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PERTURBING THE CRITICALLY DAMPED WAVE EQUATION*

STEVEN J. COXt AND MICHAEL L. OVERTON$

Abstract. We consider the wave equation with viscous damping. The equation is said to be
critically damped when the damping is that value for which the spectral abscissa of the associated
wave operator is minimized within the class of constant dampings. The critically damped wave

operator possesses a nonsemisimple eigenvalue. We present a detailed study of the splitting of this
eigenvalue under bounded perturbations of the damping and subsequently show that the critical
choice is a local minimizer of the spectral abscissa over lines in the class of all bounded dampings.
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1. Introduction. We are concerned with the damped wave equation

(1.1) utt(x, t) Au(x, t) + 2a(x)ut(x, t) 0, u(., t) E H01(t),

on the open bounded connected set t c Rd, where a is near critical. We define our
use of the word critical by analogy to the scalar damped linear oscillator

(1.2) + + 0.

One notes that Y(t) -[y(t) y’(t)]T satisfies the first-order system Y’(t) A(a)Y(t),
where

A(a)_(O 1 )-1 -2a

and solves the corresponding initial value problem in terms of the eigenvalues and
eigenvectors of A(a). The effectiveness of the damping is measured by the decay rate

w(a) -inf{a 3 C s.t. IlY(t)[I = _< CI Y(0)I 2et, VY(0), V t _> 0}.

In this context one easily identifies w(a) with the spectral abscissa of A(a), i.e., with

#(a)- sup A,
)ea(a)

where a(a) is the spectrum of A(a). As it(a) -a / v/a2 1 achieves its minimum
at a 1, (1.2) is said to be over(under)damped if a > 1 (a < 1) and critically damped
ira- 1.

Analogously, with v(t) [u(t) ut(t)] we interpret (1.1) as vt- A(a)v, where

(0 I ) D(A) (H2()CH(Vt)) H(gt)(1.3) A(a)- A-2a
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is densely defined in the Hilbert space X H0 () L2() with inner product

([f, g], [u, v]) =/ Vf V+ gdx.

When a lies in L(t), this A(a) has a compact inverse and so a discrete spectrum,
a(a). Cox and Zuazua [3] have shown that one may identify the decay rate with
the spectral abscissa when d 1 and a is of bounded variation. When d > 1 the
spectral abscissa is known to be insufficient. Lebeau [6] has shown in this case that
it is sufficient to integrate a along the generalized geodesics of . In particular, if
a C (Ft) then

w(a) mx{#(a), (a)},
where, denoting by G the generalized geodesics on ,

7(a)--- lira inf lt-i

When a is constant we find (a) -a. To evMute #(a) in the constant case we must
compute the eigenvalues of the operator A(a) defined in (1.3). We express these in
terms of

0 < A < A _< A _< - c,

the eigenvalues, repeated according to their multiplicity, of -A on H(). In partic-
ular, the eigenvalues of A(a) are

(1.4) A:, -a +/- v/a A, n 1, 2,

We illustrate this formula in Fig. 1 by tracing the non-Lipschitz coalescence of A and
A_ when gt (0, 1) and A r.

As A is simple it follows that A(x/-) A-(v/-X) -xfl has algebraic
multiplicity two and geometric multiplicity one. For constant a, then,

w(a) #(a) -a + v/a2 A.

imaginary

real

FIc. 1. The real and imaginary parts of :1 (a) for a near when (0, 1).
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As a is the global minimizer of over a E R it is by analogy to (1.2) that
we deem (1.1) critically damped when a v/--. We conjecture that a x/ in
fact minimizes over a E L(t). In this note we provide a local validation of this
conjecture. More precisely, for fixed al L(t), we show that #(), the spectral
abscissa of

(0 / (0 0)A() A0 + cA1 /k -2x/- A- 0 -2al

is increasing for 0 < < 5(al). The upshot of this result is that in each L()
neighborhood of there exists an a and a choice of initial data such that the
solution of (1.1) corresponding to a decays slower than that corresponding to v/X.

This A0 is the critically damped wave operator. In 2 we compile the raw data
required by the perturbation theory, i.e., the biorthogonal set of root vectors of A0
and its adjoint and the Laurent expansion of the resolvent. In 3 we invoke Kato
[4] in calculating the weighted averages and the individual branches of the multiple
eigenvalues of A(). We find that, independent of the choice of ax L(), the
eigenvalue A splits and that at least one of its branches travels to the right.

2. The critically damped wave operator. We denote by {n}n__l the or-
thonormal (in L2(t)) basis of eigenfunctions of-A associated with {An}_x. Let

{nk}Z=l {1}[_J{j Aj-1 < Aj, j

_
2}

be that increasing sequence that indexes the distinct elements of {An} The dif-n--1
ference mk nk+ nk is simply the multiplicity of Ank. The orthogonal projection
onto the corresponding rnk-dimensional eigenspace is denoted by

Pk

-4-rn --1

Here (., .) denotes the standard inner product on L2(a). We shall use II" 112 to indicate
the associated norm. It follows from (1.4) that the eigenvalues of A0 are

A+n -x/z + iv/An A1, n 1, 2,

As A0 is real these are also the eigenvalues of its adjoint

-A -2x/- D(A;) D(Ao).

We record the corresponding biorthogonal system of root vectors.
PROPOSITION 2.1. The geometric multiplicity of AI is one. The algebraic mul-

tiplicity of A1 is two. For n 1 the algebraic multiplicity of An coincides with its
geometric multiplicity. This value is the multiplicity of AIn The vectors

1 [1 v/AllVl--

w-1 111 v/All,

Win
Cn

v-1- x/--[0 1],

+/-], n=2,3,...,

(/)1
wl-- Xfl[1 0],

[1 -/Tn], Tt 2, 3,...
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satisfy

Aovl Alv, (A0-A)v-=v,
Aw- Aw_, (A A)w w_l,

Aov+n A+nV+/-n, Aow+n A:nW+n, n 2, 3,...

and
(Vi, Wj) 5ij.

Proof. As A0 and A are constant coefficient operators, each of our claims follows
on direct verification.

The perturbation theory of the next section is predicated on the fact that the
are poles of the resolvent R(z) (Ao z) -. We follow Kato [4, II1.6.5] and develop
its Laurent expansion about A. Namely,

z- (z- + (z-
n--0

where
P (., w)v 4- (’,

is the eigenprojeetion of X onto the invariant subspaee spanned by v and v_, D is
the corresponding eigennilpotent

D1 (Ao- Az)P (., W-l>Vl,

and S, the associated reduced resolvent, satisfies

(2.1) (A0 A)S I P1 and S1 P1 P1 S1 0.

Regarding the remaining eigenvalues we need only collect the eigenprojections:

+/-(nk+mk--1)

P+/-k =-- E (.,w>vj, k > 1.
j :l=nk

That {V+/-n}n=l comprises a basis for X follows from the simple calculation

(2.2)
Pl[f,g] [pf,pg] V[f,g] e X,

(Pk + P-k)[f,g] gkf, Pkg], k > 1, V[f,g] e X.

This will permit us to represent S1. For convenience, we state this in the form of
a Fredholm Alternative. It follows from [4, Thm. IV.5.28] that B _-- (A0- A1) is
Fredholm and that the range of B is the orthogonal complement of the null space of
the adjoint of B. Recall that w-1 spans the null space of B*.

LEMMA 2.2. Given E X, the equation Be possesses a solution if and only
if (, w-l} O. If, in addition, one specifies (, v} O, then the unique solution is

oo

/) (, Wl>V--1 -" E v/An A1k-2



PERTURBING THE CRITICALLY DAMPED WAVE EQUATION 1357

Pro@ We expand and in terms of

(2.3) {2, w-1}v-1 + E(Pk + P-k)2,
k=2

<, w>vl + E(Pk + P-k).
k--2

Equating Be and we find

(, W-1)Vl "t- E{(/nk /l)Pk nt- (/-nk k)P-k} ({, Wl}V + E(Pk +
k=2 k-----2

As PjPk jkPj it now follows that (, W--l} (, Wl) and, for k > 1,

Substituting these into (2.3) yields the desired result.
We remark that this has the simple representation

(2.4) (D+ + S1),

where

satisfies (2.1) and

D1+ <., Wl>V-1
is the pseudoinverse of D1.

3. The perturbed wave operator. We note that R(z) is well defined for z on
a small circle about 1, e.g.,

r {--VI + 1/2eiv/A2 AI’ 0 _< 0 < 27r}.

Our first task is to show that, for sufficiently small e, the resolvent of A(e) is also well
defined on F.

We work within the context of holomorphic families of type (A). That A(e) is
indeed of this type (see Kato [4, Rem. VII.2.7]) will follow from the existence of two
constants a and for which

V u e D(Ao).

In terms of u If, g] this criterion takes the form

vg e HI(a).
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The most obvious choice is a 21]a I1 and fl 0. An alternate choice presents itself
in the one-dimensional case. In particular, if t (0, ) and g E H(fl), then from

() ,() d it follows that

As a result, one may choose a 0 and fl 2x/{lIa II in this case.
Having chosen a and fl we now deduce from [4, Rem. VII.2.9] that R(z,e)

(A(e)- z) -1 exists for z E F when

1 < min(oll/(z)IL(X) + 311Aol(z)llL(x)) -1.
zF

Here II. IILcx) denotes the operator norm on the space of bounded linear operators on
X. It follows, for I1 < r, that A(e) has as many eigenvalues in F as does A0 and that
their average within F is holomorphic. We denote by Ax () the two eigenvalues of
A(e) contained in F. We follow [4, II.2.2] in calculating the power series representation
of their average. Namely,

(3.2)

() +

_
()()

2
2

Ax + tr (AxP1)- tr (AxSAxDx + AxSAxP1)+ O(e3).

Having assembled the necessary operators in the previous section, we find the following
result.

PROPOSITION 3.1. For I1 < r there holds

Proof. We compute the traces in (3.2). These are routine calculations, see [4,
III.4.3], because each of the required operators is of rank at most two. We make use
of the fact that A1 is selfadjoint and that its range is orthogonal to wx. In particular,

tr AlP1 (Avx, wx} + (Axv-x, w-x} -2(axOx, x).

Recalling (2.5) we find

and proceed to compute

s__ e +P-
k=2 Ank AI’

tr (AISAxDx) (AxSAxvx, w-x}
(SAxvx, Alw-1)

-Z {(Pk + P_k)Axvx,Axw-x}

k=2 Ank A1

4X1Z (pk(all),all)= A- -1
(all, Cn) 2

4v/
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The fourth line follows from (2.2). Similarly,

tr (ASA1P1) (ASAv, w} + (AISAv_, w_}
<S1Alv-l,Alw-l>

E ((P-k Pk)AlV-l,Alw-1}

n2(al an)2

cx (all, an)2

47E
n=2

This now yields the stated expansion.
Though one may just as easily compute additional terms, we note that the coef-

ficients of e and 2 cannot vanish simultaneously for nontrivial al. Kato [4, II.3.1]
also permits us to bound the magnitude of the remainder term, denoted O(e3) above,
by

With reflard to our stated goal of minimizing # we observe that this proposition
states that k(e) increases with when (all, 051) < 0. For the average to increase one
of the summands must increase and hence # must so increase. We still must show
that this is also the case when (a1, 1) _> 0. This will require a careful study of the
splitting of A1.

Though Zato [4,VII.I.3] permits us to conclude that /:l:l(e) are branches of
an analytic function with at worst an algebraic singularity at 0, he refers to
Baumgartel [i] for the relevant expansion results. We shall require very little of
this highly technical general theory. For, in considering a linear perturbation of a
geometrically simple eigenvalue, we shall be able, as above, to compute the required
coefficients by hand. The process we adopt is termed "calculation by recursion" by
Baumgartel [I, 7.4.13] and the "method of undetermined coefficients" by Vainberg
and Trenogin [7, 32.5]. It goes back to Vishik and Lyusternik [8] and, in our context,
amounts to no more than repeated application of Lemma 2.2.

In particular, to solve

ta.a)
is to solve

(3.4)
where

A(e)y(a) A(a)y(a), A(0)= 1,

By(a) ((e) aA1)y(a), (0) O,

B--A0-A1 and ()=A()-A1.
Recall that Lemma 2.2 addresses the solvability of (3.4). The starting point is the
pair of Puiseux series (see, e.g., [4, II.1.2]),
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convergent for I1 < r. We now simply insert these into (3.3) and equate like powers
of . As above we proceed until we arrive at a nonzero coefficient.

0: We find Byo 0 and so y0
x/2: We find Byx xyo and so
: We find By2 @y0 + xyx Axyo (@ Ax)vx + (v-x. This equation

is solvable precisely when the right side is orthogonal to w-x, that is, when ((@
Ax)vx + v-x, w-x} O. As (vi, wjl 5ij, this condition reads simply

As a result, we find

1/2 +

and so, when (al(l,(l) > 0, we see that /1() > /1 and so # is increasing. To
determine the direction of # when (alex, Cx) 0 we must find (at least) @. We first
represent y2 in the manner used in (2.4), i.e.,

y, (D+ + Sx)((@ Ax)vx +
(@ -(Axvx, wx})v-x SxAxvx
2v-1 SIAlVl.

3/2. We find By3 3y0 + @yl + (ly2 Alyl. As above, this right side must be
orthogonal to w-1. That is, recalling yo and yl,

Cx (@ + (y2 Axv-x, w-x}) O.

Now recalling y2 we find

Cx(@ + (@v-x SxAxvx Alv-x,w-x)) O.

That is,
1(22 - 2(alql, ql)) 0.

Hence, so long as Cx 0 we find

(3.6)

Note that this permits us to recover, to first order, the previous proposition. Namely,
x() Ax -(alCx,x) + O(2). Equation (3.6), however, is only a partial result.
To determine @ when x 0 we must proceed to (at least) the next level. We first
represent

+ + +
3V-1 l12AlVl llAlV-1.

e2. We find By4 4yo + 3yx + @y2 -Jr- xy3 Aly2. The solvability condition
now takes the form

2x3 + ((@ Ax)(@v-x SxAxvx), w-x} O.
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This simplifies to

213 q- 22 2(Alv-1, t)-l} Jr- (AlqlAlVl, W-l} 0,

and so, if 1 0, we find, on recalling the proof of Proposition 3.1, that

22 -<AlSlAlVl, W-I>
Xl <A1SlAlV-1, W-l>
Vltr (AlSlA1P1)

=4ALE n--A1--2

As a result, if 1 0 then

(3.7) .+/-1() I +/- 4A1 E (alqn, qn) 2

n:2 nn -- A1 + O(3/2)"

We have now established the result announced in the introduction.
PROPOSITION 3.2. If al E L(t2), then there exists a 5 > 0 such that H #()

is strictly increasing when 0 .<_ <_ 5.
Proof. If (a11, 1 < 0, the result is a consequence of Proposition 3.1, while, if

(a11, 1) > 0, the result stems from (3.5). Finally, if (a11, 1) 0, we may rely on

In the absence of a uniform lower bound for 5(al) our proposition is just the first
step on the way to a fully local result. Such a result would require a careful balance
between the radius of convergence, the leading term in the series development of A+/-I,
and the magnitude of the remainder. It is the second term that makes this balance
tricky for, while the radius of convergence and the size of the remainder depend solely
on the size of al, the lowest-order terms in A+/-I() are highly sensitive to the direction
of al. If one is willing to limit the direction of the perturbation one may, of course,
force the necessary balance. As an example, we note that Proposition 3.1 works in
our favor when al lies in the same direction as _2 To be precise, recall that O(al)1"
the angle between a and _2 satisfies1,

cos0(a ) al, --b2

Now, in the one-dimensional case, given 51 > 0 there exists a 52 > 0 such that
minimizes # on the truncated cone

v/Xl + {a L(O,) cosO(a) _> (1, [[a[]2 _< 62}.

This 52 depends on (1 and, recalling (3.1), [[AoR(z)llL(x).
4. Comments. We note that similar results may be established for the nonho-

mogeneous wave equation

p V Vu + qu 2aut O, u(.,t) e H (a),
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as well as those finite-dimensional systems

y"(t) + Ky(t) + Dy’(t) 0, y(t) e Rd,

where D is diagonal and K is symmetric positive definite with a simple least eigen-
value. We note that Langer, Najman, and Vesili5 [5] have considered the eigenvalue
perturbation problem associated with (4.1) when D is of the form (1 + )C for arbi-
trary, nonhermitian, C and K.

Finally, we explain how the present work relates to the variational properties
of the spectral abscissa given by Burke and Overton [2]. In that work, the spectral
abscissa # is viewed as a map from matrix space to R and a directional derivative for
# is defined and evaluated. There is a close analogy between Theorem 6 of [2] and the
main result presented here. The former gives a necessary condition for the directional
derivative of # to be finite and, in the event that the necessary condition holds, gives
a lower bound on the directional derivative which, generically, holds with equality.
The necessary condition for finiteness corresponds to the condition (a11, 1) _< 0 in
the present context. The lower bound which is relevant when the necessary condition
holds corresponds to the formula 1/2trA1P -(a1,1), given here in Proposition
3.1. The analysis in [2] does not give higher-order terms such as the O(s) term in
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