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AN EFFICIENT ALGORITHM FOR COMPUTING THE
GENERALIZED NULL SPACE DECOMPOSITION∗

NICOLA GUGLIELMI† , MICHAEL L. OVERTON‡ , AND G. W. STEWART§

Abstract. The generalized null space decomposition (GNSD) is a unitary reduction of a general
matrix A of order n to a block upper triangular form that reveals the structure of the Jordan blocks
of A corresponding to a zero eigenvalue. The reduction was introduced by Kublanovskaya. It was
extended first by Ruhe and then by Golub and Wilkinson, who based the reduction on the singular
value decomposition. Unfortunately, if A has large Jordan blocks, the complexity of these algorithms
can approach the order of n4. This paper presents an alternative algorithm, based on repeated
updates of a QR decomposition of A, that is guaranteed to be of order n3. Numerical experiments
confirm the stability of this algorithm, which turns out to produce essentially the same form as that
of Golub and Wilkinson. The effect of errors in A on the ability to recover the original structure is
investigated empirically. Several applications are discussed, including the computation of the Drazin
inverse.
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1. Introduction. The primary purpose of this paper is to present a new algo-
rithm for computing the following decomposition, which we call the generalized null
space decomposition (GNSD). Let A be a matrix of order n and let ν be the index
of A; i.e., the smallest integer j for which the null spaces N (Aj) and N (Aj+1) are
equal. Then there is a unitary matrix V such that

(1.1) V ∗AV = B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 B12 B13 · · · B1,ν−1 B1,ν B1,ν+1

0 0 B23 · · · B2,ν−1 B2,ν B2,ν+1

0 0 0 · · · B3,ν−1 B3,ν B3,ν+1

...
...

...
...

...
...

0 0 0 · · · 0 Bν−1,ν Bν−1,ν+1

0 0 0 · · · 0 0 Bν,ν+1

0 0 0 · · · 0 0 Bν+1,ν+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where we have the following:

(1.2)

1. The diagonal blocks of B are square.

2. The superdiagonal blocks B12, . . . , Bν−1,ν are of full column rank.

3. The block Bν+1,ν+1 is nonsingular (provided it is not of order 0).
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The importance of this decomposition lies in its relation to the Jordan blocks
corresponding to a zero eigenvalue of A, which we will call the zero Jordan blocks and
will denote by Jk(0), where k is the order of the block. Specifically, it can be shown
that if

V = (V1 V2 · · · Vν+1)

is partitioned conformally with B, then for j = 1, . . . , ν

(1.3) Vj = span(Vj) = span({x : Aj−1x �= 0 and Ajx = 0}).

(For a proof of this fact, see Appendix C.) Now, for j = 1, . . . , ν let μj be the order
of the jth diagonal block of B and let μν+1 = 0. Note that from the second item in
(1.2) it follows that μj ≥ μj+1. By inspecting the zero Jordan blocks of powers of A
it is easy to see that

(1.4) μj is the number of zero Jordan blocks of order ≥ j.

Hence,

μj − μj+1 is the number of zero Jordan blocks of order j.

Thus the dimensions of the diagonal blocks of the GNSD of A provide a complete
description of the zero Jordan blocks of A.

In the terminology of Jordan canonical forms the nonzero members of Vj (j ≤ ν)
are generalized eigenvectors of grade j. Since in this case the eigenvalue in question
is zero, we will call them null vectors of grade j and call Vj the generalized null space
of grade j. The union of these null spaces is simply called the generalized null space.

Given the above connections, it is not surprising that the GNSD arose in attempts
to compute the Jordan canonical form of a matrix. In 1966 Kublanovskaya [16]
introduced the decomposition, and variants appeared in papers by Ruhe [17] in 1970,
by Golub and Wilkinson [11] in 1976, and, together with accompanying software,
by Kågström and Ruhe [15]. The form given here is essentially the one given by
Golub and Wilkinson. Van Dooren [20] extended this work on the Jordan form to
the Kronecker canonical form for a matrix pencil, introducing the term “staircase
form” to indicate the resemblance of the transpose of the right-hand side of (1.1) to
a descending flight of stairs. For a survey on the subsequent history of “staircase
algorithms,” see [10, sect. 1.1]. In this paper we will drop the staircase nomenclature,
and refer to Ruhe’s and Golub and Wilkinson’s algorithms as the SVD algorithm
for computing the GNSD. For reasons that will become clear later, we will call our
algorithm the QR/update algorithm.

The GNSD can be computed as follows. Let B(1) = A. If B(1) is nonsingular, set

B = B(1) and V = I. If not, let V
(1)
1 be an orthonormal basis for N (B(1)) and let

V (1) = (V
(1)
1 V

(1)
2 ) be unitary. Then

(1.5) B(2) = V (1)∗B(1)V (1) =

(
0 B

(2)
12

0 B
(2)
22

)
.

If B
(2)
22 is nonsingular, the process ends with V = V (1) and B = B(2). Otherwise

the process is repeated recursively with the matrix B
(2)
22 , until there is nothing left
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to reduce. At all stages the orthogonal transformations are accumulated to form the
matrix V .1

All that is lacking to turn the above sketch into a working algorithm is a method

for determining bases for the null space of the matrices B
(k)
kk . Kublanovskaya used

a pivoted QR decomposition, while first Ruhe and then Golub and Wilkinson used
the more reliable singular value decomposition. Either alternative requires O(n3

k)

operations, where nk is the order of B
(k)
kk . Since the algorithm requires that ν such

decompositions be computed, if ν is small the process of obtaining null vectors is
O(n3). As ν approaches n, however, the work required approaches O(n4), which is
prohibitive for large n.2

The main contribution of this paper is to describe an O(n3) algorithm for com-
puting the GNSD. The basic idea is to deflate individual generalized null vectors one
at a time. The approximate null vectors are obtained from a QR factorization of
A by a process that goes under the rubric of condition estimation (see [14, Chap.
15]). The QR factorization is updated as the null vectors are deflated. All this is
described in the next section along with how the process can be implemented using
plane rotations. The process is numerically stable, in the sense that the computed B
satisfies V BV ∗ = A+E, where E is of the order of the rounding unit plus the errors
introduced by the use of approximate null vectors. The latter errors also occur with
the SVD algorithm.

A related precursor that also works with a QR factorization has been sketched
by Beelen and Van Dooren [3]. However, they use Tony Chan’s rank revealing QR
decomposition [5] to determine the generalized null spaces. Unfortunately, this algo-
rithm is, in theory, unreliable except for subspaces of small dimension. They then
deflate the subspace from the QR decomposition. Implementation is not discussed.

Two other O(n3) algorithms have appeared in the literature. The first is again
due to Golub and Wilkinson, and like the QR/update method it produces generalized
null vectors sequentially [11, sect. 11]. However, these vectors are not orthogonal and
may become nearly linearly dependent. The second algorithm, due to Anstreicher and
Rothblum [1], uses a variant of the Gauss–Jordan elimination to compute generalized
null vectors. The authors do not comment on the numerical aspects of their algorithm.
But there is no guarantee of the numerical independence of the vectors, and the Gauss–
Jordan algorithm itself has instabilities. (For more on the Gauss–Jordan algorithm,
see [14, pp. 273–277].)

Up to now we have ignored the problem of errors. In any approach to computing
the GNSD that involves errors, the user must furnish a tolerance to determine when a
computed singular value is to be considered zero or when an approximate null vector
is satisfactory. The result is to introduce errors into the decomposition that may be as
large as the order of the tolerance. Nonetheless, the computed GNSD can be shown
to be the exact decomposition of a perturbation of A whose norm can be explicitly
computed.

Unfortunately, this property is not as useful as it appears. For if A is perturbed

1This sketch does not establish item 2 of (1.2). However, it is easily seen that if B12 in (1.1) is
not of full column rank, then B(1) has an additional null vector, contradicting the fact that a full
complement of null vectors was used in the first step. Similar considerations hold for the remaining
Bk,k+1.

2The cost accumulating the orthogonal transformations may also be prohibitive if performed

naively. However, if the V
(k)
k are expressed as products of Householder transformations, the cost is

manageable.
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by rounding error, the result will, in general, be nonsingular and ν will be zero. Thus
the proper question to ask about any algorithm for computing a GNSD is whether
it can recover the generalized null space structure from the perturbed matrix. There
is, in fact, good reason to believe that no algorithm can do so in all cases. Hence, in
section 3, we introduce a class of test matrices—essentially matrices obtained from a
Jordan form by a similarity transformation of known condition number κ. For this
class there are reasonable choices for the tolerance mentioned above. However, we
were surprised to find that the ability to recover the original Jordan structure may
depend on the square of the condition number of the transformation. This κ2 effect
limits the problems we can solve, but at least some tractable problems remain.

The numerical experiments of section 4 confirm the numerical stability of the
QR/update algorithm. They also show that the QR/update and SVD algorithms
compute the same decomposition, even when they fail to recover the original Jordan
structure. Unfortunately, they also confirm the reality of the κ2 effect. A summary
of the paper is given in section 5.

Appendix A shows how the GNSD of a matrixA can be used to compute its Drazin
generalized inverse. The advantage of this algorithm is that, aside from orthogonal
transformations, it consists of solving a single Sylvester equation, which can be done
efficiently using the output of the QR/update algorithm. Appendix A also provides
a new derivation of a formula of Hartwig relating the Drazin inverse to an arbitrary
generalized inverse. Appendix B describes two applications in which we have found
the GNSD to be useful. Finally, in Appendix C we establish the characterization
(1.3).

Throughout this paper ‖·‖ will denote the Euclidean vector norm and the spectral
matrix norm.

2. The QR/update algorithm. The algorithm proposed in this paper begins
with a QR factorization A = B(1) = Q(1)R(1) and deflates null vectors of R(1) to

produce a QR factorization B
(2)
22 = Q(2)R(2), where, up to a unitary similarity, B

(2)
22 is

the matrix appearing in (1.5). The process continues by producing successive matrices

B
(k)
kk until after ν steps B

(ν+1)
ν+1,ν+1 has no null vectors.

We will now describe the first stage of this algorithm in detail. In this description
we will assume that the computations are exact and that null vectors, however com-
puted, are exact. To avoid notational clutter, we will drop subscripts and superscripts
and use math accents to indicate the various substeps.

The process starts with the QR factorization B = QR. Let x be a normalized
null vector of R (if there is one). Let V̄ be a unitary matrix such that V̄ ∗x = e1 and
let U be a unitary matrix such that R̂ = U∗RV̄ is upper triangular. Set Q̂ = V̄ ∗QU
so that

B̂ = V̄ ∗BV̄ = Q̂R̂.

Now R̂e1 = (U∗RV̄ )(V̄ ∗x) = U∗Rx = 0. Hence, the first column of R̂ is zero.

Note that the final value of V may be obtained by initializing V to the identity
matrix and, as each matrix V̄ is generated, replacing V by V V̄ . Likewise, B must be
initialized to A and for each V̄ replaced by V̄ ∗BV̄ .

Next determine a unitary matrix W such that R̃ = W∗R̂ is upper triangular with
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its first row zero. Set Q̃ = Q̂W and partition Q̃ = (q̃1 Q̃2). Then
3

(2.1) B̂ = Q̂R̂ = (Q̂W )(W∗R̂) = Q̃R̃ = (q̃1 Q̃2)

(
0 0

0 R̃22

)
≡ B̃.

The vector e1 is a null vector of B̃. If R̃22 is singular, the process can be continued
as above by computing a null vector of R̃22 and using it to zero its first row and column.
This process continues until, after say k steps, the resulting triangular matrix—call
it R̆22—is nonsingular. At this point B has been transformed into

(2.2) B̆ = (Q̆1 Q̆2)

(
0 0

0 R̆22

)
,

where Q̆1 has k columns. It follows that B̆ has the form

B̆ =

(
0 B̆12

0 B̆22

)
.

This completes a single step of the general procedure described above. As noted

previously, up to a unitary similarity B̆ is just the matrix B
(2)
22 in (1.5).

To continue the algorithm, a QR decomposition of B̆22 = B
(2)
22 is needed. Fortu-

nately, it does not have to be computed from scratch. Specifically, the QR decompo-
sition in (2.2) can be truncated to give the QR factorization

(2.3)

(
B̆12

B̆22

)
= Q̆2R̆22.

Thus all that is required is to remove B̆12 from this factorization. It turns out there
are efficient, stable algorithms to perform this downdating (see [8, 21]). For later
reference when we come to operation counts, note that these algorithms remove B̆12

a row at a time with a cost of O(n2) for each row.
Although we will discuss the effects of errors and perturbations on the algorithm

later, the following problem is best treated here. Owing to errors in the original
matrix A, the vector Ax will not be exactly zero. Suppose we decide to accept x as
an approximate null vector if it satisfies ‖Ax‖ ≤ τ . Then the decomposition B̃ in
(2.1) will be altered to a matrix B̈ of the form

B̈ =

(
π 0

p R̈22

)
,

where ‖(π p∗)‖ ≤ τ .
Now suppose that the original R has μ1 singular values, σn, . . . , σn−μ1+1, that

are less than τ (recall that μ1 is the dimension of the null space of A). Is it possible
for R̈22 to have fewer than μ1 − 1 singular values less than τ? In such a case the
algorithm would return a GNSD with its first diagonal block of order less than the
required order μ1. To see that this cannot happen note that the singular values of B̈
are the same as those of the original R. Now consider the matrix

B̈∗B̈ =

(
π2 + p∗p p∗R̈22

R̈∗
22p R̈∗

22R̈22

)
.

3Although B̂ and B̃ are identical, they are associated with different QR factorizations; i.e., the
first row of R̃ is zero, whereas the first row of R̂ is, in general, nonzero. It is worth noting that this
is only possible because R̂ is singular.
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By the interlacing theorem [19, Thm. IV.4.2], the smallest μ1 − 1 eigenvalues of
R̈∗

22R̈22—call them σ̈2
n, . . . , σ̈n−μ1+2—satisfy

σ2
n ≤ σ̈2

n ≤ σ2
n−1 ≤ σ̈2

n−1 ≤ · · · ≤ σ̈2
n−μ1+2 ≤ σ2

n−μ1+1 < τ2.

It follows that R̈22 has at least μj − 1 singular values less than τ .4

As mentioned above, our algorithm can be implemented by plane rotations (see
[18, sect. 4.1.3] for details on how to manipulate these transformations). The first
job is to determine V̄ so that V̄ ∗x = e1. Suppose that n = 4. Let V ∗

34 be a rotation
in the (3, 4)-plane that zeros the last element of x. In terms of Wilkinson diagrams,

V ∗
34

⎛
⎜⎜⎝
x
x
x
x

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
x
x
x
0

⎞
⎟⎟⎠ .

Next, let V ∗
23 be a rotation in the (2, 3)-plane that zeros the third element of V ∗

34x:

V ∗
23

⎛
⎜⎜⎝
x
x
x
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
x
x
0
0

⎞
⎟⎟⎠ .

Finally, let V ∗
12 be a plane rotation in the (1, 2)-plane that zeros the second element

of V ∗
23V

∗
34x:

V ∗
12

⎛
⎜⎜⎝
x
x
0
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
x
0
0
0

⎞
⎟⎟⎠ .

Then V̄ = V34V23V12. As noted above, the rotations that generate V̄ must be accu-
mulated in V and used to update B.

The next step is to compute the matrix U . This is done at the same time as V̄
is postmultiplied into R. Specifically, the matrix RV34 has a subdiagonal element in
the (4, 3) position:

RV34 =

⎛
⎜⎜⎝
r r r r
0 r r r
0 0 r r
0 0 r r

⎞
⎟⎟⎠ .

This element can be eliminated by a rotation U∗
34 to give

U∗
34RV34 =

⎛
⎜⎜⎝
r r r r
0 r r r
0 0 r r
0 0 0 r

⎞
⎟⎟⎠ .

4It may be asked if it is possible for R̈22 to have too many singular values less than τ . The
answer is yes, but only if σn−µj is near τ , in which case the entire decompostion is ill determined.
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The next step is to process V23. As above,

U∗
34RV34V23 =

⎛
⎜⎜⎝
r r r r
0 r r r
0 r r r
0 0 0 r

⎞
⎟⎟⎠ , U∗

23U
∗
34RV34V23 =

⎛
⎜⎜⎝
r r r r
0 r r r
0 0 r r
0 0 0 r

⎞
⎟⎟⎠ .

Finally,

U∗
23U

∗
34RV34V23V12 =

⎛
⎜⎜⎝
r r r r
r r r r
0 0 r r
0 0 0 r

⎞
⎟⎟⎠ ,

and

U∗
12U

∗
23U

∗
34RV34V23V12 = R̂ =

⎛
⎜⎜⎝
r r r r
0 r r r
0 0 r r
0 0 0 r

⎞
⎟⎟⎠ .

As argued above, the (1, 1)-element of R̂ must be zero. The matrix U = U34U23U12,
and the rotations may be accumulated in Q to form Q̂.

To generate W let W12 be a plane rotation that zeros the (1, 2)-element of R̂:

W∗
12R̂ =

⎛
⎜⎜⎝
0 0 r r
0 r r r
0 0 r r
0 0 0 r

⎞
⎟⎟⎠ .

The next two steps proceed similarly:

W∗
13W

∗
12R̂ =

⎛
⎜⎜⎝
0 0 0 r
0 r r r
0 0 r r
0 0 0 r

⎞
⎟⎟⎠ , W∗

14W
∗
13W

∗
12R̂ = R̃ =

⎛
⎜⎜⎝
0 0 0 0
0 r r r
0 0 r r
0 0 0 r

⎞
⎟⎟⎠ .

The matrix W is W12W13W14, and these plane rotations may be accumulated in Q̂
to form Q̃.

In determining the complexity of this algorithm, our goal is not to provide a de-
tailed operation count, which would depend in a complicated way on the structure of
B, but instead to show that the algorithm is O(n3). To do this note that the com-
putation consists of at most n applications of the plane rotation algorithm described
above, including the accumulation of the rotations in V and B. Moreover, the down-
dating of the decomposition (2.3) must be done a row at a time, of which there are
at most n. Suppose that for both sources of complexity the worst case can be shown
to be of order n2, with an order constant that remains the same for the other cases.
Then, since the steps must be repeated at most n times, the complexity of the entire
algorithm has to be of order n3.

The most expensive step of the plane rotation algorithm occurs at the beginning
and is easily seen to be O(n2). The most expensive downdating of a row also occurs
at the beginning, when only a single null vector has been found. The operation count
in [18, p. 334] shows that this downdating is also of O(n2). Thus the entire algorithm
is O(n3), regardless of the structure of B.
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3. Error. There are three sources of error in the above algorithm:

1. Rounding errors made in the course of the computation.
2. Initial errors in the matrix A (e.g., errors in computing or measuring A).
3. Errors in the purported null vectors.

These errors also occur in the SVD algorithm.

We can quickly dispose of rounding error. Because the algorithms in question
are backward stable, the computed B is orthogonally similar to a perturbed matrix
Ã, where the relative perturbation is of the order of the rounding unit. Thus the
rounding error may be merged with the initial error. In general the latter will be the
larger of the two.

The third source of error is a necessary consequence of the first two. In general a
perturbed matrix will not have null vectors unless the perturbing matrix is specially
structured. For example, it is well known that a generic perturbation of a zero Jordan
block of order p will cause its eigenvalues to split apart and arrange themselves on
the circumference of a disk of radius approximately the pth root of the size of the
perturbation. Thus, a perturbation of order 10−16 of a zero Jordan block of order 8
will produce a cluster of eigenvalues of order 0.01. In this case, the corresponding
eigenvectors will not be approximate null vectors.

Thus any null vector must be approximate and must be computed from an SVD
or its equivalent. The problem then becomes one of deciding when such a vector is
acceptable. The solution is to set a tolerance τ to judge the acceptability. In the
SVD algorithm, any singular vector whose singular value is less than τ is deemed
acceptable. In the QR/update version, any normalized vector v for which ‖Rv‖ is less
than τ is acceptable.

What this means for the overall process is that the portions of the computed B
that should be zero are nonzero of size up to the order of τ . Because the computed
transformations are almost exactly orthogonal, these errors can also be thrown back
on A and merged with the initial errors. With this done, the computed GNSD is the
exact GNSD of A+G, where G is the sum of the initial error, the backward rounding
error, and the backward τ -error.

The problem remains of how to choose τ . Note that a choice can be unsatisfactory
in one of two ways. If τ is too small, the matrix will be judged to have no null vectors;
i.e., it is its own GNSD. On the other hand, if it is too large, all vectors will be deemed
null, and its GNSD will be the zero matrix, with the original matrix the backward
error.

Little more can be said without considering specific problems. The following
parameterized problem appears to us to be flexible enough to generate interesting
test cases without deviating too far from what might be expected in applications.
Specifically, given input parameters ki (i = 1, . . . , p), κ, and ρ, the matrix A has the
form

(3.1) A = XJX−1 + E ≡ Atrue + E,

where

1. J = diag(Jk1(0), Jk2(0), . . . , Jkp(0)).
2. X and X−1 are balanced matrices (in the sense that their elements are of

roughly the same size) with condition number κ.
3. E consists of independent random normal deviates scaled so that ‖E‖/‖Atrue‖

= ρ.
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This test matrix answers to a researcher who suspects the matrix in question
has a nontrivial generalized null space structure that can be reached by a balanced,
possibly ill-conditioned transformation. Since, in this case, the matrix A would be
computed or measured directly it is appropriate to assume that the errors would be
relative to the size of A. It is, of course, possible to imagine harder problems; e.g.,
diagonally scaled Jordan blocks in which the elements of the first superdiagonal vary
in magnitude.5

Returning now to the choice of τ , the norm of E is ρ‖Atrue‖. Hence τ should be
set somewhat larger than this quantity, say

τ > θρ‖A‖, θ > 1.

The fudge factor θ must be included to account for rounding error in determining
approximate null vectors and in accumulating transformations, and it must be deter-
mined from experience.

As suggested above, τ must not be too large. It is not easy to describe a general
upper limit. But since we are dealing with Jordan blocks, whose structure depends
on the placement of ones on the first superdiagonal, an upper bound of at most one
seems to be required. In our experiments we took τ to be

(3.2) τ =
√
ρ‖A‖,

which is the geometric mean of ρ‖A‖ and 1. On a logarithmic scale this choice places
τ exactly in the middle of the error norm and one.

But this is not the entire story. It remains to consider how the errorE reflects back
to the original Jordan form. By definition, ‖E‖ = ρ‖Atrue‖. Since Atrue = XJX−1

and ‖J‖ = 1, we have ‖Atrue‖ ≤ ‖X‖‖X−1‖ = κ. (Note that κ is just the condition
number of X with respect to inversion.) Now if we set X−1AX = J + F , then
F = X−1EX . Hence

(3.3) ‖F‖ ≤ κ‖E‖ ≤ κ2ρ.

The upper bound κ2ρ is not unreasonable, since X and X−1 are balanced and E bears
no particular relation to X . If κ2ρ is near one, we can expect trouble in recovering
the structure of J . We will present evidence of this κ2 effect in the next section.

4. Numerical experiments. The purpose of this section is to compare the
behavior of the QR/update and the SVD algorithms along with their limitations in
recovering Jordan structures. The algorithms were coded as MATLAB functions.6

However, null vectors in the SVD algorithm were computed by the function svd, and
the deflations performed by matrix multiplications, for both of which MATLAB uses
highly optimized BLAS and LAPACK algorithms. The QR/update algorithm, on the
other hand, must apply plane rotations explicitly, a process for which MATLAB is
notoriously inefficient. This precludes any meaningful timings, and the focus of this
section will be on the difference in the numerical behavior of the algorithms along
with their limitations.

The following is an outline of how our experiments were implemented.
1. The matrices used in the implementation were generated as described in the

preceding section (see eq. (3.1)).

5See the interesting paper [10] by Edelman and Ma, which discusses this problem and gives an
illuminating example of it.

6Our GNSD code is available in the supplementary materials section on the website.
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kappa rho nfound nfail numresid gnsdresid

1e+0 1e-5 qru 100 0 1.9893e-15 9.9130e-06

svd 100 0 3.8282e-15 9.9130e-06

1e+1 1e-6 qru 100 0 1.0833e-15 1.7667e-06

svd 100 0 1.9046e-15 1.7667e-06

1e+2 1e-7 qru 100 0 1.0433e-15 9.4737e-07

svd 100 0 1.5692e-15 9.4737e-07

1e+3 1e-8 qru 100 0 9.9481e-16 6.1044e-07

svd 100 0 1.4530e-15 6.1070e-07

1e+4 1e-9 qru 89 11 9.6409e-16 1.8697e-07

svd 89 11 1.4582e-15 1.8695e-07

block sizes = 1, 2, 3, 4, 5

Fig. 1. Comparison of QR/updated and SVD.

2. The matrix J is specified by a sequence of block sizes ki (i = 1, . . . , p) defining
the μj in (1.4).

3. The random matrix X is generated in the form X = QSP∗, where Q and
P are random orthonormal matrices and S is generated by the MATLAB
expression diag(logspace(0, log10(1/kappa),n)).

4. The Linpack condition estimator, as described in [14, p. 296], was used to
compute approximate null vectors in the QR/update algorithm (n.b., this is
not the Linpack function RCOND).

5. The tolerance was computed by the formula (3.2).
6. Throughout, we used the spectral matrix norm, computed by the MATLAB

function norm; i.e., ‖X‖ = norm(X).
In our experiments, we took ρ and κ as our independent variables. For given

values of ρ and κ, a sample of size sampsize of the matrix A was processed by both
the QR/update and the SVD methods. The averages for the following statistics were
recorded.

1. The number of cases nfound in which the algorithm recovered the original
structure and nfail the number of cases in which it failed.

2. For the successful cases, let B̂ = V ∗AV and let B be the matrix obtained
from B̂ by zeroing appropriate blocks of B̂ to get the GNSD. Then numresid,
the average of ‖A−V B̂V ∗‖/‖A‖, is a measure of the numerical stability of the
process and should be near the rounding unit, while gnsdresid, the average
of ‖A−V BV ∗‖/‖A‖, measures the relative error in the GNSD approximation
to A.

3. All of the tests were performed for a fixed block structure ki = i (i = 1, . . . , 5),
for which the correct values μj are 6− j (j = 1, . . . , 5). But other structures
gave essentially the same results.

Figure 1 shows the results of five runs with sample size one hundred. The param-
eters κ and ρ are varied in such a way that κρ = 10−5.

The first thing to examine in these numbers is the values of numresid, which
determine the stability of the QR/update and the SVD algorithms. Both pass with
flying colors. The relative residuals are near the rounding unit of about 2.2·10−16.
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Fig. 2. Success and failure.

These results have been observed in other runs not reported, supporting our asser-
tion that the QR/update algorithm is numerically stable. Naturally, so is the SVD
algorithm.

The numbers nfound and their complements nfail describe the reliability of the
computed GNSD. Both algorithms capture the Jordan structure as κ increases to
κ = 103, after which both algorithms are less reliable. In another run, the product
of ρκ was taken to be 10−4. Here deterioration sets in when κ = 103 and grew worse
for κ = 104. The (nfound, nfail) pairs were respectively (96, 4) and (63, 37) for both
algorithms.

These numbers also support the existence of the κ2 phenomenon described at the
end of the preceding section. For the case in Figure 1 the products ρκ2 are 10−5,
10−4, 10−3, 10−2, and 10−1. For the case ρκ = 10−4, they were 10−4, 10−3, 10−2,
10−1, and 100. In the second case some results were good even when ρκ2 = 1. This
may be attributed to the fact that ρκ2 is only an upper bound for ‖F‖ in (3.3).

The fact that the number of failures are the same for both algorithms suggests
that they are computing essentially the same thing, even when they fail to capture
the original Jordan structure. In several additional runs (with ρκ = 10−4) there was
only a single case of the algorithms computing different structures.

To get a better handle on the κ2 effect, consider Figure 2, which plots runs with
sample size fifty for various values of κ and ρ. Runs for which the correct structure
was determined for all cases are represented by the symbol *; those that are partially
successful, by o; and those that failed in all cases, by x. The display in Figure 3 gives
the common logarithm of ρ against the common logarithms of ρκ2 for the first o and
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ρ ρκ2 ρκ
o x x

−3 +1 − −
−4 +0 − −
−5 +1 +3 −1
−6 +0 +4 −1
−7 +1 +3 −2
−8 −2 +2 −3
−9 −1 +3 −3

−10 −2 +4 −3
−11 −3 +3 −4
−12 −2 +4 −4
−13 −3 +3 −5
−14 −2 +2 −6
−15 −3 +3 −6
−16 −4 +2 −7

Fig. 3. Success and failure.

the first x in each row. In most cases, these pairs bracket zero. On the other hand, the
values for ρκ are all negative for x and their magnitudes increase as log10 ρ decreases;
i.e., they tend to predict success where there is none, and the mispredictions become
more emphatic as κ grows. All of this is consistent with the κ2 effect.

The existence of the κ2 effect raises a question about the choice of the tolerance
τ . Should the value of τ be increased to be larger than ρκ2 ? Limited experiments
suggest that this can make things worse. Perhaps the reason is that the algorithm
in question is working with A not J + F , and raising the value of τ could mask its
Jordan structure.

5. Summary. This paper began life as a derivation of some formulas relating the
Drazin inverse of a matrix and the Moore–Penrose pseudoinverse. Being dissatisfied
with the purely algebraic proofs of these results, we decided to see if matrix decom-
positions had something to say, and in the process we unwittingly rediscovered the
GNSD and the SVD algorithm. The possibility of O(n4) behavior of this algorithm
led us to the QR/update algorithm, which is the centerpiece of this paper.

Our numerical results confirm that the new algorithm is backward stable and
produces essentially the same results as the SVD version. It should be preferable
to the SVD algorithm for matrices with large zero Jordan blocks. In addition, our
experiments tend to confirm that the LINPACK condition estimator is a reliable way
of computing approximate null vectors of a triangular matrix.7

A second contribution is the introduction of a class of parameterized test prob-
lems (see eq. (3.1)) that have the flavor of real life and yet the ability to probe the
limitations of GNSD algorithms as well as the stability of the GNSD itself. Regard-
ing the latter, the discovery of the κ2 effect was the result of experiments using this
model.

7But perhaps less reliable for computing approximate null vectors of a general matrix from its
LU factorization. See the discussion in [14, p. 297].
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We should stress once more that the κ2 effect only operates in full force when the
upper bound in (3.3) is nearly attained, which may not happen in particular cases.
Thus the “effect” should be regarded as indicating a potential danger, not as a death
certificate.

The GNSD is well worth further study. One reason is that it is used in many
algorithms that compute the Jordan form and its generalizations. Since problems
with computing the much simpler GNSD will be inherited by the Jordan form, further
study of the former may lead to breakthroughs in computing the latter.

Appendix A. Computing the Drazin inverse. The purpose of this appendix
is to sketch an algorithm that uses the GNSD to compute the Drazin generalized
inverse of a matrix A. Let ν be the index of A. Then the Drazin inverse AD is the
unique matrix satisfying the following three conditions [9, 4]:

(A.1) ADAν+1 = Aν , ADAAD = AD, AAD = ADA.

The following result provides a different characterization of AD that suggests a
computational algorithm.

If there is a nonsingular matrix W such that

(A.2) W−1AW = diag(N,M),

where Nν−1 �= 0, Nν = 0, and M is nonsingular, then

AD = Wdiag(0,M−1)W−1.

The result is proved by verifying that the purported inverse satisfies the conditions
(A.1).

The GNSD (1.1) provides the wherewithal to compute the Drazin generalized
inverse. Let the GNSD be partitioned in the form

B =

(
N L
0 M

)
,

where M = Bν+1,ν+1 is nonsingular. By construction, Nν−1 �= 0 and Nν = 0. Only
the presence of the matrix L keeps the above result from applying. However, L can
be eliminated by a simple similarity transformation, as will now be shown.

Consider the similarity transformation

(A.3)

(
I −K
0 I

)(
N L
0 M

)(
I K
0 I

)
=

(
N NK + L−KM
0 M

)
.

If K satisfies the Sylvester equation

(A.4) KM −NK = L,

then the right-hand side of (A.3) is diag(N,M). But

diag(N,M)D = diag(0,M−1).

If the similarity transformation in (A.3) is inverted, the result is

(
N L
0 M

)D

=

(
0 KM−1

0 M−1

)
.
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Now a necessary and sufficient condition for the existence of a unique solution
of the Sylvester equation (A.4) is that the eigenvalues of N and M be disjoint. But
N is nilpotent and hence has only zero eigenvalues, while M is nonsingular and has
only nonzero eigenvalues. Hence (A.4) has a unique solution. Moreover, since N is
triangular the equation may be solved by a variant of the Bartels–Stewart method [2]
that involves only solutions of linear systems whose matrix is M . But if the GNSD
is computed by the QR/update method, a QR factorization of M will be at hand to
solve the systems.

We note that (A.2) leads to a delightfully simple formula relating the Drazin
inverse AD to any generalized inverse A− satisfying AA−A = A. Partition W =
(W1 W2) and (W−1)∗ = (Z1 Z2) conformally with the matrix diag(N,M), so that
Z∗
1 W1 = I, Z∗

2 W2 = I, Z∗
1 W2 = 0, and Z∗

2 W1 = 0. It follows that A = W1NZ∗
1 +

W2MZ∗
2 and AD = W2M

−1Z∗
2 . Now define P as the projection W2Z

∗
2 , and notice

that AAD = P = ADA. Therefore,

PA−P = (ADA)A−(AAD) = AD(AA−A)AD = ADAAD = AD.

While the formula AD = PA−P is not new (see [13, eq. 12]), we were not able to find
it in any of the books on generalized inverses that we consulted, so it seems safe to
say it is not as well known as it should be.

Appendix B. Two applications. Here we briefly describe two applications
where we have found the computation of the GNSD to be useful.

B.1. An application arising in surface subdivision. The design of smooth
surfaces using subdivision algorithms, a common technique used in computer graphics,
leads to certain eigenvalue optimization problems; see Grundel’s Ph.D. thesis [12] for
details. Computations described there in chapters 2 and 4 for a triangular mesh and
a quadrilateral mesh, respectively, led to two interesting matrices. The first, which
was discovered by a combination of numerical and analytical techniques, is given by⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z s s s t u t u t u
a b c c e d 0 0 0 d
a c b c 0 d e d 0 0
a c c b 0 0 0 d e d

3/32 7/16 3/32 3/32 3/32 3/32 0 0 0 3/32
9/64 39/128 39/128 3/64 3/128 9/64 3/128 1/128 0 1/128
3/32 3/32 7/16 3/32 0 3/32 3/32 3/32 0 0
9/64 3/64 39/128 39/128 0 1/128 3/128 9/64 3/128 1/128
3/32 3/32 3/32 7/16 0 0 0 3/32 3/32 3/32
9/64 39/128 3/64 39/128 3/128 1/128 0 1/128 3/128 9/64

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where a = 233/896, b = 248/896, c = 171/896, d = 29/896, e = 15/896, z =
69/448, s = 2101/9632, t = 295/19264, and u = 1403/28896. This matrix is singular
and, because it is known exactly, its Jordan form can be computed using standard
techniques, showing that the zero eigenvalue has multiplicity 4, with one Jordan block
of order 2 and two of order 1. The left panel of Figure 4 shows the index computed
by the GNSD code described in section 4 as a function of the tolerance τ . GNSD
correctly determines that the index ν is 2 with μ1 = 3 and μ2 = 1 for all values of
τ except those that are so large that they swamp the data or so small that rounding
errors dominate the computation.
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Fig. 4. Computed index for triangular mesh and quadrilateral mesh matrices as a function of
the tolerance τ .

In contrast, the second matrix, which has order 18, was computed by numeri-
cal optimization and is not known exactly.8 The right panel of Figure 4 shows the
computed index for this matrix. The largest computed index ν is obtained for τ
approximately in the range 10−4 to 10−2, with ν = 5 and μ1 = 4, μ2 = 4, μ3 = 2,
μ4 = 1, μ5 = 1, indicating that the approximate zero eigenvalue has Jordan blocks of
size 5, 3, 2, and 2, as had been conjectured using a heuristic argument [12, p. 66].

B.2. An application arising in an investigation of Crouzeix’s conjec-
ture. Crouzeix’s conjecture [7] is that ‖p(A)‖2 ≤ 2‖p‖W (A) for any polynomial p and
any square matrix A, where the norm on the right-hand side of the inequality is the
maximum of |p(z)| over all z ∈ W (A), the field of values of A. In [6, p. 3254], Choi
showed that the inequality is tight when p(z) = zn and A is an (n + 1) × (n + 1)
matrix with just one nonzero diagonal, namely, (

√
2, 1, . . . , 1,

√
2) on the first super-

diagonal. Recently, numerical experiments were conducted,9 searching for minimizers
of the “Crouzeix ratio” ‖p‖W (A)/‖p(A)‖2; if Crouzeix’s conjecture is true, the glob-
ally minimal value is 0.5. In one experiment of particular interest, p was fixed by
p(z) = zn, while A was set to a variable (n+ 1)× (n+ 1) upper Hessenberg matrix.
Although the ratio 0.5 was often obtained, at first the computed minimizers offered
little insight. However, application of the GNSD code to these matrices unexpectedly
revealed that their upper triangular forms on the left-hand side of (1.1) are nearly in
Choi’s superdiagonal form, suggesting a possible converse to Choi’s result that might
yield insight into Crouzeix’s conjecture.

Appendix C. Characterizing the generalized null spaces. Here, for com-
pleteness, we prove the characterization (1.3) of the spaces Vj , a result that is implicit
in [11], for example. It may be assumed that the matrix A is already in the GNSD
form (1.1), in which case the matrices Vj are simply the columns of the identity matrix
corresponding to the jth block column of B. The last block column of B may also be

ignored, since for any k the matrix B
(k)
ν+1,ν+1 is nonsingular, and the corresponding

block column cannot contribute to the null spaces of the powers of B. Thus it is

8See supplementary materials on the website for the MATLAB data file defining its best known
approximation.

9In work in progress by the second author in collaboration with A. Greenbaum et al.
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sufficient to consider the matrix

(C.1) C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 C12 C13 · · · C1,ν−1 C1,ν

0 0 C23 · · · C2,ν−1 C2,ν

0 0 0 · · · C3,ν−1 C3,ν

...
...

...
...

...
0 0 0 · · · 0 Cν−1,ν

0 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that the form of C already implies that V1 satisfies the characterization (1.3)
because the matrices on the first superdiagonal are of full rank and hence C can have
no null vectors other than those in V1. The question, then, is what happens to the
powers of C. The following lemma shows that V1 ∪V2 contains all the null vectors of
C2 and similarly for the higher powers of C.

Lemma 1. Let C have the form (C.1), where the diagonal blocks are square,
and the blocks on the first superdiagonal are of full column rank. Then all the blocks
of Cj to the southwest of the jth superdiagonal are zero, and the blocks on the jth
superdiagonal are of full column rank. A formal proof of this lemma based on the
formulas for matrix multiplication is tedious and obscures what is going on. Instead,
the truth of the lemma will be shown for C2 and C3 when ν = 6, after which the
general validity of the lemma should be evident.

By direct computation, it follows that

C2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 C
(2)
13 X X X

0 0 0 C
(2)
24 X X

0 0 0 0 C
(2)
35 X

0 0 0 0 0 C
(2)
46

0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where C
(2)
i,i+2 = Ci,i+1Ci+1,i+2. The diagonal blocks of the product remain square,

while the elements on the second superdiagonal are pairwise products of the superdiag-
onal elements of C. Since the products of matrices of full column rank are themselves
of full column rank, the Ci,i+2 must likewise be of full column rank.

The next powering illustrates the induction step of a formal proof. Again by
direct computation it follows that

C3 = CC2 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 C
(3)
14 X X

0 0 0 0 C
(3)
25 X

0 0 0 0 0 C
(3)
36

0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

where C
(3)
i,i+3 = Ci,i+1C

(2)
i+1,i+3. Again, the diagonal blocks of C3 are square, and—

here is the induction step—the matrices Ci,i+1 and C
(2)
i+1,i+3 are of full column rank.

Hence their products, the C
(3)
i,i+3, are of full column rank.10

10It is perhaps worth noting that if C2 had been postmultiplied by C, the result would give

different formulas for the C
(3)
i,i+3. Equating the different forms of the blocks gives nontrivial algebraic

identities; e.g., C
(2)
13 C34 = C12C

(2)
24 .
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