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Optimization problems involving eigenvalues arise in many different mathem-
atical disciplines. This article is divided into two parts. Part I gives a histor-
ical account of the development of the field. We discuss various applications
that have been especially influential, from structural analysis to combinatorial
optimization, and we survey algorithmic developments, including the recent
advance of interior-point methods for a specific problem class: semidefinite
programming. In Part II we primarily address optimization of convex func-
tions of eigenvalues of symmetric matrices subject to linear constraints. We
derive a fairly complete mathematical theory, some of it classical and some
of it new. Using the elegant language of conjugate duality theory, we high-
light the parallels between the analysis of invariant matrix norms and weakly
invariant convex matrix functions. We then restrict our attention further to
linear and semidefinite programming, emphasizing the parallel duality theory
and comparing primal-dual interior-point methods for the two problem classes.
The final section presents some apparently new variational results about ei-
genvalues of nonsymmetric matrices, unifying known characterizations of the
spectral abscissa (related to Lyapunov theory) and the spectral radius (as an
infimum of matrix norms).
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PART I: THE HISTORY

1. The shape of the strongest column

In 1773, Lagrange posed the following problem: determine the shape of
the strongest axially symmetric column with prescribed length, volume and
boundary conditions. The mathematical statement of this problem relies on
earlier work of J. Bernoulli and Euler. The latter, in 1744, established the
buckling load of such a column as the least eigenvalue of a self-adjoint fourth-
order differential operator. Consequently, Lagrange’s problem requires the
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maximization of this least eigenvalue, over all possible functions defining the
cross-sectional area of the column.

Lagrange’s problem, so easily stated, proved extraordinarily resistant to
many attempts at its solution. Many authors made substantial contributions
as well as serious errors. Lagrange must have the credit for posing the prob-
lem, yet several errors led to his incorrect conclusion that it is solved by the
uniform column. The first to offer a correct solution was Clausen in 1851,
in the case of clamped-free boundary conditions. The solution has the cigar
shape shown in Fig. 1(a), where the cross-sectional area of the column is plot-
ted as a function of its length. Clausen’s paper is known primarily through
later work of Pearson, who introduced many errors in an attempt to simplify
the results.

Lagrange’s problem then lay dormant for a century before it was taken up
in a modern treatment by J. Keller in 1960. Keller established the solution,
shown in Fig. 1(b), in the case of hinged-hinged boundary conditions. Then
Tadjbakhsh and Keller (1962) offered solutions in the case of clamped-hinged
and clamped-clamped boundary conditions. These are shown in Figs 1 (c)
and (d) respectively. A conspicuous feature in both cases is the vanishing of
the cross-sectional area at an internal point.

These solutions went unchallenged for fifteen years. Then Olhoff and
Rasmussen (1977) claimed that the Tadjbaksh—Keller (TK) clamped-clamped
solution was incorrect, because its solution procedure implicitly assumed that
the least eigenvalue associated with the optimal solution is simple (that is,
has multiplicity one). The solution offered by Olhoff and Rasmussen (OR),
displayed in Fig. 1 (e), has a double least eigenvalue. However, no proof of
the validity of this column was offered, nor were details of their numerical ap-
proximation procedure. Consequently, the issue remained quite controversial,
with some authors defending the TK solution, and others, notably Masur and
Seiranian, offering evidence for the OR solution. Recently, Cox and Overton
(1992) gave the first proof of existence of a solution to the clamped-clamped
problem, as well as the first proof that the OR solution indeed satisfies the
Clarke (1983) first-order necessary conditions for optimality. In addition, Cox
and Overton (1992) offered the first systematic numerical results using direct
optimization techniques that take into account the possibility of a multiple
eigenvalue. Both the theoretical contributions and the numerical techniques
of Cox and Overton (1992) rely on the theory of convex analysis and its
generalizations due to Rockafellar (1970) and Clarke (1983).

However, following in the footsteps of their illustrious predecessors in more
ways than one, Cox and Overton also introduced a new error, claiming in an
appendix that the TK clamped-hinged solution was also incorrect. Rather
than believing their own numerical evidence, albeit uncertain given the van-
ishing of the cross-sectional area at an internal point and the corresponding
absence of an existence proof (Cox and Overton 1992, p. 315), they placed
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faith in a mathematical proof that contained a simple scaling error: the irony
will doubtless be enjoyed by the readers of this journal. That the TK clamped-
hinged solution is indeed correct (though the TK clamped-clamped solution
is not) has now been established beyond doubt by Cox and Maddocks (1996).
For more details, see the article by Cox in Math. Intelligencer (Cox 1992),
accompanied by illustrations of the strongest columns on the cover, and also
the follow-up discussion (Kirmser and Hu 1993, Cox 1993).

2. Optimal partitioning of graphs

Our next example of eigenvalue optimization could not be more different in
character to the strongest column problem. Consider a nonnegative edge-
weighting of the complete (undirected) graph on the vertex set {1,2,...,n}.
We can associate any such weighting with an n X n symmetric matrix W
with diagonal entries all zero and off-diagonal entries all nonnegative: entry
W;; is just the weight on the edge (7,7). Given integers dy > dy > --- >
dp > 0, with sum n, consider the problem of partitioning the vertex set into
k subsets such that the ¢th subset contains exactly d; vertices and the sum
of weights of edges between subsets is minimized. Equivalently, the sum of
the weights of edges whose endpoints are both inside the same subset is to
be maximized. This problem is NP-hard. However, Donath and Hoffman
(1973) suggested the clever idea of deriving bounds on the solution by means
of eigenvalue optimization. (For other approaches to graph partitioning that
exploit eigenvalues, though not necessarily eigenvalue optimization, see the
early work of Fiedler (1973) and the recent survey paper of Pothen (1996).)

Denote the characteristic (column) vector for the ith subset by z' € R™
thus 2. is 1if vertex r is in subset 7, and is 0 otherwise. Let X be the nx k mat-
rix [z',22,...,2%]. Then, by construction, X7 X = Diag(d;,d;...,d}), and
we seek to maximize ) W;; (XXT)Z']', or equivalently, the trace of WX XT,
Since for any matrices A and B we have tr AB = tr BA, we can write the
partitioning problem as:

max tr XTWX
XE]R"Xk

subject to X7 X = Diag(d) and X;; € {0,1}. (2.1)

Now let us replace the variable matrix X by making the normalized defini-
tions y* = di/zmi and Y = [y, 42, ...,y*]T. With this change of variable, the
optimization problem becomes

k
max di(y" ) Twy'

xk
YeRr? =1

subject to YTV =T and \/d;d;Y;; € {0, 1}. (2.2)
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The last constraint is the integrality constraint, which makes the problem
difficult. So, let us relaz the problem by dropping this constraint. As we shall
see (in Lemma 10.2), the relaxed problem is solved by taking the columns of
Y to be an orthonormal set of eigenvectors for the largest k eigenvalues of
W: each y' should be an eigenvector corresponding to A;(W), the ith largest
eigenvalue of W (counting multiplicities). The ordering is important since,
by assumption, the d; are given in descending order. Because the relaxation
was obtained by dropping the integer constraint, the quantity Zle di (W)
is an upper bound for the optimal value of the problem (2.1).

Now we come to the key point: a tighter upper bound can be obtained using
eigenvalue optimization. The diagonal elements of X X T are all one, so we can
replace the objective function of problem (2.1) by the trace of (W + D)X X7
for any diagonal matrix D with zero trace. Equivalently, after the change of
variables, we replace W by W+ D in the objective function of (2.2). Different
choices of D give different relaxations when the integer constraint is dropped,
and therefore different upper bounds. Thus D can be chosen to improve the
upper bound, by minimizing the weighted sum of the largest eigenvalues of
W + D, that is

k
G(D) =>_d; (W + D),
i=1
over all diagonal matrices D with zero trace.

Donath and Hoffman reasoned that since the function G is convex (as we
shall see in Section 10), the task of minimizing G should be tractable. This
turned out to be a more mathematically interesting and challenging problem
than they anticipated at the time, as we shall now discuss.

3. Multiple eigenvalues, optimality conditions, and
algorithms

Multiple eigenvalues had not been expected in the problem of Lagrange be-
cause, in all but the clamped-clamped case, the structure of the differential
operator makes it impossible for the least eigenvalue, say ;\17 to have multipli-
city greater than one. If one considers more general eigenvalue optimization
problems, however, it is clear that maximizing a least eigenvalue (equival-
ently minimizing a greatest eigenvalue) will potentially lead to coalescence
of eigenvalues. Of course, minimizing a least eigenvalue has the opposite
effect. The latter occurs, for example, in Rayleigh’s problem of finding the
shape of the two-dimensional drum with the least natural frequency. Math-
ematically, this means finding the shape of the domain that minimizes ;\1, the
least eigenvalue of the Laplacian. The least eigenvalue is necessarily simple,
and the solution is a circle. An interesting variation is to find the shape that
minimizes the ratio ;\1/;\2. This was considered by Payne, Pélya and Wein-
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berger (1956): they conjectured that the solution is a circle, but this was
proved only recently (Ashbaugh and Benguria 1991). In this case, a double
eigenvalue plays a role, because X2 and A5 coalesce at the solution. Eigen-
value optimization problems for plates (modelled by fourth-order differential
operators in two dimensions) are also of interest, but these have received
relatively little attention. All of these problems are difficult because they are
infinite-dimensional and the operators depend on the variables in a complic-
ated way. For the remainder of this article we confine our attention to matrix
problems with linear dependence on the variables.

The Donath—Hoffman approach to graph partitioning requires minimizing
a weighted sum of the largest eigenvalues of a matrix, the variables being
simply the diagonal elements. This work led to a paper of Cullum, Donath
and Wolfe (1975) that is remarkable for two significant contributions. The
first was the development of an optimality condition using convex analysis,
emphasizing the issue of multiple eigenvalues. Specifically, the authors recog-
nized and addressed the fact that the sum-of-eigenvalues function, although
convex, is not a differentiable function at points where the eigenvalues co-
alesce. The second contribution of Cullum et al. (1975) was the development
of a convergent algorithm to find a minimizer. The significance of this work
was not appreciated for some ten years or so. Then Fletcher (1985) revived
interest in the problem, inspiring further analytical improvements by Overton
and Womersley (1993) and Hirriart-Urruty and Ye (1995). These results are
now largely subsumed by a more general but concise approach due to Lewis
(1996a), presented in Part Il of this survey. Specifically, rather general com-
posite functions of the form h o A are considered, where A is the eigenvalue
map from symmetric matrix space to R”, and A is any convex function that
is symmetric with respect to its arguments. A duality theory for this class of
functions will be given in some detail, building on the fundamental results of
convex analysis due to Rockafellar as well as key matrix theoretic results of
von Neumann and others. Composite eigenvalue optimization includes semi-
definite programming (SDP), a generalization of linear programming that has
received much attention in the last few years.

The SDP problem is to minimize a linear function of a symmetric matrix
variable subject to linear and positive semidefinite constraints on the matrix.
Typically, SDPs have solutions with multiple zero eigenvalues. Semidefin-
ite constraints have been considered in many contexts; two early papers are
Bellman and Fan (1963) and Craven and Mond (1981). In fact, SDP was the
variant of eigenvalue optimization that was primarily addressed by Fletcher
(1985), introducing a new algorithmic approach and emphasizing the issues
of multiple eigenvalues and quadratic convergence. This led to the compu-
tational work on minimizing a maximum eigenvalue due to Overton (1988,
1992) and the associated second-order convergence analysis (a complicated is-
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sue in the presence of multiple eigenvalues) given by Overton and Womersley
(1995) and Shapiro and Fan (1995). However, since many eigenvalue optim-
ization problems can be rephrased as equivalent SDPs, this work has now
been largely overshadowed by the sudden advance of interior-point methods
for SDP, to which we now turn.

4. Interior-point methods and polynomial-time algorithms

Linear programming (LP) was established as a discipline in the 1940s by
Dantzig. The LP problem is to minimize a linear function subject to linear
equality and inequality constraints on the variables, a problem which, remark-
ably, had largely escaped earlier attention, with the exception of some work on
systems of linear inequalities by Fourier and Motzkin. As well as introducing
the problem class, Dantzig gave an algorithm for solving LPs: the simplex
method. Duality played a key role from the beginning, originating in a famous
conversation between Dantzig and von Neumann at Princeton in 1947; see
Dantzig (1991). The highly efficient simplex method went essentially unchal-
lenged for 30 years, although it was known that, in the worst case, it required
computation time exponential in the problem size. In 1979 Khaciyan showed
that the ellipsoid method of Nemirovskii and Shor could be used to guarantee
the solution of LPs in polynomial time. The ellipsoid method proved to be
impractical, but it inspired the work of Karmarkar (1984), which established
the interior-point framework as a practical, polynomial-time approach to solv-
ing LP. In the 10 years since, a profusion of interior-point methods for LP
have been proposed, implemented and theoretically analysed; see the surveys
by Lustig, Marsten and Shanno (1994), Gonzaga (1992) and Wright (1992).
It is now generally accepted that the primal-dual interior-point method due
to Monteiro and Adler (1989) and Kojima, Mizuno and Yoshise (1989) has
substantial theoretical and practical advantages over the other interior-point
methods, including Karmarkar’s method.

As we already noted, the difference between LP and SDP is that, in the
latter case, the variable is a symmetric matrix and the inequality constraint
is a semidefinite matrix constraint. In the case that the matrix is constrained
to be diagonal, SDP reduces to LP. There is no simplex method for SDP,
because the feasible region is not polyhedral. In the late 1980s, Nesterov
and Nemirovskii extended many of the interior-point methods and theoretical
results from LP to a much broader class of convex programming problems,
including SDP; see Nesterov and Nemirovskii (1994). Alizadeh (1991, 1995)
and Karmarkar and Thakur (1992) also independently proposed such a gen-
eralization for SDP, a key component being the ‘log determinant’ barrier
function. In the last three years there has been a burst of activity in the de-
velopment of interior-point methods for SDP. Some of the most recent work,
namely the derivation of a primal-dual interior-point method for SDP, will
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be discussed in Section 14. See Vandenberghe and Boyd (1996) for a survey
article on SDP, including many applications not discussed here.

We now briefly discuss two important application areas that have success-
fully exploited the success of interior-point methods for SDP.

5. Polynomial-time approximations to NP-hard graph
problems

The availability of polynomial-time algorithms for semidefinite programming
has led to great interest by the combinatorial optimization community in
provably good polynomial-time approximations to NP-hard problems. We
consider one example.

As in Section 2, consider the complete graph with vertex set {1,2,...,n}
and edges (1, j) with associated nonnegative weights W;;. The max-cut prob-
lem is to divide the vertices into two sets, V| and V5, such that the weighted
sum of edges crossing from one set to the other is maximized. This is not
the same as the graph partitioning problem with & = 2 since the number of
vertices in each set is not preassigned. The max-cut problem is NP-hard,
although the min-cut (max-flow) problem can be solved by standard fast al-
gorithms. (The min-cut problem is trivial if one does not specify that V; and
V2 must be nonempty). The max-cut problem can be expressed as

T1,L2,..,nER
1,22,..4Zn€ 1SZS]S’/Z

max { Z Wi;(1 —z;z;) : |z =1 for all z} , (5.1)

where we adopt the convention that z; = 1 means ¢ € V| and z; = —1 means
1 € V5. Now consider the modified problem

rl 2, 2" eR" 1<i<i<n

max { Z Wii (1= (z9)T2%) : ||l2*|| = 1 for all 2} , (5.2)

where || - || denotes the Euclidean norm. If the vectors z!,... 2™ solving

problem (5.2) all happen to be parallel, then they can be associated with the
scalar solutions z; = £1 to problem (5.1), and the max-cut problem is solved.
Of course, this is very unlikely to occur. However, given any fixed optimal
solution of problem (5.2), we can generate a cut for the graph by cutting
the unit ball in half, and then assigning vertex ¢ to set V; or V; according
to which half of the ball contains the vector . Goemans and Williamson
(1996) recently established the surprising fact that, if one makes the division
of the unit ball in the appropriate way, the resulting cut in the graph is an
approximate solution of the max-cut problem with an objective value within
a factor of 1.14 of the optimal value. Notice that problem (5.2) is equivalent
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to the SDP
min{tr W2 : Z;; = 1, for each i},
70

the variable Z being a symmetric matrix associated with the vectors z' by
the equation Z = XTX, where X is the matrix [z!,22,...,2"], and where
Z > 0 denotes the semidefinite constraint.

To summarize, the max-cut problem, which is NP-hard, is provably solvable
within a factor of 1.14 in polynomial time, via the solution of a semidefinite
program. For more on the max-cut problem, see the survey by Poljak and
Tuza (1993) and the recent thesis of Helmberg (1994). For other applica-
tions of SDP and eigenvalue optimization to combinatorial optimization, see
Grotschel, Lovdsz and Schriver (1988, Chapter 9), Mohar and Poljak (1993)

and Rendl and Wolkowicz (1992).

6. Linear matrix inequalities in system and control theory

The title of this section is also the title of a recent book (Boyd, Ghaoui,
Feron and Balakrishnan 1994). A linear matriz inequality (LMI) is generally
understood to mean a positive semidefinite or definite constraint on a matrix
depending affinely on parameters: as such, an LMI is simply the constraint of
an SDP. However, the term is also sometimes used to describe more general
matrix inequality constraints, especially bounds on the eigenvalues of a pencil
(those scalars A satisfying det(A — AB) = 0, where the matrices A and B are
symmetric and depend affinely on parameters, and B is positive definite). The
application of LMIs to control theory has its origins in the work of Lyapunov
in the 1890s and Yakubovitch in the 1960s.

The impact of LMIs on system and control theory is hard to overstate: it
is fair to say that the field has been revolutionized by the realization that
optimization problems with LMI constraints can be effectively solved using
interior-point methods. We give no further details here since the relevant
material is available in Boyd et al. (1994).

7. Non-Lipschitz eigenvalue optimization

Up to this point we have discussed eigenvalue optimization for symmetric
matrices and self-adjoint operators, which have real eigenvalues and orthonor-
mal sets of eigenvectors. Eigenvalues of nonsymmetric matrices and operators
also play many roles in applied mathematics, though it is well known that their
potential sensitivity to perturbation requires caution. Stability issues arise
in many applications, with instability generally associated with eigenvalues
whose real parts are nonnegative. Indeed, the widespread use of symmetric
linear matrix inequalities in system and control theory is, in part, motiv-
ated by stability issues for nonsymmetric matrices, via Lyapunov theory and
its generalizations. It is therefore natural to consider direct application of
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Fig. 2 Spectral abscissa for
the damped linear oscillator

optimization theory to functions of eigenvalues of nonsymmetric matrices.
However, this is quite complicated because of the non-Lipschitz behaviour of
the eigenvalues.

The damped linear oscillator provides a simple example of eigenvalue op-
timization in the nonsymmetric case. Consider the ordinary differential equa-
tion, for a given real b,

y"(£) + 2by' (1) + y(t) = 0. (7.1)
Noting that the vector z(t) = [y(t) y'(t)]T satisfies the first-order system
Z'(t) = A(b)z(t) where A(b) = [ _0

! , the initial value problem may be
—2b

solved in terms of the eigenvalues and eigenvectors of A(b). The effectiveness
of the damping is measured by the spectral abscissa of A(b) (thatis, the largest
real part of the eigenvalues of A(b)): we denote this function by «(b). Now
a(b) = —b+ Rev/b? — 1, so, since the spectral abscissa achieves its minimum
at b = 1, equation (7.1) is said to be over(under)damped if b > 1 (b < 1),
and critically damped if b = 1. The function «(b) is plotted in Fig. 2. Note
that « is not a Lipschitz function of 6. The sharply different behaviour of the
function a on the two sides of the minimizer occurs because, on one side, a
double eigenvalue splits into a real pair, while on the other side, it splits into a
complex conjugate pair. In both cases the changes in the eigenvalues are non-
Lipschitz, but only in the former case do the real parts have non-Lipschitz
behaviour. The optimal damping factor b = 1 yields a matrix A(b) with an
eigenvalue having algebraic multiplicity two, but geometric multiplicity one,
and thus with a nontrivial Jordan block.

A similar phenomenon is well known from the analysis of the successive
overrelaxation (SOR) iterative method for solving systems of linear equations;
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see Ortega (1972). The critical value of the overrelaxation parameter is de-
termined by an eigenvalue optimization problem in one variable. Over- and
underrelaxation are well known to have very different consequences, again
because of the presence of a nontrivial Jordan block at the minimizing point.

Of course, non-Lipschitz eigenvalue optimization problems also arise in
more than one variable. Cox and Overton (1996) treat a generalization of the
damped linear oscillator, namely the damped wave equation. Ringertz (1996)
considers applications to stability issues for aircraft design.

Optimality conditions for non-Lipschitz eigenvalue optimization are rather
complicated and beyond the scope of this article. For the present state of the
art, see Burke and Overton (1994) and Overton and Womersley (1988).

Indeed, consider the following, far simpler question. Suppose A is a non-
symmetric matrix with multiple eigenvalues, and consider the eigenvalues of
the perturbed matrix A 4+ €¢B, where the matrix B is arbitrary and ¢ is a
scalar perturbation parameter. How can we quantify the leading terms of the
expansions of these eigenvalues in fractional powers of €2 When A has non-
trivial Jordan structure, the behaviour of the eigenvalues under perturbation
is quite complicated. Apparently, the only book that addresses this issue is
Baumgirtel (1985), building on results of Lidskii and others published in the
Russian literature in the 1960s, but remaining largely unknown in the West.
See Moro, Burke and Overton (1995) for discussion of Lidskii’s results and
connections with the classical Newton diagram.

In the final section of this article we derive some apparently new variational
results for functions of eigenvalues of nonsymmetric matrices. One special
case amounts to a characterization of the spectral abscissa as the optimal
value of a symmetric matrix eigenvalue optimization problem, a result well
known to control theorists and one which may be viewed as a quantitative
version of Lyapunov theory. Another special case implies the well known
result that the spectral radius may be characterized as the infimum of all
submultiplicative matrix norms. These results suggest a possible approach
to non-Lipschitz eigenvalue optimization by means of symmetric eigenvalue
optimization.

PART II: THE MATHEMATICS

8. Conjugacy

Convex analysis is an elegant and powerful tool for studying duality in optim-
ization. Particularly for linearly constrained problems, it provides a concise
and flexible framework. We begin by summarizing the relevant ideas.

Let F be a Euclidean space, by which we mean a finite-dimensional, real
inner-product space. We could, of course, always identify £ with R”, but a
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less concrete approach helps our future development. We call a real function
f on E a prenorm if it is continuous, and satisfies

e homogeneity: f(azx) = |a|f(z) for all real @ and points z in ¥
e  positivity: f(z) > 0 for all nonzero points z in F.

A norm is then just a prenorm satisfying the triangle inequality. For a pren-
orm f, we can define a real function fP on E by

FP(y) = max{(z,y) : f(z) = 1}.
The function fP is actually a norm: we call it the dual norm of f.

Theorem 8.1. (von Neumann, 1937) A prenorm f is a norm if and only
if f=fPP.
The reader may consult Horn and Johnson (1985) for these ideas.

In optimization it is very convenient to consider extended-real functions
f i+ F — [-o00,+00]. We call such a function convez (respectively closed,
polyhedral) if its epigraph{(z,r) € EXR : f(z) < r},is a convex (respectively
closed, polyhedral) set. The domain of f is the set

domf={z € F: f(z) < +o0};

if this set is nonempty and if f never takes the value —oo, then f is called
proper. For any extended-real function f we can define an extended-real
function f* on F by

f*(y) = sup{(z,y) — f(z) : 2 € E}.

The function f* is always closed and convex: we call it the (Fenchel) con-
jugate of f. The basic reference for these and later convex-analytic ideas is
Rockafellar (1970). Our definition of a closed function is slightly different
from that of Rockafellar (1970): the definitions coincide for proper functions.

Theorem 8.2. (Fenchel-H6érmander, 1949) Suppose the extended-real
function f is proper. Then f is closed and convex if and only if f = f**. In
this case, f* is also proper.

The ideas of dual norms and conjugate functions are closely related: if f is a
norm then a short calculation shows

(f2/2) = (f7)*/2. (8.1)

The first-order behaviour of a function f : £ — (—o0,400] at a point
x in its domain is fundamental to any study of optimality conditions and
algorithms. For convex f this behaviour is encapsulated in the subdifferential

Of(z)={ye E:(y,z—z) < f(z) — f(z) for all z in E}.

Specifically, the directional derivative of f at z in a direction w € F is given
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by the formula
f'(@;w) = sup{(w,y) 1y € 0f(2)}.
In particular, f is differentiable at z exactly when its subdifferential there is
a singleton (9f(z) ={Vf(z)}). If f(z) is infinite, we define 9 f(z) = 0.
Immediately from its definition, we can relate the subdifferential to the
conjugate:

yedf(z) < [fle)+ (v =(2y) (82)

Using the Fenchel-Hérmander Theorem (Theorem 8.2), we deduce that for a
proper closed convex function f, the subdifferential map can be ‘inverted’:

yedf(z) & z€df ). (8.3)

Example 8.3. (cones) One benefit of convex analysis is the possibility of
studying a subset K of E through its indicator function

6K(m):{ 0 if z € K,

400 otherwise.
This function is convex (closed) exactly when K is convex (closed). Suppose
K is a cone: that is, Ry K = K. Then we deduce immediately that the
function 7 is just dx -, the indicator function of the polar cone

K- ={ye F:(z,y) <O0forall zin K}.

The Fenchel-Hérmander Theorem (Theorem 8.2) then shows that a cone K is

closed and convex exactly when K=~ = K. From the subdifferential property
(8.2) we deduce the ‘complementarity’ condition
y€0dg(z) & ze€K,ye K™, and (z,y) =0. (8.4)

In particular, if the space F is R™ and the cone K is the nonnegative orthant
R, then the polar K~ is —R%, and for vectors z and y in R} we deduce

Y€ 35ﬂgi(m) & z; >0, y; <0, and z; or y; = 0 for each j. (8.5)

When f is a norm, the subdifferential property (8.2) has a simple analogue.
For nonzero points = in F, an easy calculation shows

y€df(x) & f(z)=(r,y)and fP(y) =1, (8.6)
while 9f(0) ={y € E: fP(y) < 1}.

The duality theory of linearly-constrained convex optimization is particu-
larly transparent in this framework. We will always consider R™ as a Eu-
clidean space of column vectors, with the standard inner product. Given a
linear map A : £ — R™, we define the adjoint map A* : R™ — FE by the
property

yT(Aac) = (A*y, z) for all points z in £ and y in R™.
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Suppose the function f: F — (—o00, 4+0o0] is closed, convex and proper, fix a
vector b in R™, and consider the pair of optimization problems,

Primal: p =inf{f(z):2 € FE, Az =b};
Dual: & =sup{y’b— f*(A*y):y e R™}.

The following result is derived from theory due to Rockafellar, dating from
1963 (Rockafellar 1970). We say the primal problem is superconsistent if there
is a point Z in int(dom f) satisfying AZ = b, and we say the dual problem
is superconsistent if there is a point § in R™ with A*y in int(dom f*). By
‘consistent’ we mean the same properties with ‘int’ omitted.

Theorem 8.4. (Fenchel Duality)
(i) Weak duality: p > 4.

(i) Dual attainment: if the primal is superconsistent, then p = §, and § is

attained, if finite. Furthermore, if A is surjective, then, for any real «,
the set

{yerm™:ylh - ff(A%y) > a}
is compact.

(iii) Primal attainment: if the dual is superconsistent, then p = 6, and p is
attained if finite. Furthermore, for any real «, the set

{z eR": f(z) < a, Az =0b}

is compact.

(iv) Polyhedrality: if f is polyhedral and either problem is consistent, then
the other problem is attained, if finite, and p = 4.

(v) Complementary slackness: suppose p = 6. Then points T and 7 are
optimal for the primal and the dual problems respectively, if and only if

AT =band Ay € 0f (7).

The complementary slackness condition A*y € 0f(T) is equivalent to T €
Jdf*(A*y), by the inversion formula (8.3). If in addition f* is differentiable
at A*y then the primal solution T must therefore be V f*(A*y). In these
circumstances we are thus able to recover a primal optimal solution by solving
the dual problem.

A nice exercise is to apply the Fenchel Duality Theorem (Theorem 8.4) and
Example 8.3 to the ‘cone optimization problem’

inf{(c,z): Az =b, v € K},

for a convex cone K and an element ¢ of E. This model (¢f. Nesterov
and Nemirovskii 1994) subsumes both linear and semidefinite programming,
which we discuss later.



164 A. S. LEwis AND M. L. OVERTON

9. Invariant norms

The theoretical foundations of eigenvalue optimization parallel the better-
known theory of invariant matrix norms pioneered by von Neumann. A brief
sketch of this theory’s salient features is therefore illuminating. For clarity
we consider only square, real matrices.

We consider the Euclidean space M,, of n x n real matrices, where the inner
product is defined by (X,Y) = tr XTY . The singular values of a matrix X
in M,, we denote 01(X) > 02(X) > --- > 0,(X). In this way we define the
‘singular value map’ ¢ : M,, — R".

We denote the groups of n X n permutation and orthogonal matrices by P,
and O,, respectively. We call a function f on R"™ symmetric if, for any point
z in R” and any matrix @ in P,, we have f(Qz) = f(z). We say a norm ¢
on M, is (orthogonally) invariant if, for any matrices X in M,,, and U and
Vin O, we have ¢(UXV) = ¢(X).

For a vector z in R", we denote the diagonal matrix with diagonal entries
x1,%3,...,%, by Diagz. Clearly, for any invariant norm ¢ on M,,, the real
function g on R™ defined by ¢g(z) = ¢(Diagz) is a symmetric norm that is
also absolute: g((|z1], |z2|, - - -, |z.])T) = g() for all vectors z in R™. Such
norms are called symmetric gauges. The original norm ¢ is just the composite
function g o . A beautiful result of von Neumann shows that this property
characterizes invariant norms.

Theorem 9.1. (von Neumann, 1937) Invariant matrix norms are ex-
actly those composite functions of the form ¢ o o, where ¢ is a symmetric

gauge.

For our purposes, almost more important than the result is the proof tech-
nique. Naturally, it relies heavily on the existence of an ‘ordered singular
value decomposition’ for any matrix X:

X = U(Diago(X))V for some orthogonal U and V.

If a second matrix Y satisfies Y = U(Diago(Y))V, then we say X and YV
have a simultaneous ordered singular value decomposition. Von Neumann’s
key step was the following result, of substantial independent interest.

Lemma 9.2. (von Neumann, 1937) Any n X n real matrices X and Y
satisfy the inequality

tr XTY < o(X)To(Y);

equality holds if and only if X and Y have a simultaneous ordered singular
value decomposition.

Equipped with this (nontrivial) result, von Neumann’s characterization
(Theorem 9.1) follows from a beautifully transparent duality argument. For
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an absolute, symmetric prenorm g on R”™, we first use Lemma 9.2 to deduce
that the prenorm ¢ o o satisfies

(goa)? =g oo, (9.1)

Hence if ¢ is actually a symmetric gauge, applying this formula twice and
using Theorem 8.1, we deduce

)DD:( DOO‘)D:gDD

(goo

g oo =gooao,

and, by Theorem 8.1, g o & must be a norm. The result is now easy to see.

Lemma 9.2 also greatly facilitates the calculation of subdifferentials. The
following result, due to Zigtak (1993) (¢f. Watson (1992)) follows immediately
from the Lemma, the subdifferential characterization (8.6), and the duality
formula (9.1) (¢f. Lewis (19954)).

Theorem 9.3. (Zietak, 1994) If g is a symmetric gauge, then matrices
X and Y satisfy Y € d(g o 0)(X) if and only if they have a simultaneous
ordered singular value decomposition and satisfy o(Y') € dg(o(X)).

Such techniques help reveal the intimate geometric connections between the
two norms ¢ and g o 0. For example, g o ¢ is strict (respectively smooth) if
and only if ¢ is: see Arazy (1981) and Zietak (1988). Furthermore, the facial
structure of the unit ball of g o o can be derived from that of ¢ (de Sa 1994a,
19945, 1994¢).

Example 9.4. (invariant approximation) Given asubspace of matrices
and an invariant norm goo (where g is a symmetric gauge), suppose we wish
to approximate, in the norm go o, a given matrix by a matrix from the given
subspace. We can rewrite this problem, for a suitable choice of matrices A;
and reals b; (fori=1,2,...,m), as

inf {(g(c(X)))%/2:tr ATX = b, for each i}. (9.2)

XeM,

By the Fenchel Duality Theorem (Theorem 8.4) and the dual norm equation
(8.1), both this problem and its dual

sl b)) e

have optimal solutions, with equal optimal values: the form of the dual is a
consequence of the duality formula (9.1). If the norm g is strict (that is, the
unit sphere {z : ¢g(z) = 1} contains no line segments) then its dual norm
gP is smooth (see for example Deville, Godefroy and Zizler (1993, 11.1.6)),
whence so is ¢” o 0: Zietak’s Theorem (Theorem 9.3) provides a simple
formula for V(g? o o) in terms of Vg”. Then the dual problem (9.3) is
an unconstrained, smooth, concave maximization, and if the vector 7 is a
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solution, then the unique primal optimal solution is given by
X = gP(a(Y))U(Diag Vg (a(Y)))V,

where Y = Y. 7;A;, and U and V are any orthogonal matrices for which
Y = U(Diago(Y))V.

10. Functions of eigenvalues

We turn next to our principal interest: variational properties of eigenval-
ues. Qur development mimics that of the previous section. An invariant
matrix function is simply an absolute, symmetric function of the singular
values. Analogously, a function of a symmetric matrix X that is invariant
under transformations X — UL XU, for all orthogonal matrices U, must be
a symmetric function of the eigenvalues of X.

We consider the Euclidean space S,, of n X n real symmetric matrices, where
the inner product is defined by (X,Y) = tr XY. We denote the eigenvalues
of a matrix X in S, by A1 (X) > A2(X) > -+ > A (X). In this way we define
the ‘eigenvalue map’ A : M,, — R".

We say a function ¢ on S, is weakly (orthogonally) invariant if, for any
matrices X in S, and U in O,, we have (UTXU) = (X). Clearly, for
any weakly invariant convex function ¥ on S,,, the extended-real function h
on R™ defined by h(z) = ¥ (Diagz) is symmetric and convex. Remarkably,
just like von Neumann’s Theorem (Theorem 9.1), this property is actually a
characterization.

Theorem 10.1. (Davis, 1957) Functions on S,, that are weakly invariant
and convex are exactly those composite functions of the form ho A, where the
function h : R™ — [—00, +00] is symmetric and convex.

For proofs of this result, see Davis (1957), Martinez-Legaz (1995) and Lewis
(1996¢). A rather different characterization when the function A is differenti-
able may be found in Friedland (1981).

To pursue our analogy, we sketch a revealing, duality-based proof when the
functions are closed. It begins with an analogue of von Neumann’s Lemma
(Lemma 9.2), for symmetric matrices. The inequality is actually an easy
consequence of von Neumann’s; the condition for equality is due to Theo-
bald (1975). We say that two matrices X and Y in S,, have a simultan-
eous ordered spectral decomposition if there is an orthogonal matrix U with

X = UT(Diag A\(X))U and Y = UT(Diag A\(Y))U.

Lemma 10.2. (von Neumann—Theobald) Any nxn real symmetric matrices
X and Y satisfy the inequality

tr XY < MX)TA(Y);
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equality holds if and only if X and Y have a simultaneous ordered spectral
decomposition.

As in the singular value case, this inequality is the key tool. We first use
it to prove that any extended-real symmetric function h satisfies

(hoA)* =h* o\ (10.1)

Hence if h is also closed, proper and convex, then applying this formula twice
and using the Fenchel-Hérmander Theorem (Theorem 8.2), we deduce

(hoX)™ =(R"oA)"=h™oA=hol,

and, by Theorem 8.2, ho A must be convex. Theorem 10.1 is now easy to see.

Very much as in the invariant norm case, the von Neumann—Theobald
Lemma (Lemma 10.2) helps in the computation of subdifferentials. Using the
Lemma, the subdifferential characterization (8.2), and the conjugacy formula
(10.1), we obtain the following result (Lewis 19964a).

Theorem 10.3. (Lewis, 1996) If the function A : R™ — (—00, 00] is sym-
metric and convex, then matrices X and Y satisfy Y € 9(h o X)(X) if and
only if they have a simultaneous ordered spectral decomposition and satisfy

A(Y) € Dh(A(X)).

There are similar results for smooth and nonsmooth, nonconvex functions
(Lewis 19966, Tsing, Fan and Verriest 1994). Special versions of some of
these ideas appeared independently in Barbara and Crouzeix (1994).

As in the invariant norm case, geometric/analytic properties of the two
functions h and h oo are intimately related: strict convexity and smoothness
are examples (Lewis 1996a). Furthermore, if the convex subset C' of R is
symmetric (that is, PC' = C for all matrices P in P,), then by applying
Davis’s Theorem (Theorem 10.1), to the function dc o A we see that the
matrix set A1 (C) = {X € S, : A(X) € C} is also convex: the extremal and
facial structure of A™!'(C') may be deduced from that of C' (Lewis 1996, Lewis
1995b). Similar examples appear in Seeger (1996) and Martinez-Legaz (1995).

The parallel between the invariant norm case in the previous section and
the development in this section is not accidental. There is a deeper, algebraic
structure underlying both theorems (Lewis 1995¢, Lewis 1996¢).

Example 10.4. (semidefinite cone) Starting with the indicator function
of the positive orthant, 6]M’ the composite function 6R1 o\ is just the indicator

function of the cone of positive semidefinite matrices. We denote this cone
S}, and for matrices X and Y in S,, we write X = Y if X —Y € ST.

n

The conjugacy formula (10.1) and Example 8.3 show Fejer’s result that the
positive semidefinite cone is ‘self-dual’ (that is, (S;F)~ = —S7), since

5(S$)— = 52; = (&Ki oA = 5&%1 oA= 5_]Ki oA= 5_53.
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Furthermore, if matrices X and Y in S} satisfy tr XY = 0, then in fact
they must satisfy XY = 0. To see this, note that from the complementarity
condition (8.4) and the self-duality of SF, we deduce —Y € 0341 (X). By
the subdifferential characterization, Theorem 10.3, X and —Y have a simul-
taneous ordered spectral decomposition, and A(—=Y) € 9z (A(X)), whence
(by relation (8.5)) A;(X)A;(=Y) = 0 for each j. Thus for some orthogonal
matrix U,

-XY = (UT(Diag\(X))U)(UT(Diag \(=Y))U)
UT (Diag[A; (X)X (=Y))U = 0.

Example 10.5. (logarithmic barrier) For vectors z and y in R”, we
write z > y if z; > y; for each index j. For matrices X and Y in S,
we write X > Y if X — Y is positive definite. Define a symmetric closed
convex function b : R™ — (—o0, +00] by

=2 jlogz; ifz >0,

hiz) = { 400 otherwise. (102)

(Henceforth we will interpret log o as —oo for any nonpositive real «.) The
corresponding matrix function is

[ —logdet X if X >0,
(hoX)(X) = { +00 otherwise. (10.3)

(Analogously, we henceforth interpret log det X as —oco unless the symmetric
matrix X is positive definite.) By Davis’s Theorem (Theorem 10.1), this
function is convex (and in fact essentially strictly convex, since h is; see
Lewis (1996a). Using Theorem 10.3, a simple exercise shows, for positive
definite X,

V(hoA)(X)=-X"1 (10.4)
Since h*(y) = —n + h(—y), we deduce from the conjugacy formula (10.1),

wiin | —n—logdet(=Y) if0>Y,
(hoA)"(Y) = { +o0 otherwise. (10.5)

In this example we see the intimate connection between the functions (10.2)
and (10.3), two of the ‘self-concordant barriers’ fundamental to the devel-
opment of Nesterov and Nemirovskii (1994). This connection suggests the
following interesting question (Tungel 1995): if the function A is a self-
concordant barrier, is the same true of the matrix function h o A7

Example 10.6. (BFGS updates — Fletcher, 1991) Given a matrix H
in S,, which is positive definite, and vectors s and b in R"™, we consider the
primal problem

Jnf {trH™'X —logdet X : Xs=b, X > 0}. (10.6)
€5n
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Using the framework of the Fenchel Duality Theorem (Theorem 8.4), and
formula (10.5), the dual problem is

sup {b7y + logdet(H ! — (ysT + sy7)/2)} + n. (10.7)
yeER™

If sTh > 0, standard quasi-Newton theory shows the primal problem (10.6)
is superconsistent, and choosing § = 0 shows the dual problem (10.7) is also
superconsistent. Thus the primal and dual problems are both attained, by the
Fenchel Duality Theorem, and routine calculation using the gradient formula
(10.4) shows that the unique primal optimal solution is the ‘BFGS update’
of the ‘Hessian approximation’ H, subject to the ‘secant equation’ Xs = b
(Fletcher 1991, Lewis 1996aq).

Example 10.7. (eigenvalue sums) For an integer k£ between 0 and n,
define a symmetric closed convex function A on R™ by

h(z) = sum of the k largest z;. (10.8)

The corresponding matrix function is the sum of the k£ largest eigenvalues,

(ho M) (X) = 3 M (X).

Jj=1

A calculation shows the conjugate of h is the indicator function of the set

{zER”:EZj:k, ng]-glforeachj},

i=1

so by the conjugacy formula (10.1), the conjugate of h o A is the indicator
function of the matrix set

H={Y €S, :tY =k, I =Y =0} (10.9)

For given matrices A, A%,..., A™ in S, and a vector b in R™, consider the
optimization problem

k
inf {Z)‘J(X) :tr A'X = b; for each z} ;

cf. Fletcher (1985), Overton and Womersley (1993), Hirriart-Urruty and Ye
(1995) and Pataki (1995). In the Fenchel Duality framework the dual problem
is therefore

sup {bTy : ZyiAi € H} ) (10.10)

yeER™ =1

where the set H is given by equation (10.9).
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Rather more generally, suppose the vector d in R” has nonincreasing com-
ponents. For any vector x in R", let T denote the vector with components
z; rearranged into nonincreasing order. Then the function hA(z) = d'7 is
symmetric, closed and convex (since h(z) = maxgep,{d?Qz}). The corres-
ponding matrix function is exactly the weighted sum of eigenvalues appearing
in the graph partitioning problem in Section 2, namely (ho\)(W) = dTA(W).

11. Linear programming

An important area of eigenvalue optimization is semidefinite programming
(SDP). Since the analogies with ordinary linear programming (LP) are very
close, we begin by outlining the relevant classical theory.

For given vectors ¢,a',a?,...,a™ in R®, and b in R™, the primal linear
program we study is
po= inf {cTz: (a’)Tz = b; for each j}. (11.1)
zERi

Using the framework of Theorem 8.4 (with objective function f(z) = ¢’z +
dgn (2)), we obtain the dual problem

do = sup {bTy i > Zyial} . (11.2)

yeER™ -
By polyhedrality, we immediately see from the Fenchel Duality Theorem
(Theorem 8.4) that if either the primal or dual problem is consistent, then
po = &, and both values are attained if finite. This is the classical linear
programming duality theorem. The complementary slackness condition ((v)
in Theorem 8.4) states that primal feasible 7 in R™ and dual feasible 7 in R™
are both optimal if and only if

T
(c - Eyiai) T =0,
7
or, equivalently, Z;(c — 3, 7;a'); = 0, for each index j =1,2,...,n.

If we penalize the primal constraint x € R’ using the logarithmic barrier
(10.2) with a small positive parameter u, we obtain the new primal problem

zER™
J

pu = inf {ch - uZlogmj . (a)Tx = b; for each z} ,

and the dual problem is

8, = sup {bTy + ,uZlog (C]‘ - Zyza;) } + nu(log pp — 1).

RrR™
ye F
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The Fenchel Duality Theorem now needs a regularity condition. We assume
the following;:

(i) Primal superconsistency: some vector £ > 0 in R"™ satisfies
(a)T& = b;, for each i.

ii) Dual superconsistency: some vector 3 in R™ satisfies ¢ > 3, jial.
iii) Independence: the vectors a',a?, ..., a™ are linearly independent.

Assumptions (i) and (ii) guarantee p, = §,, by the Duality Theorem, and
both values are attained. The primal objective is (essentially) strictly con-
vex; assumption (iii) ensures the dual objective is too. Hence the primal
and dual both have unique optimal solutions, z = z* in R™ and y = y* in
R™ respectively, and by the complementary slackness condition, they are the
unique solution of the system

(a)Tz = b;, for each i, (11.3)

z; (Cj - Zyza;) = u, for each j, (11.4)

z>0and ¢ > Zyiai. (11.5)

Notice that when g = 0 these conditions reduce to the complementary slack-
ness conditions for the original linear program.

The trajectory {(z*,y") : p > 0} is called the central path. From equations
(11.3) and (11.4), we deduce the duality gap

Tt — bTyk = np. (11.6)

Thus, using the weak duality inequality (Theorem 8.4(i)), we see that the
feasible solutions z* and y* approach optimality:

lim !

w0
But our regularity assumptions (i), (ii) and (iii) then imply, using the Fenchel
Duality compactness results, that the central path (z#, y*) stays bounded for
small positive . Any limit point (2%, y") must satisfy ¢’z = 6Ty (by the
duality gap formula (11.6)), whence z° and y° are optimal for the primal
and dual respectively. In fact, a more careful argument shows that the limit
point (2%, y°) is unique: the vectors z° and y° are the ‘analytic centres’ of
the optimal faces for the primal and dual problems respectively; see Megiddo
(1989) and McLinden (1980). (Given a polytope P = {z € L : z > 0}, where
L is an affine subspace and P contains a point z > 0, the analytic centre
of P is the unique minimizer of the logarithmic barrier — 3. log(z;) over all
z€eP.)

" = po = 6o = lim bT yH.
Po 0 1o Yy
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12. Semidefinite programming

In the previous section we outlined some of the classical theory of linear
programming, from a Fenchel Duality perspective. In this section we describe
the parallel theory of semidefinite programming: with a little caution, the
development is largely identical.

For given matrices C, A', A%, ..., A™ in S, and a vector b in R™, the primal
semidefinite program is
po = inf {trCX :tr A'X = b; for each i}. (12.1)
Xesp

Calculating the conjugate of the objective function f(X) = trC'X 4 4+ (X)
is easy, using Example 10.4, and we arrive at the dual problem

yeER™

do = sup {bTy :C = ZyZAZ} . (12.2)

Despite its simple form, the primal-dual pair of semidefinite programs is
a remarkably flexible model. For example, it is easy to see how to rewrite
the dual of the eigenvalue sum problem (see (10.10)) as a dual semidefinite
program. Many other examples appear in Nesterov and Nemirovskii (1994).

The primal and dual problems are not polyhedral. As we have seen, a
linear program with finite optimal value must have an optimal solution, and
its optimal value must equal the optimal value of the dual linear program.
By contrast, these properties may fail for semidefinite programs. Hence we
assume some regularity conditions at the outset:

(i) Primal superconsistency: some matrix X > 0 in S, satisfies
trA'X = b;, for each 1.

(ii) Dual superconsistency: some vector §j in R™ satisfies C' = 3, §j; A°.

(iii) Independence: the matrices A', A2 ... A™ are linearly independent.

With these assumptions, we see from the Fenchel Duality Theorem (The-
orem 8.4) that the optimal values are equal, pg = g, and both are attained.
The complementary slackness condition states that primal feasible X in S,
and dual feasible 7 in R™ are both optimal if and only if

tr (C - Z@Ai) X =0.

As observed in Example 10.4 this condition is equivalent to (C=3% yiAi)Y =
0, and therefore it implies that X and Z have a simultaneous ordered spectral
decomposition, where Z = C'=3". 7, A*. In other words, there is an orthogonal
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matrix U such that

X = U'(Diag\(X))TU,  and

_ . o (12.3)
—Z% = U (Diag\(—2))U.
Thus the complementary slackness condition implies
Ni(X)Xj(=Z) =0, for each j =1,2,...,n. (12.4)

The minus signs are present because of the convention that A maps a matrix
to its eigenvalues in descending order. Note that, except in special cases, we
expect both X and Z to have a multiple zero eigenvalue.

As with linear programming, we next consider a penalized version of the
primal problem, using the logarithmic barrier (10.3) with a small positive
parameter u. We obtain the new primal problem

Pu = Xlgfgﬂ {trC’X — plogdet X : tr A" X = b; for each z}.

The corresponding dual problem is

8, = sup {bTy + plog det (C - ZyZAZ) } +nu(logp —1).

yER™ i

By the Fenchel Duality Theorem (Theorem 8.4), p, = 6, and both values
are attained. Both objective functions are (essentially) strictly convex, so the
primal and dual problems have unique optimal solutions X = X* in S,, and
y = y* in R™ respectively: by the complementary slackness condition and
the gradient characterization (10.4), they uniquely solve the system

tr A'X = b;, for each 1, (12.5)

X (C -> yiAi) = pul, (12.6)
X »=0and C = yA. (12.7)

The trajectory {(X*, y*): u > 0} is called the central path. Points on the
central path have the duality gap

trCX* — bTy# = np.

As with linear programming, this guarantees that as p decreases to zero the
solutions X# and y* approach optimality. Once again, the Fenchel Duality
Theorem shows that the central path (X*,y*) stays bounded for small pos-
itive 4, and any limit point (X%, 4°) must be a pair of optimal solutions for
the original primal and dual problems.
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Condition (12.6) implies that, just like the solution pair X and Z, X* and
c-3 yfAi have a simultaneous ordered spectral decomposition. When
p =0, equation (12.6) reduces to the complementary slackness condition for
the original semidefinite program.

Notice that, with the choices C' = Diagc and A® = Diaga’ for each i, the
semidefinite theory developed in this section collapses to the linear theory of

the previous section.

13. Strict complementarity and nondegeneracy

Let us go back to the linear programming problem and its dual, (11.1) and
(11.2). We say a primal-dual solution (Z,7) satisfies the strict complement-
arity condition if, for each j, exactly one of the two statements 7; = 0 and
(c— Eyiai)j = 0 holds. We say a strictly complementary solution is nonde-
generate if the vector T has exactly m nonzero components and the corres-
ponding m rows of the matrix [a!,a?, ..., a™] are linearly independent. It is
well known that these conditions guarantee that Z is the unique optimal solu-
tion of the primal problem (11.1) and that 7 is the unique optimal solution of
the dual problem (11.2). Furthermore, these conditions hold ‘generically’ for
a linear program: roughly speaking, this means that they hold with probabil-
ity one, given randomly generated linear programs with associated nonempty
feasible regions.

The situation is less clear in semidefinite programming. There is no diffi-
culty with the idea of strict complementarity: we say a primal-dual solution
(X,7) for (12.1) and (12.2) satisfies the strict complementarity condition if,
for each index j, exactly one of the two statements A;(X) = 0 and \;(—=Z) = 0
holds, where 7Z = C' — ¥, 7;A*. Let r denote the rank of X and let s denote
the rank of Z; then strict complementarity holds if and only if r + s = n.
Nondegeneracy conditions are more complicated and are discussed by Al-
izadeh, Haeberly and Overton (1996a) and Shapiro (1996). Assume that
strict complementarity holds and let U = [U/; U;] be the orthogonal matrix
of eigenvectors which simultaneously diagonalizes X and Z (see equations
(12.3)), with the first r columns (collected in U;) corresponding to nonzero
eigenvalues of X and the last s columns (collected in Us) corresponding to
nonzero eigenvalues of Z. Then the appropriate nondegeneracy assumptions
are the following two conditions, motivated by studying the primal and the
dual separately: first, that the matrices

ngA,gl Uy AU, , fori=1,2,...,m,
U2 AZUl 0
are linearly independent in the space S, and second, that the matrices

U?Aivl, for:=1,2,...,m,
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Table 1. Number of occurrences of rank(X ) in 1000 randomly generated
problems with n = 10 and various values of m.

m|012345678910

5 297 703
10 0 494 506 0
15 18 712 270 0
20 100 813 87
25 1 325 667 7

span the space S,. It is shown by Alizadeh et al. (1996a) that the strict com-
plementarity and nondegeneracy conditions imply uniqueness of the primal
and dual solutions, and also that the conditions are indeed generic properties
of SDP, meaning roughly that they hold with probability one for an optimal
solution pair, given random data with feasible solutions. An immediate con-
sequence is the existence of generic bounds on the optimal solution matrix
ranks r and s, and therefore on the multiplicity of the zero eigenvalues. Let
k? denote k(k + 1)/2, and let vk = [t]|, where ¢ is the positive real root
of t> = k. Then generic bounds on the rank of the primal optimal solution
matrix X are given by
n—\n2—m < r < {"_/ﬁ

For further discussion of related issues, see Pataki (1995).

Experiments reported in Alizadeh et al. (1996a) show clearly that, given
randomly generated data, the rank r is far more likely to lie in the centre of
its range than near the end points. This is demonstrated by Table 1, which
shows, for n = 10 and various choices of m, how many times the primal rank
r occurred during 1000 runs with different random data. The zeros indicate
possible values of r which did not occur, while the blanks indicate generically
impossible values.

A natural question is: what is the underlying probability distribution for
the primal solution rank r? We consider this to be a very interesting open
question.

Table 1 also shows, incidentally, the reliability of the numerical method used
to obtain the results: accurate solutions to 5000 different randomly generated
problems were obtained without a single failure. (As with linear program-
ming, it is easy to check the optimality of a solution pair, simply by checking
primal and dual feasibility and the complementary slackness condition.) We
now sketch the ideas behind the primal-dual interior-point method used to
obtain these results.
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14. Primal-dual interior-point methods

We begin again with the case of linear programming. The basic idea of
the primal-dual interior-point method is to generate a sequence of iterates
(ac(k), y(k)) € R" X R™ (for k = 1,2,...) approximating a sequence of points
lying on the central path and converging to an optimal solution as k& — oo.
Briefly, this approximation is achieved by applying, at the kth iteration, one
step of Newton’s method to (11.3) and (11.4), a system of n + m linear and
quadratic equations in the n+m variables z;, y;. Here i is a positive number,
fixed at the kth iteration to a value pu(®), with u*) — 0 as k — oo. (If we
also introduce the equations z; =¢; — >~; yiaé, substituting these into (11.4)
to obtain z;z; = p, and treating z;, j = 1,...,n, as independent variables,
Newton’s method yields an equivalent iteration.) The Newton step is defined
by the linear system

AT 0 Az ] b— ATz 41
20 _x®a || Ay | T | (01— x® 70 (14.1)
where A is the n x m matrix [a!, ..., a™], X&) and Z(®) are respectively the

diagonal matrices Diag z(®) and Diag(c— Ay(k)), I is the n X n identity matrix
and e is the n-vector whose components are all one. Block Gauss elimination
reduces this system to

(AT(Z) 71X B A) Ay = b — AT (2®) — wlF) (14.2)

Az = w® 4 (Z)71 X B AAy, (14.3)

where w®) = (u*)(Z(*))-1 X(k))e. New iterates are then obtained by
e+ = 2(B) oAz, y+D) = (k) 4 Ay, where steplengths o and 3 are

chosen so that $(k+1) > 0 and ¢ — Ayt > 0. A value p+1) < p¥) i
then chosen and the iterative step repeated. Different rules for reducing the
parameter p and choosing the steplengths o and g give different variants
of the algorithm, with some specific rules known to guarantee a solution
with prescribed accuracy in polynomial time. The original references for this
method are Monteiro and Adler (1989) and Kojima et al. (1989).

We shall not discuss the global convergence theory. However, the following
well known result is important for understanding the local convergence and
numerical stability of the algorithm. It analyses the condition numbers of the
two key matrices defining the algorithm at points on the central path.

Proposition 14.1 Suppose that (Z,7) solves the LP primal-dual pair (11.1)
and (11.2), with both the strict complementarity and nondegeneracy condi-
tions holding. Then, using X* = Diagz* and Z* = Diag(c — Ay*), where
(z#,y") lies on the central path defined by (11.3), (11.4) and (11.5), the
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condition numbers of the matrices
[ AT 0

T —1 v
o _X#A] and AT(Z#)71X*#A (14.4)

are both bounded independent of u as u | 0.

Proof. 1t is well known that the assumptions guarantee that (7,7y) is the
unique solution of the linear program and consequently, as discussed in Sec-
tion 11, also the limit point of the central path (z*,y*) as u | 0. Without
loss of generality, we may take

i=|o] ema=[2]. A=)

where all partitionings are from n rows into m and n — m rows respectively,
with 2 > 0, 2 > 0, and A; nonsingular. Then the first matrix in (14.4)
converges to

AT AT 0
0 0 (—Diag#)a,
0 Diag? 0

as ¢ | 0. This matrix can be permuted into a block upper triangular mat-
rix with nonsingular diagonal blocks AT, —Diag(#)A;, Diag?. The second
matrix does not have a limit, but AT (Z#)~' X*A has the limit

AT (Diag #)%4,
by virtue of (11.4), which completes the proof. O

Let us refer to the first matrix in (14.4) as the block Jacobian matrix and
to the second as the Schur complement. The consequence of the bounded
condition number of the block Jacobian is that, given strict complementarity
and nondegeneracy assumptions, the primal-dual interior-point method for
linear programming has a quadratic rate of local convergence as long as the
parameter p is reduced sufficiently fast and the steplengths o and 3 are chosen
sufficiently close to one. See Zhang, Tapia and Dennis (1992) for details.
(Even without nondegeneracy assumptions, certain superlinear convergence
properties still hold; see Zhang and Tapia (1993).) The consequence of the
bounded condition number of the Schur complement is that, again under
the given assumptions, there is no numerical difficulty with factorizing the
matrix in (14.2) as ¢ | 0. This is not necessarily the case in the absence of
nondegeneracy assumptions, a fact that is a subject of some current interest
(Wright 1995).

Now let us turn to semidefinite programming. As in linear programming,
the essential idea of the primal-dual interior-point method is to generate a
sequence of iterates (X(k),y(k)) € S, X R™ approximating a sequence of
points on the central path, converging to a solution as £ — co. However, it
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is not clear in this case how to apply Newton’s method. The key difficulty
is that the left-hand side of (12.6) is not symmetric, so equations (12.5) and
(12.6) do not map S, x R™ to itself; consequently, Newton’s method is not
directly applicable. The cleanest solution seems to be to replace (12.6) by

X (C - Z yiAi) + (C - Z yiAi) X =2ul. (14.5)

That (12.6) implies (14.5) is immediate. That the converse holds for X > 0
is easily seen by premultiplying (14.5) by UT and postmultiplying by U,
where the orthogonal matrix U diagonalizes X. Application of Newton’s
method to (12.5) and (14.5) leads to a very effective method for semidefinite
programming called the X 747 X method by Alizadeh, Haeberly and Overton
(19966); this method was used to generate the results shown in Table 1 in
the previous section. On average, each problem was solved in less than 10
iterations, a property which is, in practice, almost independent of the problem
dimension. Other variants of the primal-dual interior-point method given by
Helmberg, Rendl, Vanderbei and Wolkowicz (1996), Kojima, Shindoh and
Hara (1994), Nesterov and Todd (1996) and Vandenberghe and Boyd (1995)
give similar performance, but the X 7+ Z X method is especially robust with
respect to changes in the rules for reducing g and choosing the steplengths
a, # (Alizadeh et al. 19966). It is proved by Alizadeh et al. (1996b) that, given
the SDP strict complementarity and nondegeneracy assumptions stated in the
previous section, the first part of Theorem 14.1, namely that the condition
number of the block Jacobian is bounded, extends from LP to hold also for
the X 7+ Z X method for SDP, but the second does not, that is, the condition
number of the corresponding Schur complement matrix is unbounded for SDP,
even with nondegeneracy assumptions. Consequently, the X 7 4+ Z X method
islocally quadratically convergent, in contrast to other variants of the primal-
dual interior-point method for SDP, given the nondegeneracy assumptions
and appropriate  reduction and steplength rules. However, under the same
conditions, the method is not necessarily numerically stable as g | 0, since the
condition number of the linear system which must be solved at each iteration
is O(1/p). Indeed, this was observed numerically by Alizadeh et al. (19966):
generally, it was possible to compute results accurate to only about the square
root of the machine precision, given random data. The same difficulty applies
to other variants of the primal-dual interior-point method as well as the X 7+
7 X method. By contrast, there is no difficulty solving modest-sized randomly
generated linear programs to machine precision accuracy using the LP primal-
dual interior-point method.

Asin LP, if we use the substitution Z = C' — 3, 1; A® in (12.6), introducing
7 as an independent variable and Z = C' =Y, y; A" as an additional equation,
Newton’s method yields an equivalent iteration.



EIGENVALUE OPTIMIZATION 179

An appealing alternative primal-dual interior-point iteration for SDP is
based on the following idea. Instead of treating the variable X (or X and %)
directly, recall from the discussion in Section 12 that for (X*, y*) to lie on
the central path, X# and Z =C -3, yfAi must have a simultaneous ordered
spectral decomposition. Therefore, consider the following set of variables: an
orthogonal matrix U, which diagonalizes both X and Z = C — 3, y; A", to-
gether with the eigenvalues of X and 7, say §; and (;, 7 = 1,...,n. Equations

(12.5) and (12.6) then reduce to
tr (UTAiU(Diagfi)) = b;, for each 1,

(Diag¢;) + > _yUTA'U =UTCU,

and
&;¢; = u, for each j.

Borrowing a technique used by Friedland, Nocedal and Overton (1987), Over-
ton (1988) and Overton and Womersley (1995), the orthogonal matrix U
can be parametrized by U = exp(S) =1+ S5+ %52 + -+, where S is skew-
symmetric, making the application of Newton’s method straightforward. This
leads to a method which, though it apparently has poor global convergence
properties, is at present able to compute more accurate solutions than any
other SDP interior-point method (Alizadeh et al. 19965).

The eigenvalue optimization method of Overton (Overton 1988, Overton
and Womersley 1995) is easily extended to apply to SDP. This method does
not share the global convergence properties known for the interior-point meth-
ods. However, it can be used as an effective technique to obtain highly ac-
curate solutions when an interior-point method reaches its limiting accuracy.
The same presumably applies to Fletcher’s method (Fletcher 1985), though
this has not been tested. These methods are more difficult to describe because
they use second derivatives, a complicated issue in the presence of multiple
eigenvalues. They need second derivatives to achieve quadratic convergence
because they are based on an appropriate form of Newton’s method in the
dual space only. These Newton methods use primal information to construct
the second derivative of an appropriate Lagrangian function, but they are
not primal-dual methods. A really remarkable property of the X7 + ZX
primal-dual interior-point method for SDP is that, in exact arithmetic, it
generically achieves quadratic convergence with only first-order primal and
dual information, even though the constraints are not polyhedral.

Primal-dual interior-point methods for LP have been used to solve very
large problems; the best methods are generally thought to be superior to the
simplex method, except for special problem classes. However, at present the
implementation of interior-point methods for SDP has been limited to small
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problems, or problems with block-diagonal structure. If C' and the A’ are
block-diagonal with the same block structure, then, without loss of generality,
the primal matrix X can be taken to have the same block structure: indeed,
LP is a special case with block sizes all one. Consequently, the primal-dual
interior-point methods for SDP can be implemented very efficiently if the
block sizes are not large. However, if C' and the matrices A® have a more
general sparse structure, then even it C'—3", yfAi is sparse, the corresponding
primal matrix X# = u(C - 3", y,fLAi)_1 is generally dense. For example, this
is the case when C' and the A’ are tridiagonal. In this situation, it is possible
that an interior-point method based only on dual information is preferable
to a primal-dual method. It may also be worth reconsidering some older and
simpler first-order methods (Cullum et al. 1975, Overton 1992, Schramm and
Zowe 1992).

15. Nonlinear semidefinite programming and eigenvalue
optimization

The primal semidefinite program (12.1) permits only linear constraints; like-
wise the constraint in the dual program (12.2) is a semidefinite constraint
on an affine matrix function C' — Y, y;A°. In many applications, one finds
eigenvalue optimization problems with nonlinear constraints, or with mat-
rix functions depending nonlinearly on the variables. Such problems are, of
course, substantially more difficult and a detailed discussion is beyond the
scope of this article. However, we make two remarks.

First, although much of the duality theory described above fails to extend
to the nonlinear case, some results are possible. Instead of subdifferentials,
one may introduce the Clarke generalized gradient (Clarke 1983). A suitable
chain rule yields first-order optimality conditions, though these are generally
only necessary, not sufficient, conditions for optimality (Cox and Overton
1992, Lewis 19965, Overton 1992). Second-order optimality conditions may
also be derived (Shapiro 1996).

Second, some of the essential ideas of interior-point methods can be exten-
ded to nonlinear, nonconvex problems. Specifically, the logarithmic barrier
function remains a very useful tool (Ringertz 1995). Whether primal-dual
methods have an important role to play in the nonlinear case is not clear.
However, the main idea remains valid, namely the application of Newton’s
method to a perturbed form of the optimality conditions, which, as in the
linear case, involve a complementarity condition.

16. Eigenvalues of nonsymmetric matrices

The eigenvalues of a real symmetric matrix, which we described by the func-
tion A : S, = R"”, are Lipschitz functions of the matrix elements. Our devel-
opment in Section 10 and our analysis of semidefinite programming depend
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heavily on the symmetry of the matrices. A completely parallel theory holds
for complex Hermitian matrices. However, the eigenvalues of a real nonsym-
metric or a general complex matrix are, in general, non-Lipschitz functions
of the matrix elements.

In this section we give some apparently new variational results for functions
of eigenvalues of nonsymmetric matrices. One special case characterizes the
spectral abscissa of a nonsymmetric matrix, in a quantitative version of Lya-
punov theory, while another special case yields a well known characterization
of the spectral radius.

We can order the complex numbers C lexicographically: in this order,
one complex number, z, dominates another, w if either Rez > Rew, or
Rez = Rew and Imz > Imw. For a matrix X in the vector space of
n X n complex matrices, M, (C), let us denote the eigenvalues of X by
A1(X), A2(X), ..., Au(X), counted by multiplicity and ordered lexicographic-
ally. In this way we can extend the eigenvalue function A to the space M, (C).
If the matrices X and Z in M,,(C) are similar (that is, some matrix L satisfies
Z = LXL™1), then we write X ~ Z.

Proposition 16.1 If the function I : M, (C) — [—o0, +00] satisfies
F(X) > F(Diag A(X)) for all X in M, (C), (16.1)

and if, for some matrix Y in M, (C), the function F is upper semicontinuous
at Diag A(Y), then

\]

F(Diag A(Y)) = inf F(Z). (16.

)
Proof. 1f Z is similar to Y, then A(Z) = A(Y), whence by inequality (16.1)
we obtain F(Z) > F(DiagA(Z)) = F(DiagA(Y)). Thus F(Diag A(Y)) <
infzoy F(7).

On the other hand, by Schur’s Theorem (Horn and Johnson 1985, Theorem
2.3.1), there is a unitary matrix ¢ and an upper triangular matrix 7" with
main diagonal A(Y'), satisfying QY Q™ = T. For positive real ¢, let D; denote
the matrix Diag(t,t%,...,¢"). As t approaches +oco, we have

(DQ)Y (D:Q)~! = D/TD; " — Diag A(Y),
and since F' is upper semicontinuous at Diag A(Y), we deduce

Jnf, P(Z) < limsup P((DQ)Y (D:Q)™") < F(Diag A(Y)).

Equation (16.2) follows. O

The key technique in this proof, using diagonal similarity transformations
to reduce the strictly upper triangular part of the Schur triangular form,
is well known: see, for example, Horn and Johnson (1985, Lemma 5.6.10).
Notice that if Y is not diagonalizable, the infimum in (16.2) may not be
attained.
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The following two propositions begin to look reminiscent of the material in
Sections 9 and 10. Indeed, the complex versions of von Neumann’s Lemma
(Lemma 9.2) and the von Neumann—Theobald Lemma (Lemma 10.2) may be
used to prove the propositions (although we quote intermediate results). For
a vector z in C*, we write Re z and |z| for the vectors with entries Re z; and
|z;] respectively.

Proposition 16.2 If the function A : R™ — [—00,+0o0] is symmetric and
convex, then any matrix X in M, (C) satisfies the inequality

h (3A(X + X)) > h(Re(A(X))). (16.3)

Proof. Since h is ‘Schur convex’ (see Marshall and Olkin (1979)), it suffices
to show that the inequalities

J=1

k
I N(X+X7) > Re)j(X)
7=1

hold for each index k& = 1,2, ..., n, with equality for £ = n. This is exactly
Horn and Johnson (1991, (3.3.33)). O

Proposition 16.3 If g is a symmetric gauge on R”™, then any matrix X in
M,,(C) satisfies the inequality

g9(a(X)) = g(|MX)]). (16.4)

Proof. By Horn and Johnson (1985, Theorem 7.4.45), it suffices to show
that the inequalities

k k
> 0i(X) 2> D (X))
=1 =1

hold for each index & = 1,2,...,n, where 7 is any permutation for which
|Ax(;)(X)| is nonincreasing in j. But this is precisely a result of Weyl (Horn
and Johnson 1991, Theorem 3.3.13). O

The analogy between the previous two propositions is clear if we recall that
the components of o(X) are just (\;(X*X))!/2,

Putting together the three previous propositions, we arrive at the main
result of this section.

Theorem 16.4

(a) Suppose the function h : R” — [—00, +00] is convex and symmetric. If
the matrix Y in M,,(C) has Re A(Y) in int(dom h), then it satisfies

h(ReA(Y)) = inf h (3Mz+29).
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(b) Suppose g is a symmetric gauge on R™. Then any matrix Y in M, (C)
satisfies

g(AV)]) = jnf g(a(Y)).
Proof.

(a) We choose F(X) = h(3A\(X+X*)) in Proposition 16.1. Inequality (16.1)
follows from Proposition 16.2, and since the convex function h must be
continuous on the interior of its domain (Rockafellar 1970, Theorem

10.1) and X is continuous, it follows that F' is continuous at Diag A(Y').
(b) We choose F(X) = g(c(X)) in Proposition 16.1.

d

Example 16.5. (spectral abscissa) The spectral abscissa of a matrix Y
in M,,(C) is Re A1 (Y). Applying Theorem 16.4(a) with the function A defined
by h(z) = max; z;, we obtain, for any matrix Y in M, (C),

spectral abscissa of Y = %ngf M(Z+ 77, (16.5)
or equivalently
spectral abscissa of Y =1 inf A((LYL™'+ L7*Y*L*). (16.6)
L:det L#0

We can interpret the spectral abscissa characterization (16.5) as a quant-
itative version of the Lyapunov Stability Theorem. We say a matrix A is
positive stable if all its eigenvalues have strictly positive real part.

Corollary 16.6. (Lyapunov, 1947) For any matrix A in M, (C), the fol-
lowing statements are equivalent.

(a) The matrix A is positive stable.

(b) There is a matrix B similar to A for which B + B* is positive definite.

(c) There is a positive definite matrix W for which WA + A*W is positive
definite.

Proof. The matrix A is positive stable exactly when the spectral abscissa
of —A is strictly negative. The equivalence of parts (a) and (b) now follows
from the characterization (16.5). The equivalence of parts (b) and (c) follows
by observing that W is positive definite if and only if W = L*L for some
invertible L. O

We can give a third form of the spectral abscissa characterization (16.5),
(16.6) using the notation of generalized eigenvalue problems. For Hermitian
matrices H and W, let A;(H,W) denote the largest real p for which there
is a nonzero vector z in C* satisfying Hx = pWaz. With this notation, we
have, as an immediate consequence of (16.6),

spectral abscissa of Y = 1 I/iVn>f0 M(WY + YW, W). (16.7)
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This result is apparently well known in the control theory community, al-
though we are not aware of a standard reference.

Other quantitative results related to the Lyapunov Theorem may be stated
by making different choices for the function A in Theorem 16.4(a). Two
interesting examples follow.

Example 16.7. (products of eigenvalue real parts) Letting the func-
tion h be the logarithmic barrier function (10.2), we have, for a positive
stable matrix Y,

[T ReX;(Y) =sup{det 5(Z+Z*): Z ~ Y, Z+ Z* > 0}.
7=1

Example 16.8. (sums of eigenvalue real parts) Choosing the function

h(z) to be the sum of the k largest z; (see (10.8)), we obtain

k
MN(Z+ 7).

k
. -1
Re;/\](Y)_ 2Z12§/ 1

j
Let us now turn to Theorem 16.4(b):

Example 16.9. (spectral radius) The spectral radius of a matrix X in
M,,(C) is max; |A;(X)|. Applying Theorem 16.4(b) with the symmetric gauge
g(-) = - ||oo, we obtain, for any matrix Y in M, (C),

spectral radius of Y = inf ¢,(%) (16.8)

~

(recalling that oy denotes the largest singular value), or equivalently

tral radius of Y =  inf LYL™). 16.
spectral radius o vt g o1( ) (16.9)

A norm f on M, (C) is submultiplicative if f(AB) < f(A)f(B) forall A, B €
M,,(C). Clearly, the function f(Y) = o1(LY L) is a submultiplicative mat-
rix norm. Furthermore, it is easy to check that the spectral radius of any
matrix Y cannot exceed the value of a submultiplicative matrix norm of Y:
to prove this, choose A = Y and B such that every column of B is the ei-
genvector of Y corresponding to the spectral radius. Consequently, equation
(16.9) proves the well known fact that the spectral radius is the infimum of
all submultiplicative matrix norms (Horn and Johnson 1985, Lemma 5.6.10).

More generally, we have the following example.

Example 16.10. (sums of eigenvalue moduli) Choosing ¢g(z) to be the
sum of the k largest |z;|, we obtain

k
sum of k largest [A;(Y)| = erﬁ/;a]’(Z).
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Theorem 16.4 suggests a simple approach to nonsymmetric eigenvalue op-
timization which, to some extent, avoids the technical difficulties associated
with the non-Lipschitz nature of the problem. Given a function A : R™ —
M,,(C) and a symmetric convex function h : R” — [—o00, +00], consider the
optimization problem

ienﬂgm{h(Re A(A(w)))}.
Using Theorem 16.4(a) we can rephrase this as

weﬂ&m,iggMn(@){(h oN(XZ+2%): Z=LA(w)L™", L invertible}.

Likewise, given a function f:R™ — R, the problem
ienﬂgfm{f(w) :Re A(A(w)) > 0}
can be rewritten as

weRwiggMn(@){f(w) : LA(w) L™ + L™*A(w)*L* = 0, L invertible}.

At the expense of introducing the extra variable matrix L, we have reduced
these problems to symmetric eigenvalue optimization. Indeed, this idea (us-
ing an equivalent Lyapunov formulation based on (16.7)) is exploited in the
application of linear matrix inequalities to system and control theory (Boyd
et al. 1994); for applications to structural mechanics, see Ringertz (1996).

A similar technique could be applied to the problem

it {g(AA)D},

for a symmetric gauge ¢, this time using Theorem 16.4(b).

However, we caution that there are at least two difficulties with this ap-
proach. The first is the expense of introducing so many extra variables (the
entire matrix L) into the optimization problem. The second is that the in-
fimum is not likely to be achieved for many interesting applications, a fact
that is likely to cause serious difficulties with ill-conditioning.
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