual analysis of Newton’s method. However, Algorithm HEC sets εk+1 := ε̂k , where gukvk (ε̂k) = 0.
Applying Taylor’s theorem to h and to gukvk separately (see Remark 5.4), we have

0 = h(ε̃) = h(εk) + h′(εk)(ε̃ − εk) + 1
2 h′′(ξk)(ε̃ − εk)

2

for some ξk ∈ [ε̃, εk] and

0 = gukvk (ε̂k) = gukvk (εk) + g′
ukvk

(εk)(ε̂k − εk) + 1
2 g′′

ukvk
(ηk)(ε̂k − εk)

2

for some ηk ∈ [ε̂k , εk]. Dividing these equations by the derivative factors, subtracting the first from the
second and using (4.3) along with εk+1 = ε̂k , we obtain

εk+1 − ε̃ = ck(ε̃ − εk)
2 + dk(εk+1 − εk)

2 (4.4)

where

ck = h′′(ξk)

2 h′(εk)
, dk = − g′′

ukvk
(ηk)

2g′
ukvk

(εk)
.

999

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

T. MITCHELL AND M. L. OVERTON

So, to establish quadratic convergence, we need only to bound εk+1 − εk in terms of ε̃ − εk . This is done
by again writing out Taylor expansions for h and gukvk , but with one fewer term:

0 = h(ε̃) = h(εk) + h′(ζk)(ε̃ − εk)

for some ζk ∈ [ε̃, εk] and

0 = gukvk (ε̂k) = gukvk (εk) + g′
ukvk

(τk)(ε̂k − εk)

for some τk ∈ [ε̂k , εk]. Since h(εk) = gukvk (εk) and εk+1 = ε̂k , it follows that

εk+1 − εk

ε̃ − εk
= h′(ζk)

g′
ukvk

(τk)

which converges to 1 as k → ∞ since h′(ζk) and g′
ukvk

(εk) both converge to the positive number h′(ε̃).
So, quadratic convergence follows from (4.4), as ck and dk both converge as k → ∞. �

As we report in Section 8, we typically observe quadratic convergence in our experimental
results.

4.3 Contracting early

Since SVSAR’s slow convergence in the expansion phase is potentially expensive, we consider here
whether we can terminate SVSAR early with the hope of reducing the overall number of eigentriples
that need to be computed. With the Newton-bisection outer iteration of the GGO algorithm, this would
be risky, as terminating SVSAR early when the current iterate is in the left half-plane (in the continuous-
time case) could make bound mismatch errors more likely. Furthermore, terminating SVSAR early
may degrade the quality of GGO’s Newton steps towards the imaginary axis due to loss of accuracy
in the corresponding derivative computation. However, under hybrid expansion–contraction, as long
as the expansion phase makes any progress into the right half-plane, the procedure can always begin
contracting again early, in lieu of incurring the full number of iterations for SVSAR to converge. We
propose terminating the expansion phase when the current step Re(λj+1) − Re(λj) falls below, say, 1%
of the maximum of such differences generated so far for the current value of εk . A benefit of this scheme
is that it is self-scaling, meaning that as hybrid expansion–contraction converges, the expansion phase
will be permitted to take smaller steps before switching back to the contraction phase; in other words,
this relative-step-size termination condition applied to the expansion phase has no effect in the limit
and as a consequence, the theoretical convergence rate of HEC must still be at least superlinear when
it is enabled (see Dembo et al., 1982 and Mitchell, 2014, Sections 3.1 and 3.2). The potential cost of
a handful of extra HEC iterations seems a small price to pay if it can dramatically reduce the number
of iterations incurred by the linearly converging SVSAR subroutine; we report on the benefits of this
optimization in Section 8.

4.4 A fast new method to find an initial upper bound

In order for the GGO algorithm to apply the outer Newton-bisection iteration, it must first find an upper
bound on ε� to initialize the bracket range necessary for bisection. One possibility would be to use a
value just slightly less than ‖D‖−1, as this is the supremum of all values of ε for which σε(A, B, C, D)

is well defined, but this would invite numerical difficulties. Another, used in Guglielmi et al. (2013), is

1000

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

HYBRID EXPANSION–CONTRACTION

to first calculate an initial ε0 along with vectors u0 and v0, and then call SVSAR to expand rightward or
outward as far as possible using ε = ε0. If the final eigenvalue returned by SVSAR is still in the stability
region, then this method increases ε0 via εk = min(2εk−1, 0.5(εk−1 + ‖D‖−1)) and again calls SVSAR.
Unfortunately, this precomputation phase to initialize the bracket range that provides an upper bound to
ε� can be very expensive as SVSAR’s mere linear convergence may be incurred multiple times before
a large enough value of ε is found.

On the other hand, given εub � ε� and unit vectors u0 ∈ C
p and v0 ∈ C

m as input, hybrid expansion–
contraction can be initialized from the corresponding point λ0 ∈ σεub(A, B, C, D), provided that λ0 is
outside the stability region and λ0 is either a rightmost or outermost eigenvalue of M (εubu0v∗

0) for
the continuous- or discrete-time cases, respectively; there is no requirement that the initial point λ0

additionally be a locally rightmost or outermost point of σεub(A, B, C, D). To that end, a more efficient
procedure for finding a suitable upper bound to initialize Algorithm HEC is as follows.

Algorithm Fast Upper Bound Input: ε ∈ R
++ with ε‖D‖ < 1 and unit-norm vectors u and v.

While guv(ε) < 0,

(1) set

εnew := min

(
max

(
ε, ε − 2

guv(ε)

g′
uv(ε)

)
,

1

2
(ε + ‖D‖−1)

)
,

that is, double the Newton step for guv(ε), subject to ensuring that εnew is at least ε and is not too
close to the maximal value allowed for ε;

(2) if guv(εnew) > guv(ε), set ε := εnew;

(3) else if g′
uv(ε) > 0 holds, do a line search to find ε̂new ∈ (ε, εnew) such that guv(ε̂new) > guv(ε) holds,

and set ε := ε̂new;

(4) if guv(ε) � 0, break;

(5) update vectors u and v via a single step of SVSAR.

For more details, see Mitchell (2014, Procedure 6, p. 55).
The benefit of this new strategy is that at no point do we incur SVSAR’s linear convergence and

by attempting to increase the perturbation level ε before each update to the perturbation vectors, we
can expect that every SVSAR update step will typically be quite large as it will generally be updat-
ing from a point in the interior of the spectral value set for that perturbation level. However, one
possible concern is whether this compromises the likelihood of HEC converging to a globally opti-
mal value compared with the bound bracketing procedure used in the GGO algorithm. As a com-
promise, it may be beneficial to make a single call to SVSAR once an eigenvalue has been found
outside the stability region before commencing hybrid expansion–contraction, as discussed further in
Section 8.1.

5. Derivatives of the eigenvalue functions

In order to obtain the derivatives of the functions g(ε) and guv(ε) defined in (3.1) and (4.2), we first
need to define appropriate normalization for the relevant eigenvectors.

1001

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

T. MITCHELL AND M. L. OVERTON

Definition 5.1 A complex number λ and vectors x, y ∈ C
n comprise an RP(z)-compatible eigentriple

(λ, x, y) of a matrix W ∈ C
n×n if

(1) λ is a simple eigenvalue of W and

(2) x and y are, respectively, corresponding right and left eigenvectors that satisfy ‖x‖ = ‖y‖ = 1 and
y∗x is a positive real multiple of z ∈ C.

When the argument z is omitted, it is understood to be 1, so that y∗x is real and positive.

Let λ(ε) denote a rightmost (continuous-time case) or outermost (discrete-time case) point of
σε(A, B, C, D), with ‖G(λ)‖ = ε−1 and corresponding singular vectors u(ε) and v(ε), so that λ(ε) is
an eigenvalue of M (εu(ε)v(ε)∗) by Lemma 2.2. Define x(ε), y(ε) so that (λ(ε), x(ε), y(ε)) form an RP-
compatible eigentriple (continuous-time case) or RP(λ̄(ε))-compatible eigentriple (discrete-time case).
The derivative of g(ε) defined in (3.1), or equivalently of Re(λ(ε)) (continous-time case) or |λ(ε)|
(discrete-time case), was derived in Guglielmi et al. (2013, Section 4) under assumptions that ensure
that λ(ε) is well defined and continuously differentiable in a neighborhood of some ε̌, namely, that the
simplicity condition of Definition 2.3 holds at λ(ε) with respect to ε and that λ(ε̌) is the unique right-
most or outermost point of σε̌(A, B, C, D) (the unique one in the closed upper half-plane if A, B, C, D are
all real). Letting x̌ = x(ε̌), y̌ = y(ε̌), ǔ = u(ε̌), v̌ = v(ε̌), the derivative of g is given by3

g′(ε)
∣∣
ε=ε̌

=
⎧⎨
⎩

(β̄γ y̌∗x̌)−1 (continuous-time case),

(β̄γ |y̌∗x̌|)−1 (discrete-time case),
(5.1)

where, via Guglielmi et al. (2013, Equations (3.9) and (3.12)),

β = 1 − ε̌ǔ∗D∗v̌

ǔ∗B∗y̌
and γ = 1 − ε̌v̌∗Dǔ

v̌∗Cx̌
. (5.2)

Furthermore, the product β̄γ is real and positive by Guglielmi et al. (2013, Equation (3.8)), so the
derivative is real and positive.

To obtain the derivative of guv(ε) defined in (4.2), where the vectors u and v defining guv are arbi-
trary fixed vectors, we first find the derivative of the matrix family Muv(ε) defined in (4.1) with respect
to ε by the quotient rule:

M ′
uv := M ′

uv(ε)
∣∣
ε=ε̌

= B

(
uv∗(1 − ε̌v∗Du) + ε̌uv∗(v∗Du)

(1 − ε̌v∗Du)2

)
C = Buv∗C

(1 − ε̌v∗Du)2
. (5.3)

Let (λuv(ε), xuv(ε), yuv(ε)) be an RP-compatible eigentriple (continuous-time case) or RP(λ̄uv(ε))-
compatible eigentriple (discrete-time case)4 of (4.1), where λuv(ε) is a rightmost or outermost eigen-
value of Muv(ε) which is assumed to be simple. We have from standard first-order perturbation theory

3 Actually, in Guglielmi et al. (2013), β appears unconjugated, but this is because it is assumed that u and v have been
normalized so that β, γ ∈ R

++; see Guglielmi et al. (2013, pp. 721–2). We also note that in the proof of Theorem 3.2 and the
statement of Guglielmi et al. (2013, Corollary 4.2), the scalings of x and y were incorrect: in the proof of Theorem 3.2, x and y
should be scaled by 1/β and 1/γ respectively (instead of β and γ), and in the statement of Corollary 4.2, x and y should be scaled
by β and γ respectively (instead of 1/β and 1/γ).

4 The next equation does not depend on RP-compatibility, but we will exploit this property in Lemma 5.2.

1002

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

HYBRID EXPANSION–CONTRACTION

(Horn & Johnson, 1990, Theorem 6.3.12), writing x̌uv = xuv(ε̌), y̌uv = yuv(ε̌), that

λ′
uv := λ′

uv(ε)
∣∣
ε=ε̌

= y̌∗
uvM ′

uvx̌uv

y̌∗
uvx̌uv

, (5.4)

so the derivative of guv(ε) is given by

g′
uv(ε)

∣∣
ε=ε̌

=
⎧⎨
⎩

Re(λ′
uv) (continuous-time case),

Re(τλ′
uv) (discrete-time case),

(5.5)

where τ = λ̄uv(ε̌)/|λuv(ε̌)|.
In fact, as the next lemma shows, as long as guv is defined with u = ǔ ≡ u(ε̌), v = v̌ ≡ v(ε̌), so that

λuv(ε̌), the rightmost (or outermost) eigenvalue of M (ε̌uv∗), and λ(ε̌), the rightmost (or outermost) point
of σε̌(A, B, C, D), coincide, then their derivatives at ε̌ also coincide.

Lemma 5.2 Using the notation established above, if u = ǔ and v = v̌, then the derivatives given in (5.1)
and (5.5) are equivalent.

Proof. Since the RP-compatibility conditions define right and left eigenvectors uniquely up to the same
unimodular scalar, we can write x = x̌ = eiθ x̌uv, y = y̌ = eiθ y̌uv. Using (5.3) and (5.4) and then substituting
in (5.2), we see that

λ′
uv = (y∗Bu)

(1 − ε̌v∗Du)

(v∗Cx)

(1 − ε̌v∗Du)

1

y∗x
= 1

β̄γ y∗x
.

The product β̄γ is real and positive by Guglielmi et al. (2013, Equation (3.8)). The result follows
because y∗x is real and positive in the continuous-time case and a positive real multiple of τ in the
discrete-time case. �

Remark 5.3 Although not explicitly stated in Guglielmi et al. (2013), if λ(ε) is only a locally rightmost
or outermost point of σε(A, B, C, D), and we define h(ε) to be Re(λ(ε)) or |λ(ε)|, respectively, then,
under assumptions ensuring that λ(ε) is well defined and continuously differentiable near ε̌, the right-
hand side of (5.1) still provides the derivative of h(ε) at ε = ε̌. Furthermore, when setting u = ǔ, v = v̌,
as long as λuv(ε̌) coincides with λ(ε̌), Lemma 5.2 still holds when h is substituted for g.

It is worth stressing that the equivalence in Lemma 5.2 is applicable only at a point λ(ε̌) ∈
σε̌(A, B, C, D) that satisfies the first-order optimality condition of Lemma 2.11 or 2.13. Since the SVSAR
algorithm will not typically converge exactly to such a point, the derivative (5.1) computed by the GGO
algorithm may suffer some loss of precision with respect to the true value. On the other hand, the deriva-
tives (5.5) used in hybrid expansion–contraction are valid at any ε̌ ∈ [0, εk], where εk is the kth iterate of
Algorithm HEC, regardless of where λuv(ε̌) lies in σεk (A, B, C, D). Note also that the property that λ′

uv
or τλ′

uv is real, which was exploited in the proof of Lemma 5.2, generally holds only at points satisfying
the first-order optimality condition.

Remark 5.4 Because of the simplicity condition, both g (or h) and guv are twice continuously dif-
ferentiable at ε = ε̌, although the second derivatives do not generally coincide. The second derivative
of g can be obtained by extending Guglielmi et al. (2013, Theorem 4.1), while the second derivative
of guv can be determined from well-known results for second derivatives of eigenvalues (Lancaster &
Tismenetsky, 1985, Theorem 1, p. 396).

1003

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

T. MITCHELL AND M. L. OVERTON

6. Improving the SVSAR subroutine

Two potential downsides of using the SVSAR subroutine, either in the original GGO algorithm or in
hybrid expansion–contraction, are an assumption stated in Guglielmi et al. (2013) that m, p
 n must
hold for SVSAR to be efficient, and its slow linear rate of convergence. We begin with the former.

At every iteration of SVSAR, the following two linear systems must be solved:

Φpbj = B∗yj and Φmcj = Cxj, (6.1)

where xj and yj are the right and left computed eigenvectors, respectively, at the jth iteration and

Φp = (Ip − ε2D∗D) and Φm = (Im − ε2DD∗).

Here, for clarity, we have included subscripts on the identity matrices to indicate their dimensions.
Hence, the assumption that m, p
 n to ensure that these two linear systems can be solved quickly.
However, by the Sherman–Morrison–Woodbury formula (Golub & Van Loan, 1983), we observe the
following equivalence:

Φ−1
p = (Ip − ε2D∗D)−1 = Ip + ε2D∗(Im − ε2DD∗)−1D = Ip + ε2D∗Φ−1

m D

and similarly

Φ−1
m = (Im − ε2DD∗)−1 = Im + ε2D(Ip − ε2D∗D)−1D∗ = Im + ε2DΦ−1

p D∗.

Thus, solving both linear systems of (6.1) may be done by creating only a single Cholesky factorization
of whichever has smaller dimension, say Φp = LL∗, and then, using MATLAB notation, performing the
two pairs of backsolves as follows:

Φpb = B∗yj �⇒ b = L∗\(L\(B∗yj)),

Φmc = Cxj �⇒ c = Cxj + ε2D(L∗\(L\(D∗(Cxj))).

We may thus relax the condition on SVSAR’s viability to require only that min(p, m) is small, while
max(p, m) is free to be on the order of n. If D is given as a rank-k outer product, we may perform
a similar procedure using the Sherman–Morrison–Woodbury formula to solve both systems of (6.1)
where the dominating cost is performing only two LU factorizations of two small k × k matrices. On
the other hand, if D is not given explicitly (since if it is large, an explicit form may be dense), we
can instead use a warm-starting strategy to at least provide the conjugate gradient method with a good
starting vector for each solve. See Mitchell (2014, Section 4.1) for a more detailed discussion.

Regarding the issue of SVSAR’s slow convergence, hybrid expansion–contraction’s ability to safely
contract early, as discussed in Section 4.3, often significantly reduces the total number of SVSAR iter-
ations incurred. However, this is not a panacea, so we also consider accelerating SVSAR directly.

For the special case of B = I, C = I and D = 0, a superlinearly converging subspace acceleration
method for computing the ε-pseudospectral abscissa was presented in Kressner & Vandereycken (2014)
and, in practice, the authors observe dramatically faster performance compared with the algorithm of
Guglielmi & Overton (2011). However, the subspace-accelerated algorithm involves computing the
smallest singular value of A − μkI for each μk ∈ C that it produces per iteration, which may some-
times be costly, and furthermore, the technique seems difficult to extend to the structured perturbations

1004

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

HYBRID EXPANSION–CONTRACTION

0.4645 0.465 0.4655 0.466 0.4665 0.467 0.4675 0.468 0.4685 0.469 0.4695

0

0.02

0.04

0.06

0.08

0.1

0.12

−2 −1.5 −1 −0.5 0 0.5 1 1.5

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

Fig. 5. Left: example ROC3 (continuous time). Right: example ROC5 (discrete time). Each panel depicts a region of the spectral
value set boundary of each problem for perturbation level ε = 10−2. The iterates of SVSAR without vector extrapolation enabled
are plotted as closely spaced ×’s while the iterates of SVSAR with vector extrapolation enabled are plotted on top connected by
dashed lines. For each panel, the final point that both variants converge to is indicated by the solid circle.

required for spectral value sets. So, we instead consider an alternative vector extrapolation-based tech-
nique which circumvents both problems.

The idea is to exploit vector extrapolation methods such as Graves-Morris (1994), Jbilou & Sadok
(2000) and Smith et al. (1987) to the SVSAR iterates, but we cannot apply them directly to the vectors
uj and vj, because these are well defined only up to a scalar and hence generally do not converge. How-
ever, the outer product uj(vj)∗ defining each rank-1 perturbation is unique and is generally convergent.
Explicitly extrapolating the entire rank-1 matrix would be far too costly, so instead we extrapolate it
implicitly by selecting a row and column of the rank-1 matrix to extrapolate. From the vector sequences
of uj and vj given by SVSAR, we may form two sequences corresponding to how a single row and
column of the rank-1 perturbation matrices evolve and then apply vector extrapolation to those two
sequences. Using the extrapolated row and column, we then recover two vectors that have an outer
product which recovers the extrapolated row and column for the rank-1 matrix. As these two recovered
vectors will have arbitrary normalization, we must normalize these two vectors to have unit norm as a
final step. Provided that the extrapolated perturbation indeed does provide progress, we then continue
SVSAR from that perturbation and attempt a subsequent extrapolation after some prescribed number of
iterations. Otherwise, the extrapolation perturbation is discarded and SVSAR continues normally, until
another extrapolation opportunity is attempted. We note that it is often better to discard the initial few
iterates of SVSAR before attempting extrapolation since those steps are typically quite large and can
thus yield poor extrapolations.

For computing the vector extrapolations, we use the minimum polynomial extrapolation method of
Cabay & Jackson (1976), whose main cost is solving an over-determined linear least squares problem.
Extrapolating a row and column from k implicitly formed rank-1 matrices requires O((p + m)k2) flops,
and as k will typically be small, such as 5, the method can scale to problems where D has large dimen-
sions as well as the special pseudospectral case when B = I, C = I and D = 0 and uj, vj ∈ C

n. In Fig. 5,
we see that the vector extrapolation technique on sets of five vectors at a time substantially accelerates
SVSAR, reducing the number of iterations from 136 to 18 on the continuous-time problem ROC3 and
from 548 to 28 on the discrete-time problem ROC5. For more details, see Mitchell (2014, Section 4.2).

1005

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

T. MITCHELL AND M. L. OVERTON

7. Implementation

We have implemented our hybrid expansion–contraction algorithm and initial upper bounding pro-
cedure from scratch in a MATLAB code called getStabRadBound (get stability radius bound).5

Though we could have directly modified the SVSAR subroutine from the implementation of the
GGO algorithm, hinfnorm version 1.02,6 we have instead implemented an entirely new version of
SVSAR designed around supporting numerous improvements and efficient integration into the hybrid
expansion–contraction iteration. Our implementation of SVSAR not only efficiently scales to problems
with large-dimensional D matrices and supports acceleration via our vector extrapolation technique but
also includes the ability to store the state of all relevant computations so that they can be reloaded at
will, without needing to either recompute them or manually manage saving and reloading them all. This
checkpointing feature is particular useful for efficient hand-off between the expansion and contraction
phases.

Our implementation of HEC minimizes the number of matrix–vector products required, most
notably by precomputing Buj and (vj)∗C at each step and then utilizing the resulting vectors in the
function that multiplies a vector by M (εuj(vj)∗) (since forming it explicitly would cause fill-in). Thus,
to compute an eigenvalue of M (εuj(vj)∗) with an iterative sparse eigensolver such as the MATLAB
function eigs, multiple matrix–vector products are needed only with A, approximately one per iter-
ation of the implicitly restarted Arnoldi method. In this way, the number of matrix–vector products
involving B, C and D is limited to only about double the total number of eigentriples computed by the
algorithm, rather than being the same order as the number of matrix–vector products done with A. This
reduction in matrix–vector products should provide an additional tangible benefit for high-dimensional
problems where p, m are large and accordingly, our hybrid expansion–contraction code supports A, B, C
and D to each be given as function handles.

Finally, as HEC usually generates a converging sequence of matrices, our implementation also sup-
ports the option of recycling the previous right and left eigenvectors corresponding to the rightmost (or
outermost) eigenvalue to potentially warm-start eigs for the next computed eigentriple. Alternatively,
one may also choose to use the average of all the eigenvectors returned by eigs as the initial vector
for the next eigenproblem to solve (done for the right and left eigenvectors separately). Either option
can potentially help reduce the number of iterations required in the implicitly restarted Arnoldi method
used by eigs.

As a result of the additional complexity of all these configurable features, we have elected to imple-
ment the new algorithm using an object-oriented architecture. However, we have facilitated this not by
actually using true classes but instead via liberal use of the nested function feature in MATLAB, with
the hope that the MATLAB code interpretation overhead would be lower with this approach than using
full-blown objects, though we have not done a comparison. In any case, we thus expect the interpre-
tation speed of getStabRadBound to be slower than that of hinfnorm, but this difference should
have a negligible effect on large-scale problems.

7.1 Tolerances

We now describe the main tolerance criteria necessary to realize a practical implementation of hybrid
expansion–contraction, starting with the continuous-time case. For the SVSAR expansion phase, we set

5 The getStabRadBound code is publicly available from http://www.cims.nyu.edu/∼tmitchell.
6 hinfnorm (H-infinity norm approximation). Available at http://www.cims.nyu.edu/∼mert/software/hinfinity.html.

Accessed 23 October 2014.

1006

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

http://www.cims.nyu.edu/~tmitchell
http://www.cims.nyu.edu/~mert/software/hinfinity.html

HYBRID EXPANSION–CONTRACTION

it to terminate if Re(λj) − Re(λj−1) < τuv|Re(λj)|, for some small user-provided tolerance τuv ∈ R
++.

For the Newton-bisection contraction phase, since hybrid expansion–contraction requires all iterates
to remain strictly in the right half-plane, finding the root of α(Muv(·)) to some tolerance is potentially
problematic since it could result in a solution just slightly in the left half-plane. To address this, we
instead have the Newton-bisection routine find the root ε̂k of α(Muv(·)) − 0.5τε for some small user-
provided tolerance τε ∈ R

++ and have it terminate when |α(Muv(ε̂k)) − 0.5τε| < 0.5τε. By doing so,
we ensure a contracted value ε̂k such that 0 < α(Muv(ε̂k)) < τε. Furthermore, we also set the Newton-
bisection iteration to terminate the contraction process if ε̂k < τεεk and α(Muv(ε̂k)) > 0 are both satisfied.
Finally, the contraction routine keeps track of the most contracted value of ε̂k such that α(Muv(ε̂k)) > 0
is satisfied and will return that best encountered value of ε̂k . In the case that all the subsequent iterates
in the Newton-bisection iteration are in the left half-plane though possibly closer to the imaginary axis,
hybrid expansion–contraction can at least continue with some amount of contraction while remaining in
the right half-plane, even if its termination tolerances were not satisfied. These requirements (in addition
to the optimizations discussed above) necessitated that we implement our own custom Newton-bisection
code for getStabRadBound.

Algorithm HEC must be set to terminate once it can no longer make progress contracting and
expanding as measured by the tolerances τε and τuv, respectively. We terminate it when either both
phases fail to make any progress consecutively, in either order, or if for λk+1 produced by SVSAR,
Re(λk+1) < τε + τuv holds. The latter condition is necessary since SVSAR will typically always at least
take a single step, assuming its line search does not fail. If we were to set the tolerance condition any
tighter, HEC might take a long sequence of alternating expansion–contraction steps where SVSAR is
able to take only a single step of exceedingly small step size less than τε while the contraction phases
fail to reduce εk any further.

The tolerance criteria for the discrete-time case are described analogously by replacing Re(λj) −
Re(λj−1) < τuv|Re(λj)| by |λj| − |λj−1| < τuv|λj|, changing the condition α(·) > 0 to ρ(·) > 1, and
finally, changing Re(λk+1) < τε + τuv to |λk+1| < 1 + τε + τuv.

8. Numerical results

In order to evaluate HEC and its new initial upper bound procedure, we ran experiments on 33 small and
14 large-scale test problems used by Guglielmi et al. (2013) and present the results in the aggregate. We
used version 1.0 of getStabRadBound and version 1.02 of hinfnorm, the implementation of the
GGO algorithm. All experiments were done using MATLAB R2014a running on a single-user desktop
with Ubuntu 14.04 (64-bit) and an Intel i7-3770K CPU with 8 GB of RAM.7

For getStabRadBound, we used τε = 10−10 and τuv = 10−12 for the termination tolerances.
Correspondingly for hinfnorm, we reused τε for the tolerance for rtsafe (the Newton-bisection
code used by hinfnorm) and τuv for hinfnorm’s implementation of SVSAR. We allowed
getStabRadBound to take a maximum of 100 iterations to find an upper bound using the method
of Section 4.4 and similarly allowed up to a maximum of 100 HEC iterations. As hinfnorm does not
provide a user option to individually set maximum iteration limits for the upper bound and Newton-
bisection phases separately, we set its maximum iteration limit to 200. Both getStabRadBound and

7 We discarded the results from a 34th small-scale problem (ROC2) as hinfnorm abnormally terminated mid-computation
due to eig crashing, which is a known but not commonly encountered platform-specific bug. Though we verified that hinfnorm
ran successfully on ROC2 using a Mac, the timings would not have been comparable with the data collected using the Linux
machine.

1007

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

T. MITCHELL AND M. L. OVERTON

hinfnorm were set such that their respective versions of SVSAR could take up to 1000 iterations per
call while the Newton-bisection contraction phase of HEC was allowed up to 10 iterations per call.

Remark 8.1 The rtsafe code used by hinfnorm to perform the Newton-bisection iteration makes
no check upon how close the function value is to zero. Instead, it merely terminates once progress in
εk has slowed but this is no guarantee that hinfnorm has converged to a point on or acceptably near
the imaginary axis. As a consequence, hinfnorm may terminate at a point significantly farther away
from the imaginary axis and we observe this in practice on some problems. For evaluative purposes, it
is not so problematic if hinfnorm terminates while at a locally rightmost point in the right half-plane,
since doing so will simply lower the reported approximation to ‖G‖∞ and thus its results reflect that
it has not converged in these cases. If it instead terminates at a locally rightmost point that is in the
left-plane to a significant degree, hinfnorm will incorrectly report a value of ‖G‖∞ that may in fact
be too large. Thus, we consider hinfnorm to have failed if its last locally rightmost point λk found
satisfies Re(λk) < −100τε (or |λk| < 1 − 100τε for the discrete-time problems).

Finally for SVSAR, after some experimentation with various-sized sets of the immediately pre-
ceding vector iterates to use for vector extrapolation, as well as different relative-step-size termination
tolerances for allowing early contraction as discussed in Section 4.3, we settled on using extrapolation
with the five previous vectors and a relative-step-size tolerance of 10−2, as these parameters seemed to
provide the best performance.

8.1 Upper bound method variants

In order to measure how efficient the method of Section 4.4 is for finding upper bounds compared with
the strategy employed by hinfnorm, we ran both methods on the small-scale problems and counted the
total number of computed eigentriples that each method required to compute their upper bounds for all
the problems in the test set. As we expected, our new upper bound method is indeed fast, requiring a total
of just 121 computed eigentriples to find all 33 upper bounds and furthermore, that number also includes
calculating the rightmost or outermost eigenvalue of A for each of those problems, which is not neces-
sary if the user initializes the routine with any acceptable nonzero perturbation Δ0 = ε0u0v∗

0. In contrast,
hinfnorm 1.02’s bounding phase described above required computing a total of 5606 eigentriples.
However, we noted that the new upper bound initialization occasionally resulted in HEC converging to
worse (lower) local maximizers compared with the maximizers HEC converged to when initialized by
hinfnorm’s bounding procedure. Consequently, before beginning HEC in getStabRadBound, we
first call the new upper bound method, which efficiently finds an upper bound εub � ε�, and follow it by
a single SVSAR call to then expand rightward (outward for the discrete-time case) as much as possible
in the εub-spectral value set via updating the perturbation vectors u and v. The benefits in doing so are
that we still avoid calling SVSAR more than once to find an upper bound to initialize HEC with, and this
strategy seems to retain the approximation quality of HEC when initialized with hinfnorm’s bounding
code. While it is not nearly as fast as the new upper bound method alone, the 2507 computed eigentriples
to compute the 33 upper bounds is still a significant reduction compared with hinfnorm’s 5606.

A possible insight as to why initializing HEC using only the result of the fast upper bound
procedure, without the subsequent single call to SVSAR, seems to cause convergence to an overall
greater number of worse (lower) local maximizers on the test set may be gleaned by examining the
panels of Fig. 2. Consider the top right panel where we see that the loss of a locally rightmost point of
the spectral value set for ε = 0.1 causes the GGO algorithm to break down. Now, suppose the initial
upper bound method has found a point in the upper right region of the spectral value set in the right

1008

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

HYBRID EXPANSION–CONTRACTION

half-plane for ε = 0.1, near where SVSAR begins its iteration. If SVSAR is called, then it is likely
that HEC will converge to the globally rightmost point on the imaginary axis for this problem, as
shown in the top right panel for the GGO algorithm. However, if the initial contraction phase is begun
immediately after the upper bound has been found then it seems very likely that HEC will instead
converge to the topmost, only locally rightmost, point on the imaginary axis of the spectral value for
some value ε̃ slightly less than 0.09, as we can see from the bottom left panel.

8.2 Small-scale evaluation

In order to numerically validate the approximations found by getStabRadBound, we consider
the number of these approximations computed over the entire test set which agree to specific levels
of precision with respect to the true value of the H∞ norm for each problem, as computed by the
MATLAB function getPeakGain. We consider these counts at multiple levels of precision since
getStabRadBound and hinfnorm may find only local maximizers in some cases. We compute
the relative differences of the approximations compared with the value computed by getPeakGain
given a tolerance of 10−10. For a precision level of 10−8, we count the number of approximations that
are either strictly greater than the value computed by getPeakGain or have a relative difference of
at most 10−8. We also tabulate counts for precision levels of 10−6 and 10−4. However, for the counts
for hinfnorm, we do not include any result that satisfies the failure-to-converge condition described
in Remark 8.1 (there are three such problems in the small-scale test set: ROC3, AC17 and AC6). We
note that getStabRadBound cannot fail in this way as long as it first finds an upper bound, which
it did successfully for all the problems. For the small-scale test set, all eigentriples were computed by
the MATLAB function eig (not eigs).

In the small-scale section of Table 1, we see that getStabRadBound is nearly 2.5 times faster
than hinfnorm on the entire test set and furthermore, getStabRadBound mostly finds good
approximations to ‖G‖∞. Enabling vector extrapolation in getStabRadBound shows a dramatic
reduction in the number of eigentriples calculated over the test set but because these are small-scale
problems, it does not fully translate to a correspondingly large reduction in total CPU time. Enabling
extrapolation also resulted in convergence to different local maximizers for a couple of problems.
Using the relative-step-size termination condition in SVSAR for the HEC phase also dramatically
reduces the number of computed eigentriples, allowing getStabRadBound to complete the test set
over 4.5 times faster than hinfnorm, while additionally enabling extrapolation increases the speed-up
factor to over 5. As there is a large amount of variability in the test set, we also provide average,
median and range data on the relative speed-up per problem with respect to the number of eigentriples
computed and with respect to the CPU running time in the small-scale section of Table 2. We see
that getStabRadBound with the relative-step-size termination option enabled is up to nearly 47
times faster (on CSE2) in terms of CPU time and when vector extrapolation is also enabled, we see
that speed-up per problem ranges from nearly twice as fast to almost 5 times as fast compared with
hinfnorm as reported by the median and average, respectively.

8.3 Large-scale matrices

We present analogous performance data in the large-scale sections of Tables 1 and 2 for the large-scale
test set, with the following notable exceptions. First, as we cannot tractably compute the true value
of ‖G‖∞ for these large-dimensional problems,8 we instead use the largest approximation computed

8 We tested getPeakGain and getStabRadBound using a limited set of medium-scale sparse problems to assert the
scaleability of our proposed method over getPeakGain. On the smallest of these problems, getPeakGain was at least an

1009

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

T. MITCHELL AND M. L. OVERTON

Table 1 NB denotes the hinfnorm code while HEC denotes the getStabRadBound code,
#ET is the number of computed eigentriples, the variable E denotes that vector extrapolation is
enabled and RS denotes that the relative-step-size termination tolerance is enabled for SVSAR
with a value of 10−2. For the large-scale problems, V denotes that eigenvector recycling is
enabled such that the initial vector for eigs is set to the average of the eight requested eigen-
vectors computed by eigs for the previous computed eigentriple. The columns ‘# Rel diff to
best’ show the number of problems a given algorithm successfully converged on, to the three
varying degrees of precision, with respect to the best of the computed values for each prob-
lem; for the small-scale problems, the best computed value for each problem is the true value
obtained by getPeakGain. The variable S is the number of problems that a particular code
successfully converged on, solely according to the convergence failure criteria of Remark 8.1

getStabRadBound overall performance

Totals # Rel diff to best

Scale Alg + opts #ET sec 10−8 10−6 10−4 S

Small NB 32112 465.49 18 22 25 30
HEC 16665 199.99 21 25 29 33
HEC + E 9708 168.71 19 23 28 33
HEC + RS 10565 99.70 21 25 28 33
HEC + E, RS 6767 89.64 21 25 28 33

Large NB 4196 20920 11 11 11 13
HEC 2338 3756 9 10 12 14
HEC + V 2336 2362 10 11 13 14
HEC + E 636 1504 10 12 13 14
HEC + E, V 690 1110 10 11 13 14
HEC + RS 861 1046 9 10 11 14
HEC + RS, V 849 919 10 11 12 14
HEC + E, RS 700 960 9 10 11 14
HEC + E, RS, V 794 841 11 12 13 14

from all the methods for each problem as a surrogate to compute the relative differences used in tab-
ulating how many approximations for a given method agreed to a given level of precision with the
best of the results calculated. Second, we use eigs with its default options to compute the rightmost
or outermost eigentriples but with eight eigenvalues requested per call to eigs (done for the right
and left eigenvectors separately), to be consistent with the experiments in Guglielmi et al. (2013). We
also additionally evaluated both eigenvector recycling types that are optionally available in our code to
attempt to reduce the number of iterations eigs requires. Both seemed to have a beneficial effect with
respect to run-times on the large-scale test set but we report only the results for recycling the average of
the eight computed eigenvectors from the previous computed eigentriple, as it outperformed recycling
only the previously selected eigenvector. We note that hinfnorm fails on one problem in this test set
(skewlap3d), according to the criterion in Remark 8.1.

order of magnitude slower than getStabRadBound and this performance gap widened to over three orders of magnitude slower
in favour of getStabRadBound as the dimension of A increased. It is also worth noting that merely calling ss(A,B,C,D) to
form the state-space model for input to getPeakGain automatically converts sparse matrices to dense versions.

1010

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

HYBRID EXPANSION–CONTRACTION

Table 2 Average, median and range of per-problem speed-ups with respect to number of eigentriples
computed and the CPU time required for each problem. See Table 1 caption for definitions of HEC
options E, RS and V

Per-problem speed-ups of getStabRadBound relative to hinfnorm

No. of computed ET CPU time

Scale Opts Avg Med Range Avg Med Range

Small — 2.25 1.32 [0.16, 16.22] 1.20 0.72 [0.19, 5.47]
E 4.47 2.64 [0.21, 21.89] 2.27 1.13 [0.22, 11.71]
RS 9.19 3.12 [0.26, 169.93] 3.55 1.20 [0.30, 46.87]
E,RS 12.38 3.45 [0.26, 169.93] 4.71 1.71 [0.18, 45.41]

Large — 3.99 1.33 [0.54, 21.50] 8.80 1.62 [0.41, 57.28]
V 3.56 1.46 [0.51, 18.63] 11.48 2.09 [0.64, 64.86]
E 5.48 1.68 [0.65, 23.29] 9.30 1.72 [0.23, 64.80]
E,V 4.07 1.52 [0.50, 14.81] 13.92 2.20 [0.57, 78.51]
RS 4.94 1.89 [0.50, 25.41] 13.79 2.40 [0.53, 66.41]
RS,V 4.77 2.22 [0.50, 21.50] 15.24 2.55 [0.71, 82.43]
E,RS 5.42 2.21 [0.80, 25.41] 14.51 1.88 [0.52, 66.19]
E,RS,V 5.16 2.05 [0.50, 18.63] 15.77 2.56 [0.75, 75.31]

In the large-scale section of Table 1, as for the small-scale test set, we find overall that
getStabRadBound appears to be successfully converging to good local or possibly global maxi-
mizers. Furthermore, even without any options enabled, getStabRadBound completes the entire
test set 5.6 times faster than hinfnorm. Enabling eigenvector recycling results in a 14–59% speed
boost, depending on what other options are simultaneously enabled. In contrast to the small-scale
results, the substantial reduction in the number of computed eigentriples over the large-scale test set
achieved by enabling extrapolation is actually accompanied by an even larger reduction in total run-
ning time, resulting in an overall speed-up factor of 13.9 when compared with the total CPU time of
hinfnorm. Enabling eigenvector recycling on top of extrapolation further increases that CPU time
speed-up factor to 18.8, even though it actually also increased the number of computed eigentriples by
8.5%. Enabling just the relative-step-size termination feature provides an even greater speed-up factor
of 20.0 times faster, again despite an increase in the number of eigentriples computed compared with the
extrapolation variants. Simultaneously enabling extrapolation, relative-step-size termination and eigen-
vector recycling allows getStabRadBound to complete the large-scale test set 24.9 times faster than
hinfnorm. Though we do not report details and results here for replacing the backtracking bisection
strategy in SVSAR’s line search with cubic models, getStabRadBound also supports this option and
enabling it does in fact provide a modest performance boost. Compared with hinfnorm on the sparse
test set, enabling the cubic line search option results in an overall speed-up factor of 5.8 times faster
for getStabRadBound with no options enabled and 26.2 times faster for getStabRadBound with
extrapolation, relative-step-size termination and eigenvector recycling also all enabled.

Referring to the large-scale per-problem speed-up results in Table 2, we see that depending on the
problem, getStabRadBound with relative-step-size termination and eigenvector recycling enabled
can be over 82 times faster than hinfnorm (on skewlap3d in the discrete-time problem set). Judging
from the per-problem speed-up median values, getStabRadBound appears to generally be 2.5 times

1011

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

T. MITCHELL AND M. L. OVERTON

Table 3 Average, median and range of the number of iterations in the NB
(Newton-bisection) converging phase of hinfnorm and the HEC phase of
getStabRadBound across the small-scale test set and the large-scale test set

Per-problem convergence of HEC

Small scale Large scale

Avg Med Range Avg Med Range

NB iters 8.21 6.00 [4, 28] 5.79 5.00 [4, 12]
HEC iters 4.21 4.00 [2, 10] 2.50 2.00 [1, 4]
HEC + RS iters 5.36 5.00 [3, 14] 2.86 2.00 [1, 5]

faster than hinfnorm when all acceleration options are enabled and an order of magnitude faster as
reported by the average time per problem. On the problems where getStabRadBound is slower than
hinfnorm, even the most unfavourable of these typically demonstrates that the worst-case CPU time
difference between the two methods is less than a factor of 2 in favour of hinfnorm. Comparing the
individual approximations computed by getStabRadBound to the ones provided by hinfnorm, we
found that in the worst case, on the discrete-time version of skewlap3d, getStabRadBound only
agreed with hinfnorm’s better result to two digits. However, this was far from typical as the median
of the computed relative differences compared with the best approximation reported demonstrated that
getStabRadBound usually agreed to 11 digits with hinfnorm on the large-scale test set and fur-
thermore, for markov in the discrete-time case, getStabRadBound found an approximation three
times larger than the one found by hinfnorm.

8.4 Convergence rate of hybrid expansion–contraction

We now turn to empirically validating whether or not the quadratic convergence of hybrid expansion–
contraction claimed in Section 4.2 is realized in practice.

In Table 3, we report the average, median and range of per-problem HEC iterations taken until
convergence over the small- and large-scale test sets. On the small-scale problems, at worst HEC took
nine and ten iterations to converge on problems AC11 and AC6 but upon closer analysis, we observed
that getStabRadBound’s HEC phase in fact resolved the first eight digits of each approximation
within four iterations and the remaining iterations of HEC were due to τε and τuv being set too small.
We note that this is a limitation of double-precision hardware for problems that are exceptionally sen-
sitive to changes in ε. We also show the corresponding statistics for the Newton-bisection iteration of
hinfnorm for comparison and find that the HEC phase of getStabRadBound typically requires
even fewer iterations than hinfnorm’s Newton-bisection iteration, most likely due to HEC’s ability
to sometimes take even larger steps than that offered by the GGO algorithm in the negative dampening
case. One might argue that this is an unfair comparison because a single iteration of HEC comprises
both the contraction and the expansion phases while in contrast, the only work done in a single itera-
tion of GGO’s Newton-bisection method is the expansion. However, we have found that the contraction
phase is exceedingly efficient and reliable and that on average, it computes only three eigentriples
before converging to the imaginary axis or unit circle. Finally, we see from the third line of Table 3
that enabling getStabRadBound’s relative-step-size termination tolerance, which reduces our theo-
retical convergence rate analysis of HEC from quadratic to superlinear, actually increases the average

1012

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

HYBRID EXPANSION–CONTRACTION

number of HEC iterations only ever so slightly; this small extra cost is far outweighed by the resulting
overall large performance increase due to dramatically reducing of the number of SVSAR iterations
incurred.

9. Conclusion

In this paper, we have presented a fast new algorithm for approximating the H∞ norm that, under reason-
able assumptions, guarantees convergence to stationary points of the underlying optimization problem,
while in practice, it typically converges to local maximizers. Since the new algorithm is scaleable, an
interesting subject for future work will be to exploit it to develop methods for designing and optimiz-
ing fixed-order controllers for large-scale dynamical systems, as can currently be done for small-scale
systems using the open-source toolbox.9

Acknowledgement

We gratefully acknowledge the helpful comments of two anonymous referees.

Funding

National Science Foundation (DMS-1317205, in part).

References

Benner, P. & Voigt, M. (2014) A structured pseudospectral method for H∞-norm computation of large-scale
descriptor systems. Math. Control Signals Syst., 26, 303–338.

Boyd, S. & Balakrishnan, V. (1990) A regularity result for the singular values of a transfer matrix and a quadrat-
ically convergent algorithm for computing its L∞-norm. Syst. Control Lett., 15, 1–7.

Bruinsma, N. A. & Steinbuch, M. (1990) A fast algorithm to compute the H∞-norm of a transfer function matrix.
Syst. Control Lett., 14, 287–293.

Burke, J. V., Lewis, A. S. & Overton, M. L. (2003) Robust stability and a criss-cross algorithm for pseudospectra.
IMA J. Numer. Anal., 23, 359–375.

Cabay, S. & Jackson, L. W. (1976) A polynomial extrapolation method for finding limits and antilimits of vector
sequences. SIAM J. Numer. Anal., 13, 734–752.

Dembo, R. S., Eisenstat, S. C. & Steihaug, T. (1982) Inexact Newton methods. SIAM J. Numer. Anal., 19,
400–408.

Freitag, M. A., Spence, A. & Van Dooren, P. (2014) Calculating the H∞-norm using the implicit determinant
method. SIAM J. Matrix Anal. Appl., 35, 619–635.

Golub, G. H. & Van Loan, C. (1983) Matrix Computations. Baltimore: Johns Hopkins University Press.
Graves-Morris, P. R. (1994) A review of Padé methods for the acceleration of convergence of a sequence of

vectors. Appl. Numer. Math., 15, 153–174.
Guglielmi, N., Gürbüzbalaban, M. & Overton, M. L. (2013) Fast approximation of the H∞ norm via opti-

mization over spectral value sets. SIAM J. Matrix Anal. Applic., 34, 709–737.
Guglielmi, N. & Overton, M. L. (2011) Fast algorithms for the approximation of the pseudospectral abscissa

and pseudospectral radius of a matrix. SIAM J. Matrix Anal. Applic., 32, 1166–1192.
Hinrichsen, D. & Pritchard, A. J. (2005) Mathematical Systems Theory I: Modelling, State Space Analysis,

Stability and Robustness. Berlin, Heidelberg and New York: Springer.

9 HIFOO (H∞ fixed-order optimization). Available at http://www.cs.nyu.edu/overton/software/hifoo/. Accessed 23 October
2014.

1013

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

http://www.cs.nyu.edu/overton/software/hifoo/

T. MITCHELL AND M. L. OVERTON

Horn, R. A. & Johnson, C. R. (1990) Matrix Analysis. Cambridge: Cambridge University Press. Corrected reprint
of the 1985 original.

Jbilou, K. & Sadok, H. (2000) Vector extrapolation methods: applications and numerical comparison. J. Comput.
Appl. Math., 122, 149–165.

Karow, M. (2003) Geometry of spectral value sets. Ph.D. Thesis, Universität Bremen.
Kressner, D. & Vandereycken, B. (2014) Subspace methods for computing the pseudospectral abscissa and the

stability radius. SIAM J. Matrix Anal. Appl., 35, 292–313.
Lancaster, P. & Tismenetsky, M. (1985) The Theory of Matrices. New York and London: Academic Press.
Lehoucq, R. B. & Sorensen, D. C. (1996) Deflation techniques for an implicitly restarted Arnoldi iteration.

SIAM J. Matrix Anal. Appl., 17, 789–821.
Mengi, E. & Overton, M. L. (2005) Algorithms for the computation of the pseudospectral radius and the numer-

ical radius of a matrix. IMA J. Numer. Anal., 25, 648–669.
Mitchell, T. (2014) Robust and efficient methods for approximation and optimization of stability measures.

Ph.D. Thesis, New York University. Available at http://cs.nyu.edu/web/Research/Theses/mitchell_tim.pdf.
Accessed 23 October 2014.

Smith, D. A., Ford, W. F. & Sidi, A. (1987) Extrapolation methods for vector sequences. SIAM Rev., 29, 199–233.
Trefethen, L. N. & Embree, M. (2005) Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and

Operators. Princeton, New Jersey: Princeton University Press.
Van Loan, C. (1985) How near is a stable matrix to an unstable matrix? Linear Algebra and Its Role in Systems

Theory (Brunswick, Maine, 1984). Contemporary Mathematics, Vol. 47. Providence, RI: American Mathemat-
ical Society, pp. 465–478.

1014

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/3/985/1750903 by N
YU

 School of M
edicine Library user on 09 D

ecem
ber 2019

http://cs.nyu.edu/web/Research/Theses/mitchell_tim.pdf

	Introduction
	Spectral value sets and their relationship to the H norm
	Locally rightmost and outermost points of spectral value sets

	The algorithm of Guglielmi, Gürbüzbalaban and Overton
	Approximating the spectral value set abscissa and radius
	The breakdown case of the GGO algorithm

	Hybrid expansion--contraction: a breakdown-free algorithm
	Convergence of hybrid expansion--contraction
	Quadratic convergence rate of hybrid expansion--contraction
	Contracting early
	A fast new method to find an initial upper bound

	Derivatives of the eigenvalue functions
	Improving the SVSAR subroutine
	Implementation
	Tolerances

	Numerical results
	Upper bound method variants
	Small-scale evaluation
	Large-scale matrices
	Convergence rate of hybrid expansion--contraction

	Conclusion

