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Abstract. The Gauss-Lucas Theorem on the roots of polynomials nicely simplifies the computation of the
subderivative and regular subdifferential of the abscissa mapping on polynomials (the maximum of the real
parts of the roots). This paper extends this approach to more general functions of the roots. By combining the
Gauss-Lucas methodology with an analysis of the splitting behavior of the roots, we obtain characterizations
of the subderivative and regular subdifferential for these functions as well. In particular, we completely char-
acterize the subderivative and regular subdifferential of the radius mapping (the maximum of the moduli of
the roots). The abscissa and radius mappings are important for the study of continuous and discrete time linear
dynamical systems.

1. Introduction

Let Pn denote the linear space of complex polynomials of degree n or less. Define the
root mapping on Pn to be the multifunction R : Pn → C given by

R(p) = {λ | p(λ) = 0 } ,

and let φ : C → IR ∪{+∞} = ĪR be a lower semi-continuous convex function. We are
concerned with the variational properties of functions φ̂ : Pn → IR ∪{±∞} defined as

φ̂(p) = sup {φ(λ) | λ ∈ R(p) } . (1)

The abscissa and radius mappings on Pn are obtained by taking φ(λ) = Re λ and φ(λ) =
|λ|, respectively. Indeed, the abscissa and radius mappings are the primary motivation for
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this study. The variational behavior of these functions is important for our understanding
of the stability properties of continuous and discrete time dynamical systems [1, 2].

The functions defined by (1) possess a very rich variational structure. In addition,
these functions are related to important applied problems. Consequently, they offer an
ideal setting in which to test the utility and robustness of any theory for analyzing the
variational structure of nonsmooth functions. We study the variational behavior of the
class (1) on the set Mn of polynomials of degree n. This set is an open dense subset of
the linear space Pn (endowed with the topology of pointwise convergence). Note that on
the set Mn the sup in (1) can be replaced by max. The supremum in (1) is only required
for constant polynomials. We also note that the non-constant members of the class (1)
are never locally Lipschitz on Mn and are always unbounded in the neighborhood of
any point on the boundary of Mn. The non-Lipschitzian behavior is seen by considering
the family of polynomials pε(λ) = (λ − λ0)

n − ε. To see that φ̂ must be unbounded
on the boundary of Mn recall that for any non-constant convex function φ there must
exist a nonzero direction a ∈ C for which φ(τa) → +∞ as τ ↑ ∞. If p ∈ Pn is any
polynomial of degree less than n, the polynomial defined by qε(λ) = (1 − a−1ελ)p(λ)

is in Pn, and satisfies qε → p as ε ↘ 0. Moreover, ε−1a ∈ R(qε) for all ε > 0.
Therefore, φ̂(qε) → +∞ as ε ↘ 0. It is this essential unboundedness of the roots on the
boundary of Mn that motivates the restriction to Mn. On Mn the roots of polynomials
are continuous functions of their coefficients, so the functions φ̂ defined in (1) are lower
semi-continuous on Mn.

We use the tools developed in [6, 7, 12, 14] to study the variational properties of
φ̂. Our earlier work demonstrates that these techniques are well suited to applications
in stability theory [1–5]. In addition, we make fundamental use of a classical result
originally due to Gauss and commonly known as the Gauss-Lucas Theorem. This result
establishes a beautiful and elementary convexity relationship between the roots of a
polynomial and the roots of its derivative.

Theorem 1. [Gauss-Lucas] All critical points of a non-constant polynomial p lie in the
convex hull H of the set of roots of p. If the roots of p are not collinear, no critical point
of p lies on the boundary of H unless it is a multiple root of p.

The Gauss-Lucas Theorem implies the following chain of inclusions for any poly-
nomial of degree n:

conv R(p(n−1)) ⊂ conv R(p(n−2) ⊂ · · · ⊂ conv R(p′) ⊂ conv R(p), (2)

where conv S denotes the convex hull of the set S.
Theorem 1 is referred to by Gauss as early as 1830 and has been rediscovered many

times. In 1879, Lucas [9, 10] published a refinement of Gauss’s result. For more on the
Gauss-Lucas Theorem and its uses see Marden [11].

With regard to the chain (2), it is useful to observe that

φ̂(p) = sup {φ(λ) | λ ∈ R(p) } = sup {φ(λ) | λ ∈ conv R(p) } . (3)

To see this note that the second supremum is clearly greater than or equal to the first so
we need only show the reverse inequality. Let λ ∈ conv R(p), then, by Caratheodory,
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there exist λ1, λ2, λ3 ∈ R(p) and 0 ≤ µ1, µ2, µ3 with µ1 + µ2 + µ3 = 1 such that
λ = µ1λ1 + µ2λ2 + µ3λ3. But then by convexity

φ(λ) ≤ µ1φ(λ1) + µ2φ(λ2) + µ3φ(λ3) ≤ max
j=1,2,3

φ(λj ),

so that the second supremum in (3) is less than or equal to the first.
In [5], Burke and Overton investigate the variational properties of the abscissa map-

ping using an approach modeled on work of Levantovskii [8]. However, this approach is
difficult and lengthy, and provides little insight into the underlying variational geometry.
Furthermore, extending this approach to other functions of the roots of polynomials
would be a daunting task at best. In [3], an approach based on the Gauss-Lucas Theo-
rem is introduced to simplify the derivation of the tangent cone to the epigraph of the
abscissa mapping at the polynomial p(λ) = (λ−λ0)

n. This derivation is one of the two
most difficult technical hurdles in [5]. The second is the verification of subdifferential
regularity.

In this paper, we apply the Gauss-Lucas ideas in [3] to the class of functions given
by (1). As in [3], we focus on the computation of the tangent cone to the epigraph at the
polynomials

e(n,λ0)(λ) = (λ − λ0)
n.

We recover our earlier result for the abscissa mapping and obtain the corresponding
result for the radius mapping which is stated below. Here and throughout, we denote the
complex conjugate of the complex scalar z by z̄.

Theorem 2. Let r : Pn → IR denote the radius mapping on Pn:

r(p) = max {|λ| | λ ∈ R(p) } .

Let (v, η) ∈ Pn × IR be such that v = ∑n
k=0 bke(n−k,λ0).

(i) (v, η) is an element of the tangent cone to the epigraph of r at the polynomial
p(λ) = λn if and only if

η ≥ 1

n
|b1| and 0 = bk, k = 2, 3, . . . , n.

(ii) (v, η) is an element of the tangent cone to the epigraph of r at the polynomial
p(λ) = (λ − λ0)

n with λ0 �= 0 if and only if

η ≥ 1

n|λ0|
[|b2| − Re λ̄0b1

]
,

0 = Re λ̄0

√
−b2, and 0 = bk, k = 3, . . . , n.

The notation and definitions follow those established in [14]. The definitions of the
terms epigraph and tangent cone used in Theorem 2 appear in the next section. Notation
specific to the study of polynomials on the complex plane is introduced below.
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Recall that the complex plane C is a Euclidean space when endowed with the usual
real inner product 〈ω , λ〉 = Re ω̄λ. By extension, C

n is also a Euclidean space when
given the real inner product

〈
(ω1, . . . , ωn)

T , (λ1, . . . , λn)
T
〉
=

n∑

k=1

〈ωk , λk〉 .

Given λ0 ∈ C we define the basis
{
e(k,λ0) | k = 0, 1, . . . , n

}
for Pn, where

e(k,λ0)(λ) = (λ − λ0)
k, k = 0, 1, . . . , n.

Each such basis defines a real inner product (or duality pairing) on Pn:

〈p , q〉λ0
= Re

n∑

k=0

ākbk,

where p = ∑n
k=0 ake(k,λ0) and q = ∑n

k=0 bke(k,λ0). In the case n = 0, we recover
the real inner product on C. When λ0 = 0, we drop the subscript on the inner product
and simply write 〈· , ·〉. Note that this family of inner products behaves continuously
in p, q, and λ0 in the sense that the mapping (p, q, λ0) → 〈p , q〉λ0

is continuous on
Pn × Pn × C. To see this simply note that

〈p , q〉λ = Re

(
n∑

k=0

p(k)(λ)

k!

q(k)(λ)

k!

)

.

The inner product on a Euclidean space gives rise to a norm |·| in the usual way by
setting |x| = √〈x , x〉.

Given a mapping φ : C → ĪR, we define the mapping φ̃ : IR2 → ĪR by the
composition φ̃ = φ ◦ �, where � : IR2 → C is the linear transformation

�(x) = x1 + i x2, (4)

i ∈ C denoting the imaginary unit. If we endow IR2 with its usual inner product and C

with the inner product above, we have

�−1µ = �∗µ =
[

Re µ

Im µ

]

.

We say that φ is differentiable in the real sense if φ̃ is differentiable, in which case the
derivative of φ is given by the chain rule as

φ′(ζ ) = �∇φ̃(�∗ζ ).

Here ∇φ̃ denotes the gradient of φ̃. Similarly, we say that φ is twice differentiable in
the real sense if φ̃ is twice differentiable and again the chain rule gives

φ′′(ζ )δ = �∇2φ̃(�∗ζ )�∗δ, (5)

where ∇2φ̃ denotes the Hessian of φ̃. Since these are the only notions of differentiabil-
ity we employ, we omit the qualifying phrase in the real sense when specifying that a
function from C to ĪR is differentiable or twice differentiable. We also make use of the
following notation:

φ′(ζ ; δ) = 〈
φ′(ζ ) , δ

〉
and φ′′(ζ ; ω, δ) = 〈

ω , φ′′(ζ )δ
〉
.
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2. The tangent cone and the subderivative

We use the tools in [7, 14] to describe the variational geometry of the function φ̂. Recall
that the epigraph of a function f mapping a Euclidean space E into the extended real
numbers ĪR = IR ∪ {+∞} is the subset of E × IR given by

epi (f ) = {(x, µ) | f (x) ≤ µ } , (6)

and the domain is the set

dom (f ) = {x | f (x) < ∞} .

The fundamental variational object forf is the tangent cone to its epigraph [14, Definition
6.1]. Given a set C in a linear space S and a point x ∈ C, the tangent cone to C at x is
defined to be the set

TC(x) =
{

d

∣
∣
∣
∣

∃{xk} ⊂ C, {tk} ⊂ IR such that
xk → x, tk ↓ 0, and t−1

k (xk − x) → d

}

.

The tangent cone to epi (f ) at a point can be viewed as the epigraph of another function
called the subderivative of f at x. It is denoted by df (x) [14, Theorem 8.2]:

epi (df (x)) = {(w, η) | df (x)(w) ≤ η } = Tepi (f )(x, f (x)) (7)

for all x ∈ dom (f ) = {x | f (x) < +∞}. The subderivative generalizes the notion of a
directional derivative as seen by the following alternative formula [14, Definition 8.1]:

df (x)(w) = lim inf
t↘0

w′→w

f (x + tw′) − f (x)

t
. (8)

In the case of the function class (1), the computation of the tangent cone is simplified
due to the fact that (p, η) ∈ epi (φ̂) if and only if (ζp, η) ∈ epi (φ̂) for every nonzero
complex scalar ζ .

Lemma 1. Define Mn
1 ⊂ Mn to be the set of monic polynomials of degree n:

Mn
1 =

{
e(n,0) + q

∣
∣
∣ q ∈ Pn−1

}
.

Define φ̂1 : Pn → ĪR by

φ̂1(p) =
{

φ̂(p) , if p ∈ Mn
1 ,

+∞ , otherwise.

Let λ0 ∈ dom (φ), bk ∈ C, k = 0, 1, . . . , n, η ∈ IR, and set

v =
n∑

k=0

bke(n−k,λ0) and ṽ =
n∑

k=1

bke(n−k,λ0).

Then

(v, η) ∈ Tepi (φ̂)

(
e(n,λ0), φ(λ0)

)

if and only if

(ṽ, η) ∈ Tepi (φ̂1)

(
e(n,λ0), φ(λ0)

)
.
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Remark 1. The lemma shows that

Tepi (φ̂)

(
e(n,λ0), φ(λ0)

) = C e(n,λ0) + Tepi (φ̂1)

(
e(n,λ0), φ(λ0)

)
,

where C e(n,λ0) = {
ξe(n,λ0) | ξ ∈ C

}
. Therefore, we can restrict our analysis of the tan-

gent cone to sequences that lie in the set Mn
1. This is the approach taken in [4]. Here we

work on the seemingly more general space Mn in order to simplify applications.

Proof. Suppose (v, η) ∈ Tepi (φ̂)

(
e(n,λ0), φ(λ0)

)
, that is, there exists a sequence ξj ↓ 0

such that

(e(n,λ0) + ξj v + o(ξj ), φ(λ0) + ξjη + o(ξj )) ∈ epi (φ̂),

or equivalently,

(e(n,λ0) + ξj ṽ

1 + ξj b0
+ o(ξj ), φ(λ0) + ξjη + o(ξj )) ∈ epi (φ̂1).

Hence (ṽ, η) ∈ Tepi (φ̂1)

(
e(n,λ0), φ(λ0)

)
.

Conversely, suppose (ṽ, η) ∈ Tepi (φ̂1)

(
e(n,λ0), φ(λ0)

)
. By definition, there exists

ξj ↓ 0 such that

(e(n,λ0) + ξj ṽ + o(ξj ), φ(λ0) + ξjη + o(ξj )) ∈ epi (φ̂1). (9)

Multiplying e(n,λ0) + ξj ṽ + o(ξj ) by (1 + ξj b0) gives

(1 + ξj b0)(e(n,λ0) + ξj ṽ + o(ξj )) = e(n,λ0) + ξj v + o(ξj ).

That is, (9) is equivalent to

(e(n,λ0) + ξj v + o(ξj ), φ(λ0) + ξjη + o(ξj )) ∈ epi (φ̂) .

Therefore, (v, η) ∈ Tepi (φ̂)

(
e(n,λ0), φ(λ0)

)
which proves the result. ��

Next recall that the epigraph of the convex function φ as well as all of the lower level
sets

levφ(µ) = {λ | φ(λ) ≤ µ }
are convex sets [13]. This allows us to apply the Gauss-Lucas Theorem in a powerful
way. Since

µ ≥ φ̂(p) ⇐⇒ R(p) ⊂ levφ(µ), (10)

the Gauss-Lucas Theorem yields the following chain of inclusions for any polynomial
of degree n providing (p, µ) ∈ epi (φ̂):

conv R(p(n−1)) ⊂ · · · ⊂ conv R(p′) ⊂ conv R(p) ⊂ levφ(µ). (11)

This system of inclusions along with subdifferential information about the function φ

provide the basis for a set of necessary conditions for a pair (v, η) ∈ Pn × IR to be an
element of the tangent cone to epi (φ̂).
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The convexity of φ implies that φ is directionally differentiable in all directions at
every point in λ0 ∈ dom (φ) [13] and one has

φ′(λ0; ξ) = lim
τ↓0

φ(λ0 + τξ) − φ(λ0)

τ
= inf

τ>0

φ(λ0 + τξ) − φ(λ0)

τ
.

Taking τ = 1 and ξ = λ − λ0 in the right hand side of this expression gives the
subdifferential inequality

φ(λ) ≥ φ(λ0) + φ′(λ0; λ − λ0).

A vector ω is a subgradient of φ, written ω ∈ ∂φ(λ), if and only if

φ(λ) ≥ φ(λ0) + 〈ω , λ − λ0〉 ∀ λ ∈ C . (12)

The subdifferential ∂φ(λ0) is always a closed convex set, although it may be empty at
points on the boundary of the set dom (φ). The subdifferential is related to the directional
derivative of φ by the formula

φ′(λ0; λ) = sup {〈z , λ〉 | z ∈ ∂φ(λ0) } . (13)

Therefore, at points

λ0 ∈ dom (∂φ) = {λ | ∂φ(λ) �= ∅} ,

we have φ′(λ0; ·) : C → IR∪{+∞} is a lower semi-continuous convex function. Since
φ′(λ0; ·) is a convex function, we can use (1) to define

φ̂λ0 = ̂φ′(λ0; ·).

That is, we define the function φ̂λ0 : Pn → IR ∪ {±∞} by

φ̂λ0(q) = sup
{
φ′(λ0; λ) | q(λ) = 0

}
,

and observe that by (13), (3), and (11),

φ̂λ0(q) = sup {〈z , λ)〉 | (z, λ) ∈ ∂φ(λ0) × conv R(q) }
≥ sup

{〈z , λ)〉 ∣
∣ (z, λ) ∈ ∂φ(λ0) × conv R(q ′)

}

= φ̂λ0(q
′). (14)

The next lemma shows how to extend the subdifferential inequality for φ to the function
φ̂ by using the function φ̂λ0 .

Lemma 2. Given 0 < τ ∈ IR and λ0 ∈ dom (φ), define the linear transformation
S[τ,λ0] : Pn → Pn by S[τ,λ0](p)(λ) = p(λ0 + τλ). Then, for every p ∈ Pn,

φ̂(p) ≥ φ(λ0) + τ φ̂λ0([S[τ,λ0](p)](�)), (15)

for � = 0, 1, . . . , (deg(p) − 1).
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Proof. For the case � = 0, we have

φ̂(p) = max {φ(λ) | p(λ) = 0 }
= max

{
φ(λ)

∣
∣S[τ,λ0](p)(γ ) = 0, λ = λ0 + τγ

}

= max
{
φ(λ0 + τγ )

∣
∣S[τ,λ0](p)(γ ) = 0

}

≥ max
{
φ(λ0) + τφ′(λ0; γ )

∣
∣S[τ,λ0](p)(γ ) = 0

}

= φ(λ0) + τ φ̂λ0(S[τ,λ0](p)).

The remaining cases follow immediately from (14) and (11). ��
We now translate the content of Lemma 2 into statements about the coefficients of

the underlying polynomials. Consider the polynomial

p =
n∑

k=0

ake(n−k,λ0), (16)

with a0 �= 0. The �th derivative of this polynomial is given by

p(�) = �!
n−�∑

k=0

b(n − k, �)ake(n−(k+�),λ0), (17)

where b(n, k) with k ≤ n are the binomial coefficients b(n, k) = n!
k!(n−k)! . Applying the

operator S[τ,λ0] to p yields

S[τ,λ0](p) =
n∑

k=0

akτ
(n−k)e(n−k,0), (18)

and

[S[τ,λ0](p)](�) = �!τn
n−�∑

k=0

b(n − k, �)τ−kake(n−(k+�),0), (19)

for � = 0, 1, 2, . . . , (n − 1) (the case � = 0 is just (18). With this notation, we have the
following simple consequence of Lemma 2.

Lemma 3. Let p ∈ Pn be as in (16) and let t ∈ IR be positive. Then

φ̂(p) ≥ φ(λ0) + t1/s φ̂λ0

(
s∑

k=0

b(n − k, n − s)t−k/sake(s−k,0)

)

, (20)

for s = 1, . . . , n.

Proof. In (19) take � = n− s and τ = t1/s for � = 0, 1, 2, . . . , (n− 1), or equivalently,
s = 1, . . . , n, to obtain

S[τ,λ0](p)(n−s) = �!tn/s
s∑

k=0

b(n − k, n − s)t−k/sake(s−k,0),

for s = 1, . . . , n. Plugging this expression into (15) yields the result since φ̂λ0(p) =
φ̂λ0(ζp) for every nonzero complex number ζ . ��
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The main result of the section now follows.

Theorem 3. Let λ0 ∈ dom (∂φ) with ∂φ(λ0) �= {0}. If

(v, η) ∈ Tepi (φ̂)

(
e(n,λ0), φ(λ0)

)

with

v =
n∑

k=0

bke(n−k,λ0), (21)

then

η ≥ φ′(λ0; −b1/n), (22)

0 =
〈
g ,

√
−b2

〉
∀ g ∈ ∂φ(λ0), and (23)

0 = bk, k = 3, . . . , n. (24)

Thus, in particular, if rspan (∂φ(λ0)) = C, then b2 = 0, where for any D ⊂ C the set

rspan (D) =
{

N∑

k=1

τkxk | N ∈ IN, τk ∈ IR, xk ∈ D k = 1, . . . , N

}

is the real linear span of D.

Proof. Let (v, η) ∈ Tepi (φ̂)

(
e(n,λ0), φ(λ0)

)
with v given by (21).Then, by Lemma 1,

(ṽ, η) ∈ Tepi (φ̂1)

(
e(n,λ0), φ(λ0)

)
, where

ṽ =
n∑

k=1

bke(n−k,λ0).

Hence there exist sequences tj ↓ 0 and {(pj , µj )} ∈ epi (φ̂1) such that

t−1
j ((pj , µj ) − (e(n,λ0), φ(λ0))) → (ṽ, η).

That is, there exists {(aj
0 , a

j
1 , . . . , a

j
n)} ∈ C

n+1 such that

pj =
n∑

k=0

a
j
k e(n−k,λ0),

t−1
j (µj − φ(λ0)) → η, a

j
0 = 1 for all j = 1, 2, . . . , and a

j
k → 0 with t−1

j a
j
k → bk for

k = 1, . . . , n. By applying Lemma 3 to pj for each j = 1, 2, . . . with t = tj we obtain
for s = 1, 2, . . . , n

µj ≥ φ(λ0) + t
1/s
j φ̂λ0

(
s∑

k=0

b(n − k, n − s)t
−k/s
j a

j
k e(s−k,0)

)

,
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or equivalently,

t
−1/s
j (µj − φ(λ0)) ≥ φ̂λ0

(
s∑

k=0

b(n − k, n − s)t
−k/s
j a

j
k e(s−k,0)

)

(25)

for each s = 1, . . . , n. We now consider the limit as j → ∞ in each of these inequalities.
First observe that

[
s∑

k=0

b(n − k, n − s)t
−k/s
j a

j
k e(s−k,0)

]

→ [
b(n, n − s)e(s,0) + bs

]

for s = 1, . . . , n. Hence

R
(

s∑

k=0

b(n − k, n − s)t
−k/s
j a

j
k e(s−k,0)

)

→ R (
b(n, n − s)e(s,0) + bs

)

for s = 1, . . . , n, since a
j
0 = 1 for all j = 1, 2, . . . and the roots of a polynomial are a

continuous function of its coefficients on Mn. Therefore, the lower semi-continuity of
φ̂λ0 and the inequalities (25) imply that

η ≥ φ̂λ0(b(n, n − 1)e(1,0) + b1) = φ′(λ0; −b1/n) (26)

which proves (22). For s = 2, . . . , n, the inequalities (25) imply that

0 ≥ φ̂λ0(b(n, n − s)e(s,0) + bs)

= max

{

φ′
(

λ0;
( −bs

b(n, n − s)

)1/s

ω

) ∣
∣
∣
∣

ω = e2πk i /s

k = 0, . . . , s − 1

}

. (27)

By assumption there exists g ∈ ∂φ(λ0) with g �= 0. Inequality (27) implies that

0 ≥
〈

g ,

( −bs

b(n, n − s)

)1/s

ω

〉

,

for ω = e2πk i /s (k = 0, 1, . . . , s − 1). For s = 3, . . . , n this can only occur if bs = 0
which gives (24). For s = 2 we have

0 ≥
〈

g , ±
( −b2

b(n, n − 2)

)1/2
〉

∀ g ∈ ∂φ(λ0),

or equivalently, condition (23) holds. ��
The conditions (23)and (24) play a key role in our subsequent analysis. Condition

(24) is transparent, but condition (23) is not since it is nonlinear in b2. In the following
lemma we describe the underlying convexity of this condition. For this we use the notion
of the cone generated by a subset of the complex plane. Given a set D contained in C

we define the cone generated by D to be the set

cone (D) = {τx | τ ∈ IR+ and x ∈ D } .
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If D is a convex subset of C, then cone (D) is convex and rspan (D) = cone (D) −
cone (D). The polar of any convex cone K in C is the set

K◦ = {z | 〈z , x〉 ≤ 0 ∀ x ∈ K } ,

and we have the relationship cl (K) = K◦◦.

Lemma 4. Let λ0 ∈ dom (∂φ) with ∂φ(λ0) �= {0}, and let b2 ∈ C. Then the following
statements are equivalent.

(i)
〈
g ,

√−b2
〉 = 0 for all g ∈ ∂φ(λ0).

(ii) Either b2 = 0 or rspan (
√

b2) = rspan (∂φ(λ0)).
(iii) Either b2 = 0 or cone (∂φ(λ0)

2) = cone ({b2}), where

∂φ(λ0)
2 =

{
g2 | g ∈ ∂φ(λ0)

}
.

In addition, the set of all b2 ∈ C satisfying (i) is given by the convex cone K◦
λ0

, where

Kλ0 = −cone (∂φ(λ0)
2) + i [rspan (∂φ(λ0)

2)] (28)

so that

K◦
λ0

=
{ {0} , if rspan (∂φ(λ0)) = C, and

cone (∂φ(λ0)
2) , otherwise.

Proof. Observe that if b2 �= 0, then the condition in (i) implies that the real linear span
rspan (∂φ(λ0)) must be a line through the origin in C since ∂φ(λ0) �= {0}. Note that
any line through the origin can be written as rspan (v) for some v ∈ C and that the line
perpendicular to this line in the real inner product is the line i [rspan (v)]. With these
observations, we have the following string of equivalences:

〈
g ,

√−b2
〉 = 0 ∀ g ∈ ∂φ(λ0)

⇐⇒
either b2 = 0 or

〈
v , i

√
b2
〉 = 0 ∀ v ∈ rspan (∂φ(λ0))

⇐⇒
either b2 = 0 or

〈v , w〉 = 0 ∀(v, w) ∈ rspan (∂φ(λ0)) × ( i [rspan (
√

b2)])
⇐⇒

either b2 = 0 or rspan (∂φ(λ0)) = rspan (
√

b2),

where the final equivalence follows since the lines i [rspan (∂φ(λ0))] and the line
rspan (∂φ(λ0)) are perpendicular whenever b2 �= 0. Therefore, (i) and (ii) are equivalent.
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The equivalence of (ii) and (iii) follows from the following string of equivalences:

either b2 = 0 or rspan (∂φ(λ0)) = rspan (
√

b2)

⇐⇒
either b2 = 0 or

∀ g ∈ ∂φ(λ0) ∃ τ ∈ IR such that g = τ
√

b2
⇐⇒

either b2 = 0 or
∀ g ∈ ∂φ(λ0) ∃ τ ∈ IR such that g2 = τ 2b2

⇐⇒
either b2 = 0 or

cone ({g2}) = cone ({b2}) ∀ g ∈ ∂φ(λ0) \ {0}
⇐⇒

either b2 = 0 or cone (∂φ(λ0)
2) = cone ({b2}).

Next note that the condition, rspan (∂φ(λ0)) = C is equivalent to the condition
rspan (∂φ(λ0)

2) = C since the subdifferential ∂φ(λ0) is a convex set. In this case the
Kλ0 = C, and so K◦

λ0
= {0}. Therefore, if rspan (∂φ(λ0)) = C, then the set of all b2

satisfying (23) equals K◦
λ0

= {0}.
If rspan (∂φ(λ0)) �= C, the set rspan (∂φ(λ0)) is a line through the origin since

∂φ(λ0) �= {0}. This line must equal the real linear span of any nonzero element of
∂φ(λ0). Hence the set cone (∂φ(λ0)

2) is a ray emanating from the origin (not a line),
and the set Kλ0 is a convex cone in C. An easy computation shows that the polar of
this cone is the ray cone (∂φ(λ0)

2). Hence, by (iii), the set of all b2 satisfying (23)
is contained in K◦

λ0
. On the other hand, suppose b2 ∈ K◦

λ0
= cone (∂φ(λ0)

2). Since

cone (∂φ(λ0)
2) is a ray emanating from the origin, we have

K◦
λ0

= cone (∂φ(λ0)
2) = cone ({g2}) ∀ g ∈ ∂φ(λ0) \ {0}.

Hence, for each g ∈ ∂φ(λ0) \ {0} there is a τg ≥ 0 such that b2 = τgg
2, or equivalently,√

b2 = ±√
τgg. Consequently,

〈
g ,

√
−b2

〉
= ± 〈

g , i
√

τgg
〉 = 0 ∀ g ∈ ∂φ(λ0) \ {0},

which shows that every b2 ∈ K◦
λ0

satisfies (23) completing the proof that K◦
λ0

is precisely
the set of all complex numbers that satisfy (23). ��

If φ is twice continuously differentiable with φ′′(λ0; ·, ·) positive definite, then The-
orem 3 can be sharpened. For this we make use of the following technical result.

Lemma 5. If H is a 2-by-2 real symmetric matrix with nonnegative trace then the func-
tion

f (w) =
〈
�−1√w , H�−1√w

〉

is sublinear, i.e. positive homogeneous and subadditive (see (4) for the definition of �).
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Proof. If

H =
[

a b

b c

]

and z = x + i y with x and y real, then

f (z2) =
〈
�−1z , H�−1z

〉
= ax2 + 2bxy + cy2

= a + c

2
|z2| + a − c

2
Re(z2) + b Im(z2).

Hence

f (w) = a + c

2
|w| + a − c

2
Re(w) + b Im(w)

and the result follows. ��
Definition 1. A function f : C → IR is said to be quadratic on C exactly when f

composed with � (defined in (4)) is quadratic on IR2.

We now sharpen the inequality (22) using the notation established at the end of
Section 1.

Theorem 4. If in Theorem 3 it is further assumed that φ is either (i) quadratic, or (ii)
twice continuously differentiable at λ0 with φ′′(λ0; ·, ·) positive definite, then condition
(22) can be strengthened to

η ≥ 1

n

[
φ′(λ0; −b1) + φ′′(λ0;

√
−b2,

√
−b2)

]
. (29)

Proof. If φ is quadratic, then the proof follows essentially the same pattern of proof as
in the positive definite case. Therefore, we only provide the proof in the case where φ is
assumed to be twice continuously differentiable at λ0 with φ′′(λ0; ·, ·) positive definite.

Let (v, η) ∈ Tepi (φ̂)

(
e(n,λ0), φ(λ0)

)
with v given by (21). By Theorem 3, (v, η)

satisfies (22)–(24). By Lemma 1,

(ṽ, η) ∈ Tepi (φ̂1)

(
e(n,λ0), φ(λ0)

)
,

where ṽ = ∑n
k=1 bke(n−k,λ0). By (24), bk = 0, k = 3, . . . , n and so there exist

sequences tr ↓ 0, ηr → η, b1r → b1, b2r → b2, and bkr → 0, k = 3, . . . , n such that

φ(λ0) + ηr tr + o(tr ) ≥ φ̂(pr), (30)

where

pr = e(n,λ0) +
n∑

k=1

(bkr tr + o(tr ))e(n−r,λ0)

= e(n,λ0) + (b1r tr + o(tr ))e(n−1,λ0) + (b2r tr + o(tr ))e(n−2,λ0) + o(tr ),
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with the second equality following since bkr → 0, k = 3, . . . , n. Let λ1r , . . . , λnr

denote the roots of the polynomials pr for r = 1, 2, . . . , respectively. We have

n∑

k=1

(λkr − λ0) = −b1r tr + o(tr ), (31)

and

n∑

k=1

(λkr − λ0)
2 =

[
n∑

k=1

(λkr − λ0)

]2

− 2
∑

j<k

(λjr − λ0)(λkr − λ0)

= (−b1r tr + o(tr ))
2 − 2(b2r tr + o(tr ))

= −2b2r tr + o(tr ). (32)

Set zkr = λkr − λ0 for k = 1, . . . , n and r = 1, 2, . . . . By (31) and (32) we have

n∑

k=1

zkr = −b1r tr + o(tr ) (33)

and

n∑

k=1

(zkr )
2 = −2b2r tr + o(tr ), (34)

respectively. With this notation, (30) becomes

φ(λ0) + ηr tr + o(tr ) ≥ φ(λ0 + zkr ), k = 1, . . . , n.

Taking second-order Taylor expansions yields

ηr tr + o(tr ) ≥ φ′(λ0; zkr ) + 1

2
φ′′(λ0; zkr , zkr ) + o(|zkr |2), k = 1, . . . , n, (35)

(note that if φ is quadratic then the term o(|zkr |2) equals zero). Since pr → e(n,λ0), we
have zkr → 0, k = 1, . . . , n. Hence, the positive definiteness of φ′′(λ0; ·, ·) implies
that for every ε > 0 there is an r0 such that

1

2
φ′′(λ0; zkr , zkr ) + o(|zkr |2) ≥ 1 − ε

2
φ′′(λ0; zkr , zkr ),

for k = 1, . . . , n and all r ≥ r0 (if φ is quadratic then we can take ε = 0 without the
assumption of positive definiteness). Therefore, for r ≥ r0, the inequalities (35) imply
the inequalities

ηr tr + o(tr ) ≥ φ′(λ0; zkr ) + 1 − ε

2
φ′′(λ0; zkr , zkr ), k = 1, . . . , n.
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Now sum over k and again use the positive definiteness of φ′′(λ0; ·, ·) with Lemma 5
and definition (5) to obtain

ηr tr + o(tr ) ≥ 1

n

[

φ′(λ0;
n∑

k=1

zkr ) + 1 − ε

2

n∑

k=1

φ′′
(

λ0;
√

z2
kr ,

√
z2
kr

)]

≥ 1

n



φ′(λ0;
n∑

k=1

zkr ) + 1 − ε

2
φ′′



λ0;
√
√
√
√

n∑

k=1

z2
kr ,

√
√
√
√

n∑

k=1

z2
kr







 ,

for all r ≥ r0. Plugging in (33) and (34) gives the relation

ηr tr ≥ tr

n

[
φ′(λ0; −b1r ) + (1 − ε)φ′′(λ0;

√
−b2r ,

√
−b2r )

]

+o(tr ).

Dividing through by tr and taking the limit yields the inequality

η ≥ 1

n

[
φ′(λ0; −b1) + (1 − ε)φ′′(λ0;

√
−b2,

√
−b2)

]
.

Observe that if φ is quadratic, we can obtain this inequality with ε = 0 without the
positive definiteness assumption. Since ε > 0 was arbitrary, we obtain (29). ��

If φ is not quadratic and φ′′(λ0; ·, ·) is only positive semidefinite, we can still sharpen
(22) but not as finely as in (29). The proof in the indefinite case is completely different.
Unlike the proof of Theorem 4, it relies only on the Gauss-Lucas Theorem.

Theorem 5. If in Theorem 3 it is further assumed that φ is twice continuously differen-
tiable, then condition (22) can be strengthened to

η ≥ 1

n

[

φ′(λ0; −b1) + 1

(n − 1)
φ′′(λ0;

√
−b2,

√
−b2)

]

, (36)

when n > 1.

Proof. Consider the polynomial p = ∑n
k=0 ake(n−k,λ0) and set

r =
√
(

a1

na0

)2

− 2a2

n(n − 1)a0

The Gauss-Lucas theorem tells us that if µ ≥ φ̂(p), then

µ ≥ max
{
φ(λ)

∣
∣
∣p(n−2)(λ) = 0

}

= max

{

φ(λ)

∣
∣
∣
∣ λ = λ0 + −a1

na0
± r

}

≥ φ

(

λ0 + −a1

na0
± r

)

,
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where

φ

(

λ0 + −a1

na0
± r

)

= φ(λ0) +
〈

φ′(λ0) ,
−a1

na0

〉

+ 1

2

〈

φ′′(λ0)

(−a1

na0

)

,

(−a1

na0

)〉

± 〈
φ′(λ0) , r

〉 ±
〈

φ′′(λ0)

(−a1

na0

)

, r

〉

+1

2

〈
φ′′(λ0)r , r

〉 + o

(∣
∣
∣
∣
−a1

na0
± r

∣
∣
∣
∣

2
)

.

By adding the resulting pair of inequalities, one associated with each of the two roots,
and then dividing by 2, we get the inequality

µ ≥ φ(λ0) +
〈

φ′(λ0) ,
−a1

na0

〉

+ 1

2

〈

φ′′(λ0)

(−a1

na0

)

,

(−a1

na0

)〉

+1

2

〈
φ′′(λ0)r , r

〉 + o

(∣
∣
∣
∣
−a1

na0
± r

∣
∣
∣
∣

2
)

. (37)

Next, suppose that (v, η) ∈ Tepi (φ̂)

(
e(n,λ0), φ(λ0)

)
with v given by (21). By Lemma

1, (ṽ, η) ∈ Tepi (φ̂1)

(
e(n,λ0), φ(λ0)

)
, where

ṽ =
n∑

k=1

bke(n−k,λ0).

Then, as in the proof of Theorem 3, there exist sequences tj ↓ 0 and {(pj , µj )} ∈ epi (φ̂1)

such that

t−1
j ((pj , µj ) − (e(n,λ0), φ(λ0))) → (ṽ, η).

That is, there exists {(aj
0 , a

j
1 , . . . , a

j
n)} ∈ C

n+1 such that

pj =
n∑

k=0

a
j
k e(n−k,λ0),

t−1
j (µj − φ(λ0)) → η, a

j
0 = 1 for all j = 1, 2, . . . , and t−1

j a
j
k → bk for k = 1, . . . , n.

By replacing µ by µj and ak by a
j
k , k = 0, . . . , n in (37), dividing through by tj , and

slightly re-arranging, we obtain

µj − φ(λ0)

tj
≥

〈

φ′(λ0) ,
−a

j
1

ntj

〉

+ 1

2

〈

φ′′(λ0)

(
−a

j
1

ntj

)

,

(
−a

j
1

n

)〉

+1

2

〈
φ′′(λ0)r

j , rj
〉
+ t−1

j o





∣
∣
∣
∣
∣

−a
j
1

n
± rj

∣
∣
∣
∣
∣

2


 ,
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where

rj =

√
√
√
√
√
√




a

j
1

nt
1
2
j





2

− 2a
j
2

n(n − 1)tj
.

Taking the limit in this inequality as j → ∞ yields (36). ��
The representation (7) along with Theorems 3, 4, and 5 yield the following repre-

sentations and bounds for the subderivative of the function φ̂.

Theorem 6. Let φ̂ be as defined in (1), λ0 ∈ dom (∂φ) with ∂φ(λ0) �= {0}, and

v =
n∑

k=0

bke(n−k,λ0)

be given. Then dφ̂(e(n,λ0))(v) = +∞ if (23) and (24) are not satisfied; otherwise,

dφ̂(e(n,λ0))(v) ≥ 1

n
φ′(λ0; −b1), (38)

with equality holding if rspan (∂φ(λ0)) = C.
If it is further assumed that the function φ is twice continuously differentiable at λ0,

then whenever n > 1 the inequality (38) can be refined to

1

n

[

φ′(λ0; −b1) + 1

n − 1
φ′′(λ0;

√
−b2,

√
−b2)

]

(39)

≤ dφ̂(e(n,λ0))(v) ≤ 1

n

[
φ′(λ0; −b1) + φ′′(λ0;

√
−b2,

√
−b2)

]
, (40)

whenever (23) and (24) are both satisfied. “Moreover, quality holds in the second in-
equality in (40) if any one of the following three conditions hold”

φ′′(λ0;
√

−b2,
√

−b2) = 0, (41)

φ′′(λ0; ·, ·) is positive definite, or (42)

φ is quadratic. (43)

Proof. By Theorem 3 we know that the subderivative is +∞ if (23) and (24) are not
satisfied. The lower bounds (38) and (39) are immediate consequences of Theorems 3
and 5, respectively.

The representation (7) and Lemma 1 imply that with no loss in generality we may
assume for the remainder of the proof that b0 = 0 in v.

Suppose that rspan (∂φ(λ0)) = C and (23) and (24) hold. We show that equality
must hold in (38). As noted in Lemma 4, rspan (∂φ(λ0)) = C implies that bk = 0, k =
2, 3, . . . , n. To see that equality is attained consider the family of polynomials

pξ (λ) = (λ − λ0 + ξb1/n)n

= (λ − λ0)
n + ξb1(λ − λ0)

n−1 + o(ξ).
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For any sequence of real positive scalars {ξν} decreasing to zero definition (8) shows
that

φ′(λ0; −b1/n) = lim
ν→∞

φ(λ0 − ξνb1/n) − φ(λ0)

ξν

= lim
ν→∞

φ̂(pξν ) − φ̂(e(n,λ0))

ξν

≥ dφ̂(e(n,λ0))(v),

hence equality holds in (38).
If either φ is quadratic, or φ′′(λ0; ·, ·) is positive definite, then Theorem 4 tells us

that the expression on the right hand side of (40) is also a lower bound. Thus, to show
equality in these two cases we need only establish the upper bound (40). In addition,
once this upper bound is established then we also obtain equality when (41) holds since
in this case the upper bound (40) reduces to the lower bound (38). Thus, it remains only
to prove the upper bound (40). We assume throughout that the polynomial v satisfies
both (23) and (24).

We use (8) to establish the upper bound (40). The bound is obtained by considering
the tangents to smooth curves having as limit e(n,λ0). The proof proceeds by considering
the even and odd cases for n separately. But in both cases we make use of the following
family of polynomials:

q(ξ,ν)(λ) =
(

λ −
(

λ0 − ξ

n
(b1 − 1

2m
ν) +

√
−b2ξ/m

))m

·
(

λ −
(

λ0 − ξ

n
(b1 − 1

2m
ν) −

√
−b2ξ/m

))m

=
(

(λ − λ0)
2 + 2ξ

n
(b1 − ν

2m
)(λ − λ0) + b2ξ/m + o(ξ)

)m

= (λ − λ0)
2m + 2mξ

n
(b1 − ν

2m
)(λ − λ0)

2m−1

+ b2ξ(λ − λ0)
2m−2 + o(ξ).

First assume that n is even: n = 2m for some positive integer m. Consider the family
of polynomials

q(ξ,0)(λ) = (λ − λ0)
n + ξv(λ) + o(ξ).

For all ξ , this polynomial has only two roots:

λξ = λ0 − b1

n
ξ ±

√
−b2

m
ξ.

For ξ real and positive, the second-order Taylor expansion of φ at these roots gives

φ̂(q(ξ,0)) = max

{

φ

(

λ0 − b1

n
ξ +

√
−b2

m
ξ

)

, φ

(

λ0 − b1

n
ξ −

√
−b2

m
ξ

)}

= φ(λ0) + ξ

[

φ′(λ0; −b1/n) + 1

2
φ′′(λ0;

√
−b2/m,

√
−b2/m)

]

+ o(ξ)
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since by (23),
〈
φ′(λ0) ,

√−b2
〉 = 0. Therefore,

dφ̂(e(n,λ0))(v) ≤ lim
ξ↘0

φ̂(q(ξ,0)) − φ(λ0)

ξ

= 1

n

[
φ′(λ0; −b1) + φ′′(λ0;

√
−b2,

√
−b2)

]
,

establishing the even case.
Now consider the odd case with n = 2m + 1. This time set

ν = −φ′′(λ0;
√−b2,

√−b2)

φ′(λ0)

and consider the family of polynomials

pξ (λ) =
(

λ −
(

λ0 − ξ

n
(b1 + ν)

))

q(ξ,ν)(λ)

= (λ − λ0)
n + ξv(λ) + o(ξ).

For all values of ξ the roots of this polynomial are

λ0 − ξ

n
(b1 + ν) and λ0 − ξ

n
(b1 − 1

2m
ν) ±

√
−b2ξ/m.

Taking the second-order Taylor expansion of φ at the root λ0 − ξ
n
(b1 + ν) for ξ real and

positive shows that φ(λ0 − ξ
n
(b1 + ν)) equals

φ(λ0) + (ξ/n)
[
φ′(λ0; −b1) + φ′′(λ0;

√
−b2,

√
−b2)

]
+ o(ξ). (44)

Similarly, taking the second-order Taylor expansion of φ at either of the two roots λ0 −
ξ
n
(b1− 1

2m
ν)±√−b2ξ/m for ξ real and positive and using the fact thatφ′(λ0;

√−b2) = 0
shows that

φ

(

λ0 − ξ

n
(b1 − 1

2m
ν) ±

√
−b2ξ/m

)

also equals (44). Therefore, for ξ real and positive, we have

φ̂(pξ ) = φ(λ0) + 1

n
(φ′(λ0; −b1) + φ′′(λ0;

√
−b2,

√
−b2))ξ + o(ξ).

The proof is completed as in the even degree case. ��

Theorem 3 and its refinements give necessary conditions for inclusion in the tan-
gent cone Tepi (φ̂)

(
e(n,λ0), φ(λ0)

)
. We now use the conditions given in Theorem 6 to

characterize the tangent cone when φ is twice differentiable at λ0.
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Theorem 7. Let λ0 ∈ dom (φ) be such that ∂φ(λ0) �= {0}, and set

v =
n∑

k=0

bke(n−k,λ0).

If either rspan (∂φ(λ0)) = C or φ is twice continuously differentiable at λ0 and any one
of the three conditions (41)–(43) hold, then (v, η) ∈ Tepi (φ̂)

(
e(n,λ0), φ(λ0)

)
if and only if

η ≥ 1

n

[
φ′(λ0; −b1) + φ′′(λ0;

√
−b2,

√
−b2)

]
,

0 =
〈
g ,

√
−b2

〉
∀ g ∈ ∂φ(λ0), and (45)

0 = bk, k = 3, . . . , n,

where we interpret the term φ′′(λ0;
√−b2,

√−b2) as zero when φ is not twice contin-
uously differentiable at λ0.

Proof. Apply Theorem 6 in conjunction with the representation (7). ��

3. Regular normals and subgradients

Next consider the variational objects dual to the tangent cone and the subderivative.
These are the cone of regular normals to the epigraph at a point and the set of reg-
ular subgradients. The cone of regular normals is the polar of the tangent cone [14,
Proposition 6.5]:

N̂epi (f )(x) = Tepi (f )(x)◦

= {
(z, τ )

∣
∣ 〈(z, τ ) , (w, µ)〉 ≤ 0, ∀ (w, µ) ∈ Tepi (f )(x)

}
.

A vector v is a regular subgradient [14, Definition 8.3] for f at x ∈ dom (f ) if

f (y) ≥ f (x) + 〈v , y − x〉 + o(|y − x|). (46)

We call the collection of all regular subgradients for f at x the regular subdifferential
of f at x and denote this set by ∂̂f (x). The regular subdifferential at a point is always
a closed convex set. At points x where ∂̂f (x) �= ∅ the regular normals and the regular
subgradients are related by the formula [14, Theorem 8.9]

N̂epi (f )(x) =
{
t (v, −1)

∣
∣
∣ v ∈ ∂̂f (x), t > 0

}
∪
{
(v, 0)

∣
∣
∣ v ∈ ∂̂f (x)

∞ }
, (47)

where ∂̂f (x)
∞

denotes the recession cone of the set ∂̂f (x). The recession cone of any
convex set C is given by

C∞ = {z | x + τz ∈ C ∀ x ∈ C and τ ∈ IR } .

The regular subdifferential is related to the subderivative by the formula [14, Exercise 8.4]

∂̂f (x) = {v | 〈v , w〉 ≤ df (x)(w) ∀ w } . (48)
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Recall that the support function for any set D in a Euclidean space E is given by

σD(w) = sup
v∈D

〈v , w〉 .

The support function of a set is a sublinear function and coincides with the support
function for the closed convex hull of the set. The domain of the support function for
a convex set C is called the barrier cone for C, denoted bar (C) [13, Section 13]. The
polar of the barrier cone is precisely the recession cone [13, Corollary 14.2.1]:

bar (C)◦ = C∞.

If the set C is itself a convex cone, then C∞ = cl (C) and bar (C) = (C∞)◦. Sup-
port functions are important in the context of the theory of subdifferentials since the
representation (48) implies the inequality

σ
∂̂f (x)

(w) ≤ df (x)(w) ∀ w ∈ E.

We use the relation (48) to estimate the regular subdifferential of φ̂ at e(n,λ0) and
then use this estimate to approximate the cone of regular normals. Our estimates for the
regular subdifferential depends on the following parameterized family of multifunctions
�δ : dom (∂φ) ⇒ C

n+1 with parameter values 0 ≤ δ ∈ IR. For δ = 0, define �0(λ0)

as the direct product

�0(λ0) = {0} × (−1

n
∂φ(λ0)) × Kλ0 × C

n−2,

where Kλ0 is defined in (28). For δ > 0, the multifunction �δ is only defined when φ is
twice continuously differentiable in which case

�δ(λ0)={0} × {−φ′(λ0)/n} × �(δ,2)(λ0) × C
n−2,

where

�(δ,2)(λ0) =
{
θ2

∣
∣
∣
〈
θ2, φ

′(λ0)
2
〉
≤ δ

〈
( i φ′(λ0)) , φ′′(λ0)( i φ′(λ0))

〉}
.

Given λ0 ∈ dom (∂φ) and δ ≥ 0, the set �δ(λ0), when defined, is a non-empty
closed convex set. Since we use (47) to estimate the regular normals from the regular
subdifferential, we require expressions for the recession cone of the sets �δ(λ0). Since

�(δ,2)(λ0)
∞ =

{
θ2

∣
∣
∣
〈
θ2, φ

′(λ0)
2
〉
≤ 0

}
= Kλ0

and the recession cone of a product of sets is the product of their recession cones, we
have

�δ(λ0)
∞ = {0} × (−∂φ(λ0)

∞) × Kλ0 × C
n−2 (49)

for all δ ≥ 0.
We now characterize the support function for the sets �δ(λ0).
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Lemma 6. Let λ0 ∈ dom (φ) be such that ∂φ(λ0) �= {0}, and let δ ≥ 0. Then for every
vector

b = (b0, b1, . . . , bn)
T ∈ C

n+1

we have σ�δ(λ0)(b) < +∞ if and only if the components of b satisfy (23) and (24), in
which case

σ�δ(λ0)(b) = 1

n
φ′(λ0; −b1) + δφ′′

(
λ0;

√
−b2,

√
−b2

)
. (50)

Here the term δφ′′ (λ0;
√−b2,

√−b2
)

is to be interpreted as zero when δ = 0 and φ is
not twice continuously differentiable at λ0. Finally, if φ is twice continuously differen-
tiable at λ0 with

〈
( i φ′(λ0)) , φ′′(λ0)( i φ′(λ0))

〉 = 0,

then δφ′′(λ0;
√−b2,

√−b2) = 0 for every b ∈ C
n+1 satisfying (23) and (24).

Proof. Since �δ(λ0) is a direct product of sets,

σ�δ(λ0)(b) = sup
θ∈�δ(λ0)

〈θ , b〉

= 1

n
φ′(λ0; −b1) + sup

θ2∈�(δ,2)(λ0)

〈θ2 , b2〉 +
n∑

j=3

sup
θj ∈C

〈
θj , bj

〉
. (51)

Clearly, σ�δ(λ0)(b) is finite if and only if both the second and third terms in (51) are
finite. We will show that second term is finite if and only if b satisfies (23), and the third
term is finite if and only if b satisfies (24).

For the third term in (51) we have
∑n

j=3 supθj ∈C

〈
θj , bj

〉
< ∞ if and only if

supθj ∈C

〈
θj , bj

〉
< ∞, j = 3, . . . , n, or equivalently, (24) holds.

Consider now the second term in (51). It is the support function for the convex set
�(δ,2)(λ0). This term is finite if and only if b2 is an element of the barrier cone of
�(δ,2)(λ0) [13, page 112]. The barrier cone is contained in the polar of the recession
cone of �(δ,2)(λ0). By (49), this recession cone is the set Kλ0 , i.e.

bar (�(δ,2)(λ0)) ⊂ K◦
λ0

.

In the case where δ = 0, �(0,2)(λ0)
∞ = Kλ0 , and so bar (�(0,2)(λ0)) = K◦

λ0
. Therefore,

by Lemma 4, supθ2∈�(0,2)(λ0)
〈θ2 , b2〉 < ∞ if and only if b2 satisfies (23). For δ > 0,

let b2 ∈ K◦
λ0

= −cone (φ′(λ0)
2) so that there is a τ ∈ IR+ such that b2 = τφ′(λ0)

2.
Then for any θ2 ∈ �(δ,2)(λ0)

〈θ2 , b2〉 = τ
〈
θ2 , φ′(λ0)

〉 ≤ δ
〈
( i φ′(λ0)) , φ′′(λ0)( i φ′(λ0))

〉
< ∞.

Hence, K◦
λ0

⊂ bar (�(δ,2)(λ0)), that is,

bar (�(δ,2)(λ0)) = K◦
λ0

∀ δ ≥ 0 ,

and, again by Lemma 4, supθ2∈�(0,2)(λ0)
〈θ2 , b2〉 < ∞ if and only if b2 satisfies (23).
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Thus we have shown that σ�δ(λ0)(b) is finite if and only if the second and third terms
in (51) are finite which occurs if and only if b satisfies (23) and (24).

Next suppose that σ�δ(λ0)(b) is finite, or equivalently, assume that b satisfies (23)
(i.e., b2 ∈ K◦

λ0
) and (24). We show that (50) holds. If δ = 0, then

sup
θ2∈�(0,2)(λ0)

〈θ2 , b2〉 = sup
θ2∈Kλ0

〈θ2 , b2〉

= 0

= δ
〈√

−b2 , φ′′(λ0)
√

−b2

〉
,

where the second equality follows since b2 ∈ K◦
λ0

. Now suppose that δ > 0. Then, by
Lemma 4(ii), there is a τ ∈ IR such that

√
b2 = τφ′(λ0). Hence

sup
θ2∈�(δ,2)(λ0)

〈θ2 , b2〉 = τ 2 sup
θ2∈�(δ,2)

〈
θ2 , φ′(λ0)

2
〉

= τ 2δ
〈
( i φ′(λ0)) , φ′′(λ0)( i φ′(λ0))

〉

= δ
〈
( i τφ′(λ0)) , φ′′(λ0)( i τφ′(λ0))

〉

= δ
〈
( i
√

b2) , φ′′(λ0)( i
√

b2)
〉

= δ
〈√

−b2 , φ′′(λ0)
√

−b2

〉
.

Hence, in either case, (50) holds. The final statement of the Theorem also follows from
the final derivation above. ��

Lemma 6 combined with Theorem 6 and the representation (48) provide a basis for
estimates, and in some cases formulas, for the regular subdifferential of φ̂ at e(n,λ0). But
first we need to map the sets �δ(λ0) into the space of polynomials. Given λ0 ∈ C define
the linear transformation τλ0 : Pn → C

n+1 to be the mapping that takes a polynomial
to its Taylor series coefficients when expanded at the base point λ0, specifically,

τλ0(p) =
(
p(n)(λ0)/n, . . . , p′(λ0), p(λ0)

)T

. (52)

Equivalently, if p has the representation p = ∑n
k=0 ake(n−k,λ0), then τλ0(p) = (a0, a1,

. . . , an)
T . The family of linear transformations τλ is continuous in λ, and for each λ0

the transformation τλ0 is invertible. Indeed, one has

τ−1
λ0

= τ ∗
λ0

when the adjoint τ ∗
λ0

is defined using the inner product 〈· , ·〉λ0 .

Theorem 8. Let φ̂ be as defined in (1) and λ0 ∈ dom (φ) be such that ∂φ(λ0) �= {0}.
Then

dφ̂(e(n,λ0))(v) ≥ σ�0(λ0)(τλ0(v)) (53)

for all v ∈ Pn and

τ ∗
λ0

�0(λ0) ⊂ ∂̂ φ̂(e(n,λ0)), (54)
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where τ ∗
λ0

is the adjoint of τλ0 with respect to the inner product 〈· , ·〉λ0 . Equality holds
in both (53) and (54) if rspan (∂φ(λ0)) = C.

If it is further assumed that the function φ is twice continuously differentiable at λ0
with φ′(λ0) �= 0, then

σ�δ1 (λ0)(τλ0(v)) ≤ dφ̂(e(n,λ0))(v) ≤ σ�δ2 (λ0)(τλ0(v)), (55)

for all v ∈ Pn, and

τ ∗
λ0

�δ1(λ0) ⊂ ∂̂ φ̂(e(n,λ0)) ⊂ τ ∗
λ0

�δ2(λ0) (56)

where δ1 = 1/(n(n − 1)) and δ2 = 1/n. Furthermore, if φ is quadratic, or φ′′(λ0; ·, ·)
is positive definite, or

〈
( i φ′(λ0)) , φ′′(λ0)( i φ′(λ0))

〉 = 0, then

dφ̂(e(n,λ0))(v) = σ�δ2 (λ0)(τλ0(v))

for all v ∈ Pn, and

∂̂ φ̂(e(n,λ0)) = τ ∗
λ0

�δ2(λ0) .

Proof. Inequality (53) follows from the bound (38) in Theorem 6 coupled with Lemma
6. The left and right inequalities in (55) follow from (39) and (40) in Theorem 6, respec-
tively, again in conjunction with Lemma 6. The subdifferential inclusions in (54) and
the left hand side of (56) follow immediately from the definition of the adjoint transfor-
mation, the representation (48), the inequalities in (53), and the left hand side of (55),
respectively. Here we have also used the identity

σD(A ·) = σA∗D(·),
where A is any linear transformation between Euclidean spaces E1 and E2.

The inclusion on the right hand side of (56) follows from the definition of the adjoint
transformations and the fact that for any two closed convex sets C1 and C2 one has that
C1 ⊂ C2 if and only if σC1(v) ≤ σC2(v) for all v.

The final statement of the Theorem follows from the final statement of Theorem 6,
the final statement of Lemma 6, and the preceding comment on the relationship between
support functions and convex sets. ��

We now apply Theorem 8 to (47) obtaining approximations to the cone of regular
normals to epi (φ̂) at the point (e(n,λ0), φ(λ0)). We begin by extending the definitions
for the sets �δ(λ0) by the formula

�δ(λ0) = {γ (θ, −1) | θ ∈ �δ(λ0), 0 < γ ∈ IR } ∪ �δ(λ0)
∞,

where the recession cone �δ(λ0)
∞ is given by the formula (49). In addition, for each

λ ∈ C, define the linear transformation τ̂λ : Pn × IR → C
n+1 × IR by τ̂λ(p, µ) =

(τλ(p), µ) where the linear transformation τλ is defined in (52). The adjoint of τ̂λ, with
respect to the inner product

〈(q, η) , (p, µ)〉 = 〈q , p〉λ0
+ ηµ

on Pn × IR, is the linear transformation τ̂ ∗
λ : C

n+1 × IR → Pn × IR given by

τ̂ ∗
λ (w, µ) = (τ ∗

λ (w), µ) = τ̂−1
λ (w, µ).

Theorem 8 and relation (47) give the following corollary to Theorem 8.
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Corollary 1. Let δ ≥ 0 and φ̂ be as defined in (1) with λ0 ∈ dom (∂φ) satisfying
∂φ(λ0) �= {0}. Then

τ̂ ∗
λ0

�0(λ0) ⊂ N̂epi (φ̂)
(e(n,λ0), φ(λ0)), (57)

with equality holding if rspan (∂φ(λ0)) = C. If it is further assumed that the function φ

is twice continuously differentiable at λ0 with φ′(λ0) �= 0, then

τ̂ ∗
λ0

�δ1(λ0) ⊂ N̂epi (φ̂)
(e(n,λ0), φ(λ0)) ⊂ τ̂ ∗

λ0
�δ2(λ0) (58)

where δ1 = 1/(n(n − 1)) and δ2 = 1/n. Furthermore, if φ is quadratic, or φ′′(λ0; ·, ·)
is positive definite, or

〈
( i φ′(λ0)) , φ′′(λ0)( i φ′(λ0))

〉 = 0, then

N̂epi (φ̂)
(e(n,λ0), φ(λ0)) = τ̂ ∗

λ0
�δ2(λ0) .

4. The abscissa mapping

We apply the results of the preceding two sections to the abscissa mapping for polyno-
mials:

a(p) = sup {Re λ | λ ∈ R(p) } .

Here a = φ̂, where φ̂ is defined in (1) with the function φ given by the linear form

φ(λ) = 〈1 , λ〉 .

Since φ′′(λ) ≡ 0, we obtain complete characterizations for the variational objects under
study. We state two results. The first concerns the tangent cone and subderivative, and
the second the regular normals and subdifferential.

Theorem 9. Given λ0 ∈ C, one has (v, η) ∈ Tepi (a)

(
e(n,λ0), Re (λ0)

)
, with

v =
n∑

k=0

bke(n−k,λ0)

if and only if

η ≥ −1

n
Re (b1),

0 ≤ Re b2, 0 = Im b2, and

0 = bk, k = 3, . . . , n.

Moreover, da(e(n,λ0))(v) = +∞ if (59) and (59) are not satisfied; otherwise,

da(e(n,λ0))(v) = −1

n
Re (b1).

Proof. The final statement of the theorem follows immediately from the final statement
of Theorem 6. The first part of the result follows from Theorem 7. ��
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Remark 2. The two conditions 0 ≤ Re b2 and 0 = Im b2 in (59) are equivalent to the
single condition 0 = Re

√−b2 which follows from condition (45) in Theorem 7.

The subdifferential and normal cone characterizations follow directly from Theorem
8 and Corollary 1.

Theorem 10. Let λ0 ∈ C be given. Then

N̂epi (a)(e(n,λ0), Re (λ0)) = τ̂ ∗
λ0

{

t (w, −1)

∣
∣
∣
∣

0 ≤ t, w0 = 0, w1 = −1
n

and Re (w2) ≤ 0

}

,

and

∂a(e(n,λ0)) = τ ∗
λ0

{w | w0 = 0, w1 = −1/n, and Re (w2) ≤ 0 } .

The results of Theorems 9 and 10 coincide precisely with those found in [3, 5].

5. The radius mapping

Consider now the radius mapping for polynomials:

r(p) = sup {|λ| | λ ∈ R(p) } .

Here r = φ̂, where φ̂ is defined in (1) with the function φ given by the modulus

φ(λ) = |λ| .
The modulus is convex and infinitely differentiable in the real sense except at the origin.
The convex subdifferential is given by

∂ |·| (ζ ) =
{

B, if ζ = 0;
ζ/ |ζ | , otherwise,

where B = {ζ | |ζ | ≤ 1 } is the closed unit disk in C. At nonzero ζ we have

|·|′′ (ζ ; δ, δ) = 1

|ζ |
[
|δ|2 − 〈ζ/ |ζ | , δ〉2

]
.

Since for λ0 �= 0 the Hessian is not positive definite and

1

|λ0| =
〈(

i λ0

|λ0|
)

, φ′′(λ0)

(
i λ0

|λ0|
)〉

,

it would seem that our strongest results for the polynomial e(λ0,n) do not apply when
λ0 �= 0. However, this difficulty is easily sidestepped.

Lemma 7. Let p ∈ Mn be any polynomial for which r(p) > 0. Then (v, η) ∈
Tepi (r)(p, µ) if and only if (v, µη) ∈ Tepi (r2)(p, 1

2µ2), where

r2(p) = sup

{
1

2
|λ|2 | λ ∈ R(p)

}

.
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Proof. Let (v, η) ∈ Tepi (r)(p, µ). Then there exist sequences

{(pk, µk)} ⊂ epi (r) and tk ↘ 0 (59)

such that
pk − p

tk
→ v, and (60)

µk − µ

tk
→ η. (61)

Moreover, we may assume with no loss in generality that µk > 0 for all k since µ ≥
r(p) > 0.

Now since (p, µ) ∈ epi (r) if and only if (p, µ2/2) ∈ epi (r2), we have (59) is
equivalent to

{(pk, µ
2
k/2)} ⊂ epi (r2) and tk ↘ 0. (62)

Also, since 0 < µ, µk , (61) is equivalent to

(µk − µ)(µk + µ)

tk
→ 2µη

or equivalently,

1
2µ2

k − 1
2µ2

tk
→ µη. (63)

Therefore, the statements (59)–(61) are equivalent to the statements (62), (60), and (63),
or equivalently, (v, µη) ∈ Tepi (r2)(p, µ). ��

Lemma 7 gives the representation

Tepi (r)(p, µ) =
{
(v, η/µ)

∣
∣
∣ (v, η) ∈ Tepi (r2)(p, µ2/2)

}
, (64)

whenever r(p) > 0. Since 1
2 |·|2 is quadratic, with ( 1

2 |·|2)′′(ζ ; δ, δ) = |δ|2, Theorem 7
provides a complete characterization of the tangent cone Tepi (r)(e(n,λ0), |λ0|).
Theorem 11. Let λ0 ∈ C and let (v, η) ∈ Pn × IR be such that

v =
n∑

k=0

bke(n−k,λ0).

(i) If λ0 = 0, then (v, η) ∈ Tepi (r)(e(n,0), λ0) if and only if

η ≥ 1

n
|b1| ,

0 = bk, k = 2, 3, . . . , n.

Moreover, dr(e(n,λ0))(v) = +∞ if (65) is not satisfied; otherwise,

dr(e(n,λ0))(v) = 1

n
|b1| .
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(ii) If λ0 �= 0, then (v, η) ∈ Tepi (r)(e(n,λ0), |λ0|) if and only if

η ≥ 1

n |λ0|
[|b2| − Re λ̄0b1

]
,

0 = Re λ̄0

√
−b2, and

0 = bk, k = 3, . . . , n.

Moreover, dr(e(n,λ0))(v) = +∞ if (65) and (65) are not satisfied; otherwise,

dr(e(n,λ0))(v) = 1

n |λ0|
[|b2| − Re λ̄0b1

]
.

Proof. The case λ0 = 0 follows from Theorem 6 and the representation (7) since the
fact that B = ∂ |·| (0) has non-empty interior implies that rspan (∂ |·| (0)) = C. The case
λ0 �= 0 follows from Theorem 7 and the representation (64). ��

We have the following dual variational results for the regular subdifferential and
normal cone.

Theorem 12. Let λ0 ∈ C and let the linear transformation τλ : Pn → C
n+1 be as

defined in (52). Set

�r(λ0) =











θ0
...

θn






∣
∣
∣
∣ θ0 = 0, θ1 ∈ 1

n
B





,

if λ0 = 0; otherwise, set

�r(λ0) =











θ0
...

θn






∣
∣
∣
∣ θ0 = 0, θ1 = −λ0

n |λ0| ,
〈
θ2 , λ0

2
〉
≤ |λ0|

n





.

(i) If λ0 = 0, then

dr(e(n,λ0))(v) = σ�r(λ0)(τλ0(v)),

∂̂r(e(n,λ0)) = τ ∗
λ0

�r(λ0),

and

N̂epi (r)(e(n,λ0), 0) =
{

(τ ∗
λ0

(w), −µ)

∣
∣
∣
∣
µ ≥ 0, w ∈ C

n+1,

w0 = 0, |w1| ≤ µ

}

.

(ii) If λ0 �= 0, then

dr(e(n,λ0))(v) = σ�r(λ0)(τλ0(v)), (65)

∂̂r(e(n,λ0)) = τ ∗
λ0

�r(λ0), (66)

and

N̂epi (r)(e(n,λ0), λ0) =
{

(τ ∗
λ0

(w), −µ)

∣
∣
∣
∣
∣

µ ≥ 0, w0 = 0, w1 = −µλ0
|λ0| ,

〈
w2 , λ0

2
〉 ≤ µ |λ0|

}

. (67)
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Proof. Let us first suppose that λ0 = 0. In this case, rspan (∂ |·| (0)) = C since the
subdifferential B = ∂ |·| (0) has non-empty interior, hence the results of Theorems 6 and
(58) directly apply to give the result.

Next suppose that λ0 �= 0. In this case, Lemma 6 combined with Part (2) of Theorem
11 gives (65). This in turn establishes (66) due to the relation (48). The final relation
(67) follows from the equivalence (47). ��

6. Concluding remarks

We have shown that the Gauss-Lucas technique presented in [3] extends nicely to the
class (1) obtaining first-order necessary condition for inclusion in the tangent cone
Te(n,λ0)

(epi (φ̂)) (Theorem 3). However, substantial additional work was required to
obtain the second-order necessary and sufficient conditions given in Theorem 7. It is
gratifying that the second-order result preserves the simplicity and geometric appeal of
Theorem 3. Simply stated the result says that first-order growth in φ̂ is controlled not
only by φ′(λ0) but also by the second-order behavior in directions that are both perpen-
dicular to φ′(λ0) and correspond to a square root splitting of the roots. This is illustrated
in the application to the radius mapping in Section 5.

Regrettably, Theorem 7 is still incomplete in the case where φ′′(λ0) is indefinite. We
conjecture that the result continues to hold in this case. This conjecture is closely related
to the much deeper conjecture that the functions φ̂ are prox-regular [14, Definition 13.27]
at points where φ is twice differentiable. If true, this result would make a number of
results possible including the extension of Theorem 7 to the indefinite case. Indeed, the
prox-regularity question is at this time the most important unresolved issue concerning
this class of functions.

The extension of the results in the previous sections to general polynomials on Mn

and issues of subdifferential regularity are part of our ongoing work.
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