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Explicit Solutions for Root Optimization of a
Polynomial Family With One Affine Constraint

Vincent D. Blondel, Mert Gürbüzbalaban, Alexandre Megretski, Senior Member, IEEE, and Michael L. Overton

Abstract—Given a family of real or complex monic polynomials
of fixed degree with one affine constraint on their coefficients, con-
sider the problem of minimizing the root radius (largest modulus
of the roots) or root abscissa (largest real part of the roots). We give
constructivemethods for efficiently computing the globally optimal
value as well as an optimal polynomial when the optimal value is
attained and an approximation when it is not. An optimal polyno-
mial can always be chosen to have at most two distinct roots in the
real case and just one distinct root in the complex case. Examples
are presented illustrating the results, including several fixed-order
controller optimal design problems.

Index Terms—Control system synthesis, optimization, output
feedback, polynomials, stability.

I. INTRODUCTION

A fundamental general class of problems is as follows:
given a set of monic polynomials of degree whose

coefficients depend on parameters, determine a choice for these
parameters for which the polynomial is stable, or show that no
such stabilization is possible. Variations on this stabilization
problem have been studied for more than half a century and
several were mentioned in [1] as being among the “major open
problems in control systems theory.”
In this paper, we show that there is one important special

case of the polynomial stabilization problem which is explic-
itly solvable: when the dependence on parameters is affine and
the number of parameters is , or equivalently, when there is
a single affine constraint on the coefficients. In this setting, re-
gardless of whether the coefficients are allowed to be complex
or restricted to be real, the problem of globally minimizing the
root radius (defined as the maximum of the moduli of the roots)
or root abscissa (maximum of the real parts) may be solved ef-
ficiently, even though the minimization objective is nonconvex
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and not Lipschitz continuous at minimizers. The polynomial is
Schur (respectively Hurwitz) stabilizable if and only if the glob-
ally minimal value of the root radius (abscissa) is less than one
(zero). This particular class of polynomial stabilization prob-
lems includes two interesting control applications. The first is
the classical static output feedback stabilization problem in state
space with one input and independent outputs, where
is the system order [2]. The second is a frequency-domain sta-
bilization problem for a controller of order [3, p. 651]. In
the second case, if stabilization is not possible, then the minimal
order required for stabilization is . How to compute the
minimal such order in general is a long-standing open question.
As a specific continuous-time example, consider the classical

two-mass-spring dynamical system. It was shown in [4] that the
minimal order required for stabilization is 2 and that the problem
ofmaximizing the closed-loop asymptotic decay rate in this case
is equivalent to the optimization problem

where

Thus, is a set of monic polynomials with degree 6 whose coef-
ficients depend affinely on five parameters. A construction was
given in [4] of a polynomial with one distinct root with multi-
plicity 6 and its local optimality was proved using techniques
from nonsmooth analysis. Theorem 7 below validates this con-
struction in a more general setting and proves global optimality.
The global minimization methods just mentioned are ex-

plained in a sequence of theorems that we present below.
Theorem 1 shows that in the discrete-time case with real coef-
ficients, the optimal polynomial can always be chosen to have
at most two distinct roots, regardless of , while Theorem 6
shows that in the discrete-time case with complex coefficients,
the optimal polynomial can always be chosen to have just
one distinct root. The continuous-time case is more subtle,
because the globally infimal value of the root abscissa may
not be attained. Theorem 7 shows that if it is attained, the
corresponding optimal polynomial may be chosen to have just
one distinct root, while Theorem 13 treats the case in which
the optimal value is not attained. As in the discrete-time case,
two roots play a role, but now one of them may not be finite.
More precisely, the globally optimal value of the root abscissa
may be arbitrarily well approximated by a polynomial with two
distinct roots, only one of which is bounded. Finally, Theorem
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14 shows that in the continuous-time case with complex coef-
ficients, the optimal value is always attained by a polynomial
with just one distinct root.
Our work was originally inspired by a combination of nu-

merical experiments and mathematical analysis of special cases
reported in [4]–[6]. As we began investigating a more general
theory, A. Rantzer drew our attention to a remarkable 1979
Ph.D. thesis of Chen [7], which in fact derived a method to
compute the globally infimal value of the abscissa in the contin-
uous-time case with real coefficients. Chen also obtained some
key related results for the discrete-time case with real coeffi-
cients, as explained in detail below. However, he did not provide
generally applicable methods for constructing globally optimal
or approximately optimal solutions, indeed remarking that he
was lacking such methods [7, p. 29 and p. 71]. Neither did he
consider the complex case, for which it is a curious fact that our
theorems are easier to state but apparently harder to prove than
in the real case when the globally optimal value is attained.
This paper is concerned only with closed-form solutions. The

problem of generating the entire root distribution of a polyno-
mial subject to an affine constraint can also be approached by
computational methods based on value set analysis (see [8] for
details). This has the advantage that it can be generalized to
handle more than one affine constraint.
The theorems summarized above are presented in Sections II

and III for the discrete-time and continuous-time cases, respec-
tively. The algorithms implicit in the theorems are implemented
in a publicly available MATLAB code. Examples illustrating var-
ious cases, including the subtleties involved when the globally
optimal abscissa is not attained, are presented in Section IV. We
make some concluding remarks about possible generalizations
in Section V.

II. DISCRETE-TIME STABILITY

Let denote the root radius of a polynomial

The following result shows that when the root radius is mini-
mized over monic polynomials with real coefficients subject to
a single affine constraint, the optimal polynomial can be chosen
to have at most two distinct roots (zeros), and hence at least one
multiple root when .
Theorem 1: Let be real scalars (with

not all zero) and consider the affine family of
monic polynomials

The optimization problem

has a globally optimal solution of the form

for some integer with , where .
Proof: Existence of an optimal solution is easy. Take any

and define . The set
is bounded and closed. Since ,

optimality is attained for some .
We now prove the existence of an optimal solution that has

the claimed structure. Let

be an optimal solution with , , , ,
, and . We first show that there is an optimal

solution whose roots all have magnitude . Consider therefore
the perturbed polynomial

with . The function

is a multilinear function from to and it satisfies .
Observe that the case can occur only if or
and in that case the result is easy to verify, so assume that
. Consider now a perturbation associated with a root or a
conjugate pair of roots that do not havemaximal magnitude (i.e.,

and , or and ),
and define

If then by the implicit function theorem one can find
some in a neighborhood of the origin for which for

with and therefore for which , con-
tradicting the optimality of . On the other hand, if , then,
since is linear in , we have

for all , and so can be chosen so that the corre-
sponding root or conjugate pair of roots has magnitude exactly
equal to . Thus, an optimal polynomial whose roots have equal
magnitudes can always be found.
If , the result is established, so in what follows suppose

that . We need to show that all roots can be chosen to
be real. We start from some optimal solution whose roots have
magnitude , say

Authorized licensed use limited to: New York University. Downloaded on September 21,2021 at 21:25:44 UTC from IEEE Xplore.  Restrictions apply. 



3080 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 12, DECEMBER 2012

with . Consider the perturbed polynomial

now including a perturbation to , so the function

is now a multilinear function from to that satisfies
. Let be an index for which and define

If then by the same argument as above one can find a
value of in the neighborhood of the origin for which
for with and therefore for which ,
which contradicts the optimality of . So we must have ,
but then can be modified as desired while preserving the
condition and so in particular it may be chosen so
that . Repeated application of this argument
leads to a polynomial whose roots are all .
Notice that if and only if satisfies a certain

polynomial equality once is fixed. The following corollary is
a direct consequence of this fact, showing that in Theorem 1
can be computed explicitly.
Corollary 2: Let be the globally optimal value whose ex-

istence is asserted in Theorem 1, and consider the set

for some

where

and is the convolution of the vectors

and

for . Then, is an element of with smallest
magnitude.
Although Theorem 1 and Corollary 2 are both new, they are

related to results in [7], as we now explain. Let

be the set of coefficients of polynomials in . The set is
a hyperplane, by which we mean an dimensional affine
subspace of . Let

and

be the set of coefficients of monic polynomials with root radius
smaller than . Clearly, if and only if .
The root optimization problem is then equivalent to finding the
infimum of such that the hyperplane intersects the set
. The latter set is known to be nonconvex, characterized by

several algebraic inequalities, so this would appear to be dif-
ficult. However, since is open and connected, it intersects
a given hyperplane if and only if its convex hull intersects the
hyperplane:
Lemma 3: (Chen [7, Lemma 2.1.2]; see also [2, Lemma 2.1]):

Let be a hyperplane in , that is an dimensional affine
subspace of , and let be an open connected set. Then

if and only if .
The set is an open simplex so it is easy to charac-

terize its intersection with :
Theorem 4: (Chen, special case of [7, Prop. 3.1.7] and also

Fam and Meditch [9], for the Case ; see Also [10, Prop.
4.1.26].): We have

where the vertices

are the coefficients of the polynomials .
Since the optimum is attained, the closure of

and the hyperplane must have a non-empty intersection.
Theorem 1 says that, in fact, the intersection of with
must contain at least one vertex of , and Corollary
2 explains how to find it. In contrast, Chen uses Theorem 4 to
derive a procedure (his Theorem 3.2.2) for testing whether the
minimal value of Theorem 1 is greater or less than a given
value (see also [2, Th. 2.6]). This could be used to define a bi-
section method for approximating , but it would not yield the
optimal polynomial . Note that the main tool used in the
proof of Theorem 1 is the implicit function theorem, in contrast
to the sequence of algebraic results leading to Theorem 4.
Remark 5: The techniques used in Theorem 1 are all local.

Thus, any locally optimal minimizer can be perturbed to yield a
locally optimal minimizer of the form
for some integer , where is the root radius attained at the local
minimizer. Furthermore, all real roots of the polynomials
in Corollary 2 define candidates for local minimizers, and

while not all of them are guaranteed to be local minimizers,
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those with smallest magnitude (usually there will only be one)
are guaranteed to be global minimizers.
The work of Chen [7] was limited to polynomials with real

coefficients. A complex analogue of Theorem 1 is simpler to
state because the optimal polynomial may be chosen to have
only one distinct root, a multiple root if . However, the
proof is substantially more complicated than for the real case
and is deferred to Appendix A.
Theorem 6: Let be complex scalars (with

not all zero) and consider the affine family of poly-
nomials

The optimization problem

has an optimal solution of the form

with given by a root of smallest magnitude of the polynomial

III. CONTINUOUS-TIME STABILITY

Let denote the root abscissa of a polynomial ,

We now consider minimization of the root abscissa of a monic
polynomial with real coefficients subject to a single affine con-
straint. In this case, the infimum may not be attained.
Theorem 7: Let be real scalars (with

not all zero) and consider the affine family of
polynomials

Let . Define the polynomial of degree

Consider the optimization problem

Then

for some

where is the th derivative of . Furthermore, the optimal
value is attained by a minimizing polynomial if and only if

is a root of , that is , and in this case we can take

with .
The first part of this result, the characterization of the infimal

value, is due to Chen [7, Th. 2.3.1]. Furthermore, Chen also
observed the “if” part of the second statement, showing [7, p.29]
that if is a root of (as opposed to one of its derivatives),
the optimal value is attained by the polynomial with a single
distinct root . However, he noted on the same page that he
did not have a general method to construct a polynomial with an
abscissa equal to a given value . Nor did he characterize
the case when the infimum is attained. We now address both
these issues.
Because the infimum may not be attained, we cannot prove

Theorem 7 using a variant of the proof of Theorem 1. Instead,
we follow Chen’s development. Define , the hyperplane of
feasible coefficients as in Section II. Let

denote the set of coefficients of monic polynomials with root
abscissa less than , where is a given parameter.
Definition 8: ( -Stabilizability): A hyperplane

is said to be -stabilizable if .
As in the root radius case, Lemma 3 shows that although

is a complicated nonconvex set, a hyperplane is -stabiliz-
able if and only if intersects , a polyhedral convex
cone which can be characterized as follows:
Theorem 9: (Chen [7, Theorem 2.1.8]): We have

an open polyhedral convex cone with vertex

and extreme rays

where is the standard basis of .
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This leads to the following characterization of -stabiliz-
ability:
Theorem 10: (Chen, a variant of [7, Th. 2.2.2]; see also [2,

Th. 2.4]): Define the hyperplane as in Section II and the
polynomial and the integer as in Theorem 7. Then the fol-
lowing statements are equivalent:
1) is -stabilizable;
2) There exist nonnegative integers with
such that

where denotes the th derivative of at
.

To prove the last part of Theorem 7, we need the following
lemma.
Lemma 11: We have if and only if .

Furthermore, for , if and
only if exactly one of the following two conditions hold:
1) and ;
2) and .
where

is the th extreme ray of the cone given in Theorem
9.

Proof: We have

where denotes the usual dot product in . Therefore,

(1)

proves the first part of the lemma. Let . A
straightforward calculation gives

Hence,

where

If , then ,
and from (1), we get [case (1)]. Otherwise, the
hyperplane is parallel to and , so that

, and also (otherwise by (1),
which would be a contradiction); this is case (2).
Now we are ready to complete the proof of Theorem 7.
Proof: Chen’s theorem [7, Th. 2.3.1] establishes the char-

acterization of the optimal value

Let be the smallest integer such that
. If , then is a root of and by Lemma

11, is an optimizer with .
Suppose now that . We will show that the infimum is

not attained. Suppose the contrary, that is
so that . Without loss of generality,
assume so that is the constant function
and the derivatives , each have leading
coefficient (coefficient of ) also having positive sign. By
Theorem 10, for any and
and, in addition, for . By continuity
of , we have

if
if
if
if

It thus follows from Theorem 10 that is not -stabiliz-
able, which means , or equivalently, by Lemma
3, that . Since is an open set, it
follows from the assumption made above that its boundary in-
tersects . Pick a point . It is easy
to show that is a supporting hyperplane to the convex cone

at the boundary point . Since every hyperplane sup-
porting a convex cone must pass through the vertex of the cone
[11, A.4.2], it follows that . On the other hand, since

, Lemma 11 implies . This is a contradic-
tion.
Remark 12: If is a real root of , then .

Such a polynomial is often, though not always, a local mini-
mizer of , but it is a global minimizer if and only if is
the largest such real root and no other roots of derivatives of
are larger than .
We now address the case where the infimum is not attained.
Theorem 13: Assume that is not a root of . Let be

the smallest integer for which is a root
of . Then, for all sufficiently small there exists a real
scalar for which

where or , and as .
Proof: By Theorem 7, the optimal abscissa value is not

attained. Without loss of generality, assume . Otherwise,
write and rewrite as the set of monic polynomials
in with an affine constraint.
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For , we have
if and only if its coefficients are real and

Thus, if and only if is a real root of , a polynomial
of degree whose coefficients depend on . By Theorem 10,
the have the same sign for all and for all

, which we take to be positive. By the definition
of , for and which gives

for and similarly
. We have also

(2)
and

(3)

(4)

Let . We have for and
. The polynomial might change sign around 0, depending
on the multiplicity of 0 as a root. If 0 is a root of with an
odd multiplicity, for small enough and so
the coefficients of have one and only one sign change. By
Descartes’ rule of signs, has one and only one root with
positive real part which must therefore be real. Setting

, we have as desired. If
the multiplicity is even, then themultiplicity of 0 as a root of
is also even by (2). Then, must have 0 as a root with odd
multiplicity and changes sign around 0. Set in
this case and repeat a similar argument: By (2), changes sign
around 0, i.e., for small enough. Furthermore,
from (4), for , small enough. As a result, the
coefficients of have one and only one sign change, for ,
small enough. We again get the existence of in with the
desired structure.

Finally, let us show that . Suppose this is not
the case. Then, there exists a sequence and a posi-
tive number such that . Since is
compact by Theorem 4, there exists a positive constant such
that all of the coefficients of the polynomial are bounded
by , uniformly over . By compactness, there exists a subse-
quence converging to a limit pointwise. Furthermore,

since is closed. By continuity of the abscissa map-
ping, . This implies that the op-
timal abscissa is attained on , which is a contradiction.
Theorem 7 showed that in the real case the infimal value is

not attained if and only if the polynomial has a derivative of
any order between 1 and with a real root to the right of
the rightmost real root of . However, it is not possible that a
derivative of has a complex root to the right of the rightmost
complex root of . This follows immediately from the Gauss-
Lucas theorem, which states that the roots of the derivative of
a polynomial must lie in the convex hull of the roots of
[12], [13]. This suggests that the infimal value of the optimal
abscissa problem with complex coefficients is always attained
at a polynomial with a single distinct root, namely a rightmost
root of . Indeed, this is established in the following theorem,
whose proof can be found in Appendix B.
Theorem 14: Let be complex scalars (with

not all zero) and consider the affine family of poly-
nomials

The optimization problem

has an optimal solution of the form

with given by a root with largest real part of the polynomial
where

IV. EXAMPLES

Example 1. The following simple example is from [5], where
it was proved using the Gauss–Lucas theorem that
is a global optimizer of the abscissa over the set of polynomials

We calculate . Theorem 7 proves
global optimality over and Theorem 14 proves global
optimality over .
Example 2. As mentioned in Section I, Henrion and Overton

[4] showed that the problem of finding a second-order linear
controller that maximizes the closed-loop asymptotic decay rate
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for the classical two-mass-spring system is equivalent to an ab-
scissa minimization problem for a monic polynomial of degree
6 whose coefficients depend affinely on 5 parameters, or equiv-
alently with a single affine constraint on the coefficients. The-
orem 7 (as well as Theorem 14) establishes global optimality
of the locally optimal polynomial constructed in [4], namely,

, where .
Example 3. This is derived from a “Belgian chocolate” sta-

bilization challenge problem of Blondel [14]: given
and , find the range of real values of

for which there exist polynomials and such that
and . This problem remains un-

solved. However, inspired by numerical experiments, [6] gave
a solution for . When is
constrained to be a monic polynomial with degree and to be
a constant, the minimization of reduces to

where

For nonzero fixed , is a set of monic polynomials with de-
gree 5 whose coefficients depend affinely on 4 parameters, or
equivalently with a single affine constraint on the coefficients.
In [6] a polynomial in with one distinct root of multiplicity
5 was constructed and proved to be locally optimal using non-
smooth analysis. Theorems 7 and 14 prove its global optimality.
They also apply to the case when is constrained to be monic
with degree 4; then, as shown in [6], stabilization is possible for

.
Example 4. The polynomial achieving the minimal root ra-

dius may not be unique. Let
. We have

The minimal value is attained on a continuum of polynomials
of the form for any and hence
minimizers are not unique. The existence of the minimizers

and is consistent with Theorem 1. The same
example shows that the minimizer for the radius optimization
problem with complex coefficients may not be unique.
Example 5. Likewise, a polynomial achieving the minimal

root abscissa may not be unique. Let
. We have

Here , . The optimum is attained at
, where is a root of the polynomial

, as claimed in Theorem 7. However, the optimum is attained at
a continuum of polynomials of the form for any .
Example 6. In this example, the infimal root abscissa is not

attained. Let and . We
have , so is a root of but not of .
Thus, Theorem 13 applies with . Indeed

This infimum is not attained, but as , set-
ting and

gives as
claimed in Theorem 13.
Example 7. Consider the family

and . We have , so
is a root of both and . Thus, the assumptions

of Theorem 13 are again satisfied with . However, this
example shows the necessity of setting when
has a root of even multiplicity at . Setting
is impossible since then implies

as . On the other hand, when
, we have with

as .
Example 8. This is a SIMO static output feedback example

going back to 1975 [15]. Given a linear system ,
, we wish to determine whether there exists a control

law with stabilizing the system, i.e., so that the eigen-
values of are in the left half-plane. For this par-
ticular example, the gain matrix , and
the problem is equivalent to finding a stable polynomial in the
family

A very lengthy derivation in [15] based on the decidability al-
gorithms of Tarski and Seidenberg yields a stable polynomial

with abscissa . In 1979, Chen [7,
p. 31], referring to [15], mentioned that his results show that
the infimal value of the abscissa over all polynomials in
is approximately 5.91, but he did not provide an optimal or
nearly optimal solution. In 1999, the same example was used
to illustrate a numerical method given in [16], which, after 20
iterations, yields a stable polynomial in with abscissa

. The methods of [15] and [16] both generate
stable polynomials, but their abscissa values are nowhere near
Chen’s infimal value. Applying Theorem 7, we find that the
rightmost real root of is and none of the deriva-
tives of have larger real roots, so is the global min-
imizer of the abscissa in the family . Theorem 14 shows that
allowing to be complex does not reduce the optimal value.
Example 9. Consider the SISO system with the transfer func-

tion ([17, Ex. 1], [18])
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We seek a second-order controller of the form

that stabilizes the resulting closed-loop transfer function

Applying the software package HIFOO [19] to locally optimize
the abscissa of results in a stabilizing controller with

, but since is a monic polynomial with degree
6 depending affinely on five parameters, Theorems 7 and 14
apply, showing that the optimal closed-loop transfer function is

where .
More examples may be explored by downloading a publicly

available1 MATLAB code implementing the constructive algo-
rithms implicit in Theorems 1, 6, 7, and 14 as well as Corol-
lary 2 and Theorem 13. A code generating all the examples of
this section and two other examples mentioned in [20] is also
available at the same website. In general, there does not seem
to be any difficulty obtaining an accurate globally optimal value
for the root abscissa or root radius in the real or complex case.
However, even in the cases where an optimal solution exists, the
coefficients may be large, so that rounding errors in the com-
puted coefficients result in a large constraint residual, and the
difficulty is compounded when the optimal abscissa value is not
attained and a polynomial with an approximately optimal ab-
scissa value is computed: hence, it is inadvisable to choose in
Theorem 13 too small. Furthermore, the multiple roots of the
optimal polynomials are not robust with respect to small pertur-
bations in the coefficients. Optimizing a more robust objective
such as the so-called complex stability “radius” (in the data-per-
turbation sense) of the polynomial may be of more practical use;
see [6, Sec. II]. Since it is not known how to compute global op-
tima for this problem, one might use local optimization with the
starting point chosen by first globally optimizing the root ab-
scissa or radius, respectively.

V. CONCLUDING REMARKS

Suppose there are constraints on the coefficients. In this
case, we conjecture, based on numerical experiments, that there
always exists an optimal polynomial with at most roots
having modulus less than or having real part less than
respectively. However, there does not seem to be a useful bound
on the number of possible distinct roots. Thus, computing global
optimizers appears to be difficult.
When there are constraints, we can obtain upper and lower

bounds on the optimal value as follows. Lower bounds can be
obtained by solving many problems with only one constraint,
each of which is obtained from random linear combinations
of the prescribed constraints. Upper bounds can be obtained
by local optimization of the relevant objective or over an

1www.cs.nyu.edu/overton/software/affpoly/

affine parametrization which is obtained from computing the
null space of the given constraints. However, the gap between
these bounds cannot be expected to be small.
The results do not extend to the more general case of an affine

family of matrices depending on parameters. For
example, consider the matrix family

This matrix depends affinely on a single parameter , but its
characteristic polynomial, a monic polynomial of degree 2,
does not, so the results given here do not apply. The minimal
spectral radius (maximum of the moduli of the eigenvalues) of

is attained by , for which the eigenvalues are .
Nonetheless, experiments show that it is often the case that
optimizing the spectral radius or spectral abscissa of a matrix
depending affinely on parameters yields a matrix with multiple
eigenvalues, or several multiple eigenvalues with the same
radius or abscissa value; an interesting example is analyzed in
[21].

APPENDIX A
PROOF OF THEOREM 6

We begin with some notation. For a positive integer , let
denote the complex vector space of all polynomials

with complex coefficients . Let be the affine subset
of consisting of all polynomials with (the monic
polynomials).
Definition 15: For and , let

denote the th largest absolute value of a root of , i.e.,
when

For define

the diameter of the set of roots with maximal modulus (zero
if has only one distinct root with maximal modulus). Given

and a linear functional , let be the
set of all such that . For
define as the set of all for which equals the
minimum of on .
We will need the following preliminary result.
Lemma 16: For , let be defined as above.

Then one of the following statements is true:
a) The functional has a unique minimizer on ,
and there exists such that , or
equivalently .

b) The functional has a unique minimizer on ,
and there exists such that , or
equivalently .
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c) There exist , , , and a continuous
strictly decreasing function satis-
fying interpolation constraints

such that

Proof: Let the complex numbers be defined by

Then a polynomial belongs to if
and only if

(5)

When define such that

i.e., (5) is equivalent to

and . One of the following situations must occur.
1) : the fact that (5) must be feasible yields

, hence , and the minimal value 0 of
for is attained at a single point [case
(a)].

2) , : condition (5) is equivalent to

Since the inequality

implies , the minimal value of for
is attained at a single point [case (a)].

3) , : condition (5) holds when either or
, hence the minimal value of for is

attained on polynomials of the form ,
where , and the minimal value 0 of for

is attained at a single point [case
(b)].

4) , , : the minimal value
of for is attained at a single point

[case (a)]. The statement is obvious
when . To see that no other polynomial
achieves the value of (or better) when , it
suffices to show that the disc and
its image under the map have
a unique common point . It is well known that
is a bijection of the extended complex plane to
itself which maps discs to discs, complements of discs, or
half-planes, and also maps boundaries to boundaries. Since

is a fixed point of , and
is negative real, is tangential to at . By the
negativity of , will be the only intersection of
and .

5) , , : the minimal value
of for is attained on the set

of polynomials of the form , where
is an arbitrary complex number such that ,

and

(which automatically implies ). This is case
(c), where and when , and otherwise

are defined by

(the plus sign is to be used when the imaginary part of
is positive), and is a “phase” representation of the map

.
This completes the proof.
In order to establish Theorem 6, we first state and prove a re-

lated “super-optimization” problem, again using Definition 15.
Theorem 17: The functional achieves its minimum on ,

and for every minimizer of , there exists and
nonnegative integers such that .

Proof: We use induction with respect to . When ,
the statement follows by Lemma 16. Assume the statement is
true for . Consider the case . Note that
is continuous on , and hence achieves its minimum at a

polynomial

with . One of the following
three situations must take place.
1) . Then .
2) . Then, according to Lemma 16,
implies . Moreover, the polynomial

must be optimal in the sense of Theorem 17 with ,
and hence, by the inductive hypothesis, ,
which implies .

3) . According to the inductive hy-
pothesis, the set must contain a polynomial of the form

, where . Let be the
shortest arc of the circle connecting the points
and (if , take one of the two arcs of equal

length). Among all polynomials with roots in ,
take the one with the minimal radius of the root set, and
denote it by

Since , we have for all . Let us show
that all roots of are equal, i.e., that
for some . By construction, lie within an
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arc of angular length not larger than . Let and be
the two most distant values among . Applying Lemma
16 to the polynomial shows that
the case (c) takes place (otherwise ), hence, for
every pair , of the roots of , it is
possible to replace and with a pair of equal roots

, where lies strictly between
and . If or , as roots of , have multiplicity 1, this
immediately leads to a polynomial with the root
set contained in and having a smaller diameter. If the
multiplicities of , are greater than 1, this process can
be repeated until lack of optimality of is proved.

This completes the proof.
Corollary 18: Let be a linear functional. Then

for every there exists a polynomial
(where ) such that and

Proof: Taking into account the statement of Theorem 17,
it is sufficient to show that if the set contains a polynomial
of the form with and then it
also contains the polynomial . Indeed,
for , let

Note that is a polynomial, linear with respect to , i.e.,

By construction . Moreover, implies
, as otherwise and for

where is sufficiently small. Since , we
have , which completes the proof.
Now the stage is set for the proof of Theorem 6.
Proof: Each choice of corresponds to a

linear functional of the form .
Thus, we wish to prove that given a linear functional
and a polynomial , the minimum of over all

polynomials satisfying the constraint can
be attained on a polynomial of the form
for some , but this is exactly the statement of Corollary
18 proved above. With the existence of the minimizer with the
claimed structure established, the property that is a root of
the polynomial now follows from the fact that is in
if and only if .

APPENDIX B
PROOF OF THEOREM 14

We will derive Theorem 14 from Theorem 6, proved in
Appendix A. Let the linear functional be defined
by

We have if and only if . Theorem 6 is equiv-
alent to saying that given a linear functional ,

, , the minimal root radius over the set

is attained at a polynomial with only one distinct root. It is
easy to see that replacing the constraint with
for any , would not change the minimal root radius,
as the optimizer would simply become . As a consequence,
we have the following theorem, equivalent to Theorem 6:
Theorem 19: Given a linear functional such

that for every , the root radius achieves its
minimum on

at a polynomial of the form for some
.

To prove Theorem 14, it suffices to show that the minimal
abscissa is attained at a polynomial with only one distinct root
, since then would have to be the rightmost root (root with
the largest real part) of .Wewill prove the following equivalent
statement:
Theorem 20: Given a linear functional such

that for every , the root abscissa achieves its
minimum on

at a polynomial of the form for some
.

Proof: The proof follows from Theorem 19 as we now
explain. It is sufficient to demonstrate that

if and for some , then there
exists such that the polynomial

satisfies and .
This is because implies that the optimizer can be chosen
to have one (distinct) root. Notice that states implicitly that
the optimum is attained, because every such is a root of the
polynomial , and so there is a finite number of
choices of such that . The optimal abscissa
would then be one of such ’s with the smallest real part.
To prove , for , let be the function
mapping to defined by the identity

Note that is linear and invertible. If , , and
, then for , because

for

and
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so . In addition,

which implies that for , and that
for every .
By Theorem 19, there exists such that and the

polynomial is in . Let . By
definition,

which means that

i.e.,

Since , we can set
with

and we have since . Therefore, .
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