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Abstract:

 

 

 

Floating-point can be understood better now than half a century ago.  
But the benefit of better understanding cannot reach computer 
programmers and users,  most of them unwitting users of floating-
point,  unless floating-point providers  (implementors of hardware and 
of programming languages)  attend to vastly many details.  These seem 
unfairly burdensome because nobody else cares about more than a few 
of them.  Which few?  Each detail matters in somebody’s program upon 
which others  (perhaps we)  may depend;  but who knows?  
Disregarding any one detail will undermine the coherence of the rest of 
them and thus harm the whole community of floating-point users.  The 
details descend from specifications for floating-point hardware and for 
its use by programming languages most of which,  like  

 

Java

 

,  still 
disregard inconvenient details although they are implied by a few 
accidental constraints  (like bus-widths)  and by a short list of guiding 
principles paramount among which is  

 

Intellectual Economy

 

.  Alas,  this 
crucial principle too much resembles pornography:

I don’t know what it is,  but I hope to recognize it if I see it.

 

This document was created with FrameMaker 4 0 4
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What about computers matters most?    Speed?

 

 

 

About every  18  months it doubles.

What matters more than speed is
Throughput :        Tasks/sec,      Transactions/sec,      …

which is not quite the same as speed.

Unreliability  degrades  Throughput :

     Speed,  in  Operations per month
Malfunctions per month  = ––––––––––––––––––––––––––––––––––

No. of  Operations  between  Malfunctions

 

How many malfunctions per month can you tolerate?

 

Hardware is getting more reliable as well as faster.
Software is not, so it imposes its own

  

 

Law of Diminishing Returns

 

  upon hardware speed.

Who notices this?

Whether it be noticed varies a lot with the application,  the personality,  
and the ability correctly to locate blame for a malfunction:

“The fault,  dear  Brutus,  is not in our stars,
   but in ourselves,  ...”                                 (

 

Julius Caesar

 

  I.i.139)
or is it due to some anonymous programmer?

Witness:  expensive wreckage on  Mars.
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Why is software so unreliable?    Reliability costs too much.

 

Why does reliability cost so much,  often more than it would be worth ?

Establishing software reliability combines the methods of mathematical 
and experimental sciences in a way antithetical to their natures: 

Mathematics  and  Science  flourish around precious truths
eternal or at least fairly durable,   as software is not.

Too few people master the analytical skills needed to achieve reliability.

 

A minority among holders of  Computer Science  degrees are actually  Scientists.

 

Quantity  must make up for a lack of  Quality;  therefore
many a software house employs rather more people

testing software than creating it.

Business: Reliability is a  cost-,  not a  revenue-center.
Engineering: Reliability is a matter of degree,  subject to trade-offs;

utter reliability is solely  Death’s  prerogative.

If we yearn to improve software’s reliability,
we must (re)design computer hardware and software,

programming languages most of all,
to cut the price paid for reliability

without significantly degrading functionality,
especially speed.

What remains to be seen is how this desideratum -
–  

 

reduce reliability’s price without harming performance

 

  -
translates into strictures upon floating-point providers.

Details.
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What undermines the reliability of floating-point?

 

It is too much like everything else.

Advertisements rarely mean just what they say;
they speak  

 

Puffery

 

   to wishful thinking,   so …

• What you see is not what you get.
• What you get is not what you want.
• What you want is not what you need.
• What you need is no longer available.

Similarly,  floating-point programs rarely mean just what they say;  and
programmers fail frequently to say just what they mean,  as if 
wishful thinking suffused floating-point computation:

• What you see can’t be what you get
   (because of binary-decimal conversion).

• What you get can’t be what you request
   (because of roundoff and over/underflow).

• What you request can’t be what you desire
   (but at best an approximation to it).

• What you desire can’t be known
   (because of uncertain data and mathematical models).

 

Why should providers of floating-point in hardware and languages
be held to a higher standard?
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Why should providers of floating-point
in hardware and languages

be held to a higher standard?

 

Here is why:

A clear mind is needed to cope well with uncertainty,
be it in  Nature  or in the nature of floating-point computation.

 

Fuzzy thinking makes matters worse.

 

Uncertainty is intrinsic in floating-point computation because it
approximates computation with  Real  numbers which are

idealizations of arbitrarily refineable approximations

We may say that a  (computed)  number is  “Uncertain”  or  “In Error” ,
but that is just a manner of speaking.

 

Real  numbers are not uncertain.  We are uncertain about them.

 

Example:  given two representations of  Real  numbers,  say

   1 – 1

 

/

 

2 + 1

 

/

 

3 – 1

 

/

 

4 + 1

 

/

 

5 – 1

 

/

 

6 + …    and       

 

∫

 

1
2 

 

dx

 

/

 

x ,
we cannot decide whether they represent the same number
without proving a theorem,  for which no routine way exists.

Every  Real  number has infinitely many representations.
Every such representation represents just one  Real  number.

Many people think otherwise,  claiming to be able to distinguish
      “ 3 ”      from    “ 3

 

.

 

0 ”    from    “ 3

 

.

 

000000000000000” .

They are mistaken.  

 

Their fuzzy thinking makes matters worse

 

.
For example …

“ 25

 

.

 

4 ”  appears as a literal constant in a program.
What is its nationalty?

 

And what is the color of the bear?
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“ 25

 

.

 

4 ”  appears as a literal constant in a program.
What is its nationalty?

Regardless of the program’s nationality,  compilation  may well convert 
its  “ 25

 

.

 

4 ”   from decimal to binary and round it to a slightly different 
number.  Which?  That varies with the language and its compilers,  all 
on the same computer:

As a  4-Byte  float 25

 

.

 

4E0 = 25

 

.

 

399999619…  ,
As an  8-Byte  double 25

 

.

 

4D0 = 25

 

.

 

39999999999999858…  ,
As a  10-Byte  long-double 25

 

.

 

4T0 = 25

 

.

 

399999999999999999653…  .

Considering historical variations,  such discrepancies seem too tiny for 
journalists to notice compared with  mi. 

 

vs

 

. km.  and  knots 

 

vs

 

. kmph.

Tiny discrepancies may go unnoticed by the program’s users too …
   Geodetic surveys under diverse colonial administrations and  U.N. …
   Different units of length must be taken into account by the program …
      Predictions of landslides,  

 

earthquakes

 

,  volcanic activities …
A small correlation appears between geodetic markers’ speeds and
    the administrations under which they moved.  Bad things ensue.

Blame the programmer,  provided she can be found.  “Experts”  testify 
“25

 

.

 

4”   should have been written  “25

 

.

 

400000000000”  or  “25

 

.

 

4D0”  .

 

Do you agree ?

 

Table 1:  How many Millimeters in an Inch?

 

Inch nationality Era Millimeters

British Imperial Early 1800s 25

 

.

 

39954…

Late 1800s 25

 

.

 

39997…

U.S.A. Early 1900s 25

 

.

 

40005…

Late 1900s 25

 

.

 

4 exactly
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Blame the programmer,  provided she can be found.  “Experts”  testify 
“25

 

.

 

4”   should have been written  “25

 

.

 

400000000000”  or  “25

 

.

 

4D0” .

But,  “corrected”  by having  “D0”  appended to its noninteger decimal 
literals,  the program fails badly and mysteriously on rare occasions.

Failures arise from the appearance of  “ 2

 

.

 

54 ”  in the program,  but in a 
part written by someone else who worked with  cm.  instead of   mm.

25

 

.

 

4       =  10 · 2

 

.

 

54        exactly,  and
25

 

.

 

4E0  =  10 · 2

 

.

 

54E0    

 

exactly

 

,   and
25

 

.

 

4T0  =  10 · 2

 

.

 

54T0    

 

exactly

 

 ;   but

 

25.4D0  

 

≠

 

  10 · 2.54D0    quite exactly because …

 

25

 

.

 

4D0 – 25

 

.

 

4 

 

≈

 

 –1

 

.

 

42

 

10

 

–15   but
2

 

.

 

54D0 – 2.54 ≈ +3.5510–17 .    Not exactly a factor of  10 .

These coincidences collide with another:  Distances measured in inches 
to the nearest  1/32"  are representable exactly in binary if not too big.  
If   d  is such a distance,  10·d   is representable exactly in binary too.  …

     25.4·d    and      2.54·(10·d)     are exactly the same.
(25.4E0)·d  and  (2.54E0)·(10·d)  round to the same value ,
(25.4T0)·d  and  (2.54T0)·(10·d)  round to the same value.   But
(25.4D0)·d  and  (2.54D0)·(10·d)  round differently occasionally.

For example,  after they are rounded to  53 sig. bits the values of
(25.4D0)·(3.0)    and    (2.54D0)·(30.0)

differ by an  ULP  (Unit in the Last Place  stored,  1/246 ≈1.4210–14).

The difference between    (25.4D0)·d   and   (2.54D0)·(10·d)    suffices 
to put these values on different sides of a threshold,  leading to different 
and inconsistent branches in subprograms that treat the same datum  d .



Ruminations                                                                                                                            W. Kahan

Page 8                                                                                                               April 25, 2000 5:53 am

The difference between    (25.4D0)·d   and   (2.54D0)·(10·d)    suffices 
to put these values on different sides of a threshold,  leading to different 
and inconsistent branches in subprograms that treat the same datum  d .

“Corrected”  with constant literals  “25.4D0”  and  “2.54D0” ,  the 
program would go berserk over a sprinkling of otherwise innocuous 
data  d  that the  “incorrect”  program with literals  “25.4”  and  “2.54”  
had handled perfectly,  almost.

Could you have debugged the  “Corrected”  program?

Protest!    “ To think binary approximations of  25.4  and  2.54  can
    always be one exactly  10  times the other is overly naive.”

This protest is mistaken.  Here is how to make  10  happen:

c0  := 2.54  rounded to the precision intended for all variables;
f0  := 4·c0 ; …  exact in  Binary  floating-point.
f1  :=  f0 + c0 ; …  rounds to very nearly  5·c0 .
c1  := f1 – f0 ; …  exact in  any  decent floating-point.
c10 := 10·c1 ; …  exact in  Binary  or  Decimal,  not  Hex.

Now,  unless the compiler has  “optimized”  f0  and  f1  away,  c10  
and  c1  turn out to be almost as good binary approximations of  25.4  
and  2.54  as are to be had,  and one exactly  10  times the other.

Programmers aware of the importance of such a relationship and the 
need for its defence can enforce it. 

The program to predict earthquakes is a fictional didactically 
motivated over-simplified composite of the most common and 
most commonly misdiagnosed bugs in programs that use a little 
floating-point.
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2.54       25.4        2.54D0       25.4D0       c1       c10

What is worth remembering about these numbers?

1:   Floating-point software depends upon the preservation of certain
Mathematical Relationships,

much as software generally depends upon loop-invariants etc.,  except
floating-point cannot preserve  all  Mathematical Relationships  exactly.

We depend upon  Precision  and  Accuracy  to preserve all relationships 
as well as possible,  trying to preserve  all  because the relationships 
that don’t matter so much are almost never known in advance.

Precision  …  statement of desire or intent.       Accuracy  …  accomplishment.

Sometimes  Precision  and  Accuracy  can’t do enough,  and then special
steps must be taken to preserve vital relationships like

Symmetry,     Monotonicity,     Correlation,    10,   … .
These steps often appear like silly pet tricks …

redundant variables,  extra parentheses,  computations of zero,  …
to compiler writers,  who then too often  “Optimize”   them away.

2:  Error-analysts know  Binary  floating-point is best for error-analysis.
But  Decimal  floating-point is best for everyone else.

     Only with  Decimal  floating-point can what you see be what you get.

Binary  vs.  Decimal  almost doesn’t matter for  Integers  because they are not rounded off.

But  Binary  will not soon go away,
and trying to hide it makes matters worse.  …
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Trying to hide the  Binary  behind the  Decimal  makes matters worse.…

Case Study:
Extracted from  “Bug Watch”,  p. 30  of  PC World,  20 May 1993:
“ · · · · · · · ·  · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

QPRO 4.0  &  QPRO for Windows
(Borland’s  Quattro Pro  Spreadsheets)

Users report and  Borland  confirms a bug in  @ROUND ;  it may round 
decimal numbers ending with the digit  5  inconsistently.  For example,

@ROUND(31.875,  2)  should round to two decimal places;
it should always yield  31.88 ,
but it sometimes yields  31.87 .

PC World’s  tests confirm this bug.

Borland  recommends using the  @INT  function instead as follows:

To round the number in cell  A1  to two decimal places,  enter
@INT((A1 + 0.005)*100)/100 .

· · · · · · · · ·  · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ”
This cure is worse than the disease.

@ROUND  actually works correctly for numbers near 31.875 ,
rounding numbers slightly less to 31.87 ,

numbers equal or slightly bigger to 31.88 .

@INT((A1 + 0.005)*100)/100  works incorrectly,  yielding  31.88  for 
numbers  A1  equal to or slightly bigger than   31.8749999999999822… .

Trouble arises partly because  Quattro  displays at most  15  sig. dec.;
numbers from   31.87499999999947…  to   31.875000000000046…   all 
display as  “ 31.875000…000 ”.    What you see is not what you get.

More trouble arises because of  “Cosmetic Rounding”  designed to hide 
the trouble misdiagnosed by  Borland,  Quattro’s  users,  and  PC World.
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More trouble arises because of  “Cosmetic Rounding”  designed to hide 
the trouble misdiagnosed by  Borland,  Quattro’s  users,  and  PC World.

Quattro’s  pious fraud:
Ideally  @INT(x)  =  the integer nearest  x  and no bigger in magnitude.
      We expect  @INT(1.00…001) = 1 and  @INT(0.999…999) = 0 .
      Whenever  0 < x < 2  we expect   @INT(x)  =  (x >= 1) .
But …

The discrepancy in the second-last line exposes a serious bug.

Why should roundoff contaminate the arithmetic expression  @INT(x)  
or the logical expression  (x >= 1) ?   How would you debug this?

Apparently  @INT(x)  first rounds its argument  x  to  53 sig. bits,  

multiplies it by  1 + 2–51  and then rounds the product to  53 sig. bits 

before discarding its fractional part.  Why multiply by  1 + 2–51  ?

Without it,  for many an argument  x  displayed as an integer  N  though 
it is slightly smaller,  @INT(x)  would yield not  N  but  N–1 .  But the 
fudge factor fails to prevent this,  and deepens  @INT’s  mystery.

No mention of roundoff nor of  Binary  floating-point appears in almost  
1200  pages of documentation that came with  Quattro Pro 4.0 .

Range of Stored Values  x Displayed  x @INT(x) (x >= 1)

1 – 14/2^53  to  1 – 6/2^53 0.999999999999999 0 0

1 – 5/2^53 1.000000000000000 0 0

1 – 4/2^53  to  1 – 1/2^53 1.000000000000000 1 0

1  to  1 + 21.2^52 1.000000000000000 1 1
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What is worth remembering about  Quattro’s  @INT ?

1:  Binary floating-point is a nuisance to people who think  Decimal.

2:  Avoid cosmetic rounding;  it merely obscures what it tries to hide.

Trouble is caused not by displaying no more than a user wishes to see,
but by failing to display faithfully as much as a user asks to see.

Even if what you see is not what you get,  you will wish 
occasionally to see enough of it to distinguish it from 

everything else and to reproduce it exactly.

To distinguish one  8-Byte Double  from its neighbors can require as 
many as  17  sig. dec.,  not just the  15  which is  Quattro’s  maximum.  
Fewer than  17  are too few to distinguish adjacent  Doubles  like

1024 – 2–43 = 1023.9999999999998863…   and

1024 – 2–42 = 1023.9999999999997726… .

Displaying all  17  sig. dec.  has its ugly aspects:

    Enter  “ 0.8 ”. See  “ 0.8000000000000004 ”   displayed.
    Compute   32200/32.2 . See  “ 999.99999999999989 ”   displayed.

This is part of a user’s education,  not to be denied him.

Where does that number  “ 17 ”  come from?
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Span  and  Precision  of  IEEE 754  Floating-Point Formats :

16 Byte Quadruple  is a de facto  standard,  not official,  and not yet in hardware.  
16 Byte Doubled-Double  is not standardized at all,  and my be rounded roughly.

This table exhibits the range of each floating-point format,  and its 

precision both as an upper bound   2-N   upon relative error  ß  and in  
“ Significant Decimals” :

Rounded result of one operation  =  ( 1 ± ß )·( Ideal result )

Lesser Sig. Dec.  survive  Dec. —> Bin. —> Dec.  Conversion
Greater Sig. Dec.  survive  Bin. —> Dec. —> Bin.  Conversion

Each  IEEE 754 Binary Floating-Point Standard  format can representat  
±∞ (Infinity),  NaNs (Not-a-Number),  and its own set of finite real 

numbers each of the simple form   2k+1-N n   with two integers   n  ( its 
signed Significand  )  and   k  ( its unbiased signed Exponent  )  that run 
throughout two unbroken intervals determined from the format thus:

K+1  Exponent bits:  1 – 2K  <  k  <  2K .      N  Sig. bits:   -2N  <  n  <  2N .

 Format Min. Subnormal Min. Normal Max. Finite Roundoff 2-N Sig. Dec.

4- Byte Single: 1.4 E-45 1.2 E-38 3.4 E 38 6.0 E-8 6 — 9
8-Byte Double: 4.9 D-324 2.2 D-308 1.8 D 308 1.1 D-16 15 — 17

≥10-Byte Extended: ≤ 3.6 T-4951 ≤ 3.4 T-4932 ≥ 1.2 T 4932 ≤ 5.4 T-20 ≥ 18 — 21
 ( 16-Byte Quadruple: 6.5 Q-4966 3.4 Q-4932 1.2 Q 4932 9.6 Q-35    33 — 36  )
Soft. Doubled-Double 2.2 D-308 1.8 D 308 about  1D-32 about 32

Formats’  Parameters:
 Format & Wordsize  K+1  N

4-Byte Single 8 24

8-Byte Double 11 53

 ≥10-Byte Extended ≥ 15 ≥ 64

( 16-Byte-Quadruple 15 113 )
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IEEE 754’s  simple representation for  all  its finite numbers,  namely

2k+1-N n ,
with its signed  Significand  n  and its
unbiased signed Exponent  k  

that run throughout two unbroken intervals

K+1  Exponent bits: 1 – 2K  <  k  <  2K ,

N  “Significant”  bits: –2N  <  n  <  2N ,

and the standard’s prescription for careful rounding  “to nearest”

avoid perplexing anomalies afflicting earlier commercially important 
computer arithmetics some of whose numbers could be …

• Equal,  but their ratio is  1.25
• Different,  but their difference is  0.0
• Different and both huge,  but their difference is  0.0
• Different,  with a difference  X–Y  that is  NOT  the negative of  Y–X
• Changed if multiplied by  1.0D0
• Nonzero for add, subtract and compare,

but  0.0  for multiply and  divide 
• Added,  and multiplied by  0.97 ,  say,

but not by  1.0  without  Overflowing .
•  Product  0.5·X  could differ from quotient  X/2.0 .
•  Small difference  X – 1.0  could differ from  (X – 0.5) – 0.5 .

These bizarre departures from expected mathematical relationships for 
rounded arithmetic used to thwart program portability and debugging.

How could vendors excuse these anomalies?

They invoked  “Backward Error-Analysis”  to excuse most of them.
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Backward Error-Analysis
Initiated by  A. Turing (1948-9),  W. Givens (1954),  F.L. Bauer (1957)  
and  J.H. Wilkinson (1957),  joined by  W. Kahan (1958).

The idea:   Compare
Roundoff’s contribution to a slightly wrongly computated result

with the
Effect upon desired result of end-figure perturbations in given data.

i.e., • We desire  ƒ(x) ;     we compute  F(X) .
• If backward error-analysis succeeds,  we find that   ƒ(X) – F(X)
    is scarcely worse than   ƒ(X) – ƒ(X + ∆X)  for some

unknown  ∆X  comparable with  X–x  for all we know.
• Then the program   F(…)  is deemed  “Numerically Stable”

even if  F(X)  is utterly different from  ƒ(X) ,  for which we
blame the  “Ill-Condition”  of  ƒ(…)  at  X .

•  Backward error-analysis often succeeded.

This approach to errors led to an efflorescence of numerically stable 
software supplanting centuries’ accumulation of numerical methods 
whose misbehavior could now be corrected or at least explained.

What began as explanation was turned into exculpation in the hands of 
hardware and software vendors who alleged …

“ Not knowing  x  you will accept  ƒ(X)  for some stored  X
indistinguishable from  x  for practical purposes,  and so you shall

accept also  F(X) = ƒ(X + ∆X)  for any  X+∆X  about as
indistinguishable from the unknown  x  as  X  is.”

The vendors failed to see the flaw in their reasoning.
Almost all their customers failed to see the flaw too.

Can you see the flaw?
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“ Not knowing  x  you will accept  ƒ(X)  for some stored  X
indistinguishable from  x  for practical purposes,  and so you shall

accept also  F(X) = ƒ(X + ∆X)  for any  X+∆X  about as
indistinguishable from the unknown  x  as  X  is.”

Where is the flaw in this reasoning?

There are two logical flaws.
The first arises from the  Intransitivity of Accuracy,

a failure that sets floating-point software apart from all others:

Suppose progams  R(x) ≈ r(x)  and  Q(y) ≈ q(y)  each approximates its 
target function as well as possible,  perhaps  “correctly rounded”.  Still,  
it is possible for  P(x) := Q(R(x))  to approximate  p(x) := q(r(x))  
arbitrarily badly.  Accuracy can be lost by functional composition,  thus 
thwarting a decomposition technique nonnumerical programmers enjoy.

Example:  Cf.  x  vs.  (–log(exp(–x–4 ))))–1/4  for  4000 < x < 12000.
This example is explored on my web page in the note  “Matlab’s Loss is Nobody’s Gain”,  
together with a more perplexing example in which  P  is accurate although  Q  and  R  are not!

Cases where accuracy would survive composition if  R  computed  r  
accurately are precious.  Degrading  R  as badly as that flawed appeal 
to  Backward Error Analysis  allows destroys those cases’ accuracy:  
q(r(x + ∆x))  may now approximate  p(x)  poorly where  Q(R(x))  could 
reasonably have been expected to approximate  p(x)  well.

e.g.:  log(arccos(x))  for  |x|  barely smaller than  1 

The second flaw arises from a common practice:  computing several 
functions  ƒ(x),  g(x),  h(x), …  from the same datum  x .  If computed 
accurately,  these functions can be related in ways that matter later.  But 
if  F(x) ≈ ƒ(x + ∆1x) ,  G(x) ≈ g(x + ∆2x) ,  H(x) ≈ h(x + ∆3x) , …  for 
tiny but uncorrelated perturbations  ∆kx ,  then the computed functions  
F, G, H, …  can violate utterly the relations honored by  ƒ, g, h, … .
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“ALRIGHT!   SO SOME PROGRAMS WON’T WORK 
AT FIRST.  WE’LL DEBUG THEM AND FIND 
ANOTHER WAY.   THAT’S WHY WE ARE PAID THE 
BIG BUCKS.”     So say many experts.

Not true.  If you share that wrong idea of  Backward Error Analysis,  
there are programs you can’t debug since you won’t write them.

Example:

    ƒ(x) := –arctan(log(x))/arccos(x)2 for   0 < x < 1 ,
  1/2 for   x = 1 ,

  arctan(log(x))/arccosh(x)2 for  x > 1 .

This function  ƒ(x)  is smooth around  x = 1  where its  Taylor series is

Tƒ(x)  =  1/2 – (x–1)/6 + (x–1)2/20 + 124(x–1)3/945 + …

Figure ƒ :  ƒ(x)   for   0 < x < 3

0 0.5 1 1.5 2 2.5 3
0.2

0.3

0.4

0.5

0.6

0.7

f( )X

X



Ruminations                                                                                                                            W. Kahan

Page 18                                                                                                               April 25, 2000 5:53 am

If  LOG  and  ACOS  are as bad as flawed  Backward Error Analysis  
allows,  then  LOG(x) ≈ log(x + ∆1x)  and  ACOS(x) ≈ arccos(x + ∆2x)  
for independent end-figure perturbations  ∆kx .  Now an application of 
the  Calculus  reveals for  x  near  1  that all  sig. bits can be lost from  

–arctan(log(x))/arccos(x)2 .  Similarly from  arctan(log(x))/arccosh(x)2 .

Figure  L:  L(x) = #(sig. bits lost to independently perturbed arguments)

To avoid this loss,  F(x)  is programmed using a small threshold  h  
determined somehow from the accuracy desired and the number of 
terms retained in the  Taylor series  Tƒ ;   say …

    F(x) := –ATAN(LOG(x))/ACOS(x)2 for   0 < x < 1 – h ,

  ATAN(LOG(x))/ACOSH(x)2 for  x > 1 + h ,

  0.5 – (x–1)/6 + (x–1)2/20 + 124(x–1)3/945  otherwise.

For no choice of  h  etc.  is the program above so accurate as the obvious

    F(x) := –ATAN(LOG(x))/ACOS(x)2 for   0 < x < 1  ,

  ATAN(LOG(x))/ACOSH(x)2 for  x > 1  ,
  0.5 otherwise.

on every commercially significant computer  (CRAYs  too)  today.
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What is worth remembering from the foregoing examples?

1:  ERROR-ANALYSIS IS TRICKY.
2:  BACKWARD ERROR ANALYSIS IS TRICKIER.

It is mistaken to treat numbers as uncertain when in fact the uncertainty 
is in our minds,  not in the numbers  Those stored in our computers may 
differ from the numbers we desire,  but the ones in the computer are the 
only ones we know and must be treated for what they are,  exactly,  or 
else we shall be unable to replace them by numbers we prefer.

3:  Most programmers will decline to perform any error-analysis.

The numerical stability of many programs is disgustingly obvious;  
these need not concern us,  fortunately.

The numerical instability of many programs is so delightfully obvious 
that they are used at most a few times;  these need not concern us.

Unreliability arises from programs whose numerical instability is 
unobvious and infrequent,  and usually very hard to diagnose.

Numerical computation has always been this way.  Here is an example:

EDSAC’s  old  arccos  program

EDSAC  at  Cambridge,  England,  was one of the earliest electronic computers,  built out of 
vacuum tubes and delay lines.
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Case Study:  EDSAC’s  original  arccos:
This is the earliest instance I could find of an electronic computer 
program in full service for over a year before users noticed its  
“treacherous nature”.  Its errors were of the worst kind:

•Too small to be obvious but
too big to be tolerable

(half the figures carried could be lost),
•Too rare to be discovered by the customary desultory testing,  but

too nearly certain to afflict unwitting users at least weekly.
The program served users of  EDSAC  at  Cambridge,  England,  from  
1949  to  1951  until  A. van Wijngaarden  exposed its  “treachery”.

The program tried to compute  B(x) := arccos(x)/π  for  –1 ≤ x < 1 .

Figure B:     B(x) = arccos(x)/π   changes fast as  x  varies near  ±1 .
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Here is the simple program for   B(x) := B ,  somewhat edited:

Set  x1 := x = cos(Bπ) ;    ß0 := 0 ;   B0 := 0 ;   t0 := 1 ;
While  (Bj–1 + tj–1 > Bj–1)   do  (for  j := 1, 2, 3, …  in turn)

    { tj := tj–1/2 ;   … = 1/2j .
µj := SignBit(xj) ; … = 0  or  1  according as  xj ≥ 0  or not.
ßj := | µj – ßj–1| ;   … = 0  or  1  according as  µj = ßj–1  or not.

Bj := Bj–1 + ßj·tj ;  … = ∑1≤k≤j ßk/2k  < 1,  a binary expansion

xj+1 := 2·xj
2 – 1 } .  … = cos(2j·arccos(x)) = cos(2j·Bπ) .

No subscript appears in the actual program,  nor does  j .  The equation  

xj+1 = cos(2j·Bπ)   follows by induction from   cos(2Θ) = 2·cos2(Θ) – 1 .

Figure C: Of  24  Sig. Bits Carried,  how many are Correct in  EDSAC’s  B(x) ?
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Rounding errors occur only in the last statement   x := 2·x2 – 1 ,  with 
astonishing consequences on rare occasions.  Figure C  plots the worst 
errors for each of  2048  batches of a million arguments,  all the  4-Byte  
floats  x  between  –1  and  +1 ,  showing a narrow downward spike 
in accuracy wherever  arccos(x)/π  is very nearly  (but not exactly)  a 
small odd integer multiple of a power of  1/2 .  The bigger that integer,  
the narrower and shallower the spike.  Evidently up to almost half the 
sig. bits carried by the arithmetic can be lost in the computed result  
B(x)  for such arguments  x  which,  alas,  arise frequently in practice.

First explanation,  presented in  1951  by  A. van Wijngaarden (1953),  
included an estimate under  1%  of the probability that a random test 
might expose the loss of more than  3  or  4  sig. bits.  According to  
Wilkes (1971),  testers performed about  100  more-or-less random 
tests,  laboriously comparing  EDSAC’s  values with published tables;  
their probability of overlooking the program’s faults exceeded  1/3 .  
They were slightly unlucky.

People have argued that the error in the program’s  B(x)  is barely worse 
than uncertainty inherited from the argument  x .  It seems reasonable to 
think that if  x  is not worth distinguishing from  x + ∆x  then  B(x)  is 
not worth distinguishing from  B(x+∆x)  nor from a computed value 
nearly as close to  B(x) .  Since  x  too is a computed value unlikely to 
be accurate down to its last bit,  they argue that we ought to tolerate 
errors in  B(x)  not much bigger than variations in  B(x + ∆x)  arising 
from perturbations  ∆x  of the order of an  ULP  (Unit in the Last Place)  
of  x .  For instance,  B(x)  is nearly  0  when  x  is very nearly  1 ;  then 
tiny end-figure alterations of order  ε  in  x  can change  B(x)  utterly by 
as much as  √(2ε)/π ,  orders of magnitude more than the alteration to  
x ;  see  Fig. B.  End-figure alterations of order  ε  in  x  near  –1  can 
change  B(x)  near  1  also by as much as  √(2ε)/π ,  thus losing almost 
half the sig. bits carried.  Based upon this reasoning,  the program for  
B(x)  is deemed about as accurate as the function  B(x)  deserves,  or so  
Morrison (1956, p. 206)  seems to imply.
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The foregoing plea for  Tolerance  is plausible but
“irrelevant,  incompetent and immaterial.”  …  Perry Mason

We have seen why such pleas are misguided.  Irrelevance becomes clear 
when  x  is near  1/√2 = 0.7071…  and  B(x)  is near  0.25 ;  then tiny 
changes in  x  induce similar tiny changes in  B(x) ,  and yet  EDSAC’s  
program can lose almost half the sig. bits carried.  This loss must be 
blamed not upon the function  B(x)  but upon the program,  which 
dislikes certain innocuous arguments  x  like  1/√2 .

EDSAC’s  simple bit-by-bit algorithm is a precursor of  CORDIC  and  
“pseudo-multiply/divide”  versions used with processor chips too old,  
too cheap,  too tiny or too sparing of power to afford a big multiplier 
array.  Versions on the  Intel 8087/80387/486DX  are numerically stable.

..................................................................................................................
Citations:

D.R. Morrison (1956) “A Method for Computing Certain Inverse Functions”  pp. 
202-8 of  MTAC (Math. Tables and Aids to Computation) vol. X;  also (1957) 
correction on  p. 314 of XI;  and on  p. 204  of  XI  a warning  “Note …”  by  
Wilkes  and  Wheeler  who,  however,  seem to have overlooked  Morrison’s  
explicit error-bound at the top of his  p. 206,  perhaps because he seems to have 
been indifferent to the loss of half the figures he carried.

Adrian van Wijngaarden (1953) “Erreurs d’arrondiment dans les calculs 
systématiques” pp. 285-293 of  XXXVII: Les machines à calculer et la penseé 
humaine,  proceedings of an international conference held in  Paris,  8-13 Jan. 
1951,  organized by the  Centre National de la Recherche Scientifique.  This is 
among the earliest published error-analyses of computer programs,  and one of the 
first to mention floating-point if only in passing.  At that time,  floating-point error-
analysis was widely deemed intractable.

Maurice V. Wilkes (1971) “The Changing Computer Scene 1947 - 1957”  pp. 8.1-
5  of  MC-25 Informatica Symposium,  Mathematical Centre Tract #37,  
Mathematisch Centrum Amsterdam.  This symposium celebrated  A. van 
Wijngaarden’s  25th  year at the  Math. Centrum.
...................................................................................................................
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What is worth remembering about  EDSAC’s  old program for  B(x) ?

1:  ERROR-ANALYSIS IS TRICKY.
2:  BACKWARD ERROR ANALYSIS IS TRICKIER.

3:  Most programmers will decline to perform any error-analysis,
and of those who try most may well fail.

It seems prudent to assume that an error-analyzed numerical 
subprogram must be exceptional,  rather than commonplace,  and 
precious not merely because of the function it computes but also 
because,  as part of a larger numerical program being debugged,  it is 
where the bug is far less likely to lurk than elsewhere.  Look here last.

4:  If a subprogram’s numerical instability has so low a probability of 
being found when sought,  why does it  not  have a low probability of 
affecting any one of the subprogram’s users?

The reason turns out to be the large number of data-dependent branches 
in the subprogram;  in  EDSAC’s  B(x)  these branches occur at the 
statement   “ µ := SignBit(x) ” .  In the notorious  Pentium  FDIV  bug 
of  1994,  the branches occurred at the selection of each quotient digit.

Both probabilities are about the same for most numerical subprograms 
in so far as they lack a large number of data-dependent branches.  The 
risk,  of being embarrassed by roundoff when using such a program 
without an error-analysis,  turns out to attenuate rapidly as the precision 
of arithmetic increases,  as we shall see.  In short,  …

5:  A good policy is to carry extra precision
for all intermediate computation.
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We wish to compute  y = ƒ(x) .  We actually compute  Y = F(X) .
How do errors,  seemingly so tiny when committed,  get amplified?

Error inherited from  dx ≈ X–x :    dy := ƒ(X) – ƒ(x) ≈ ƒ'(x)dx ,   so
||dy||/||dx|| ≈ ||ƒ'(x)||  at worst.

Amplification factor like  ||ƒ'(x)||  is called a  Condition Number.
When it is too big,  the computation of  ƒ(x)  is called  Ill Conditioned.

Ill condition can occur only near where  ||ƒ'(x)|| = ∞ .  This occurs on 
certain  Pejorative  surfaces  (algebraic varieties,  manifolds, …)  in the 
space of all possible data  x .

Examples:
•  Matrix inversion:  Pejorative surface consists of  Singular Matrices

       Self-Intersection  contains matrices of  Nullity > 1 .

•  Polynomial Zeros:  Pejorative Surf. = Polynomials with multiple zeros
Self-Intersection = Polynomials with a triple zero.

• Eigenproblems:  Pejorative Surf. = Matrices with a multiple eigenvalue
  Self-Intersection = Matrices with multiple eigenvalues

Typical Phenomenon:

    Condition No.  =  O( distance(datum x to pejorative surface)power < 0 )

Pejorative surface

Self-
Intersection X



Ruminations                                                                                                                            W. Kahan

Page 26                                                                                                               April 25, 2000 5:53 am

We wish to compute  y = ƒ(x) .  We actually compute  Y = F(X) .
How do errors,  seemingly so tiny when committed,  get amplified?

Error inherited from dx ≈ X–x  is amplified by  Cond. No.  like  ||ƒ'(x)|| .

Rounding errors within program  F(…)  are amplified too.  Their 
amplification factors,  like condition numbers,  may grow infinite on 
certain surfaces.  Some may be Pejorative surfaces.  Others may contain 
data  x  that program  F(…)  dislikes,  if it is numerically unstable there..

As do condition numbers,  the factors amplifying roundoff grow infinite 
typically like a negative power of the distance from the datum  x  to a 
surface either  Pejorative  or merely  Disliked.

Rounding error is negligible unless amplified beyond some tolerance.
This can happen only for data  x  in some shell  (slab,  skin,  tube, …)  
obtained by thickening a  Pejorative  or  Disliked  surface by an amount 
proportional to some positive power of the roundoff level.

Conclusion:
The proportion  (by volume,  content,  …)  of data  x  for which 
roundoff can be amplified intolerably is proportional to a positive 
integer power of the roundoff level,  which in turn is an exponentially 
declining function of the number of sig. digits carried during arithmetic.

Carrying three more sig. dec. or ten more sig. bits reduces the incidence 
of embarrassment due to roundoff by a factor  1/1000  or less.

Pejorative surface

Self-
Intersection X

Disliked
Surface
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Case Study:   Computing the area  ∆  of a needle-like triangle

A classical formula due to  Heron of Alexandria,
∆ =  √(s·(s–a)·(s–b)·(s–c))   where   s = (a+b+c)/2  ,

is the formula still taught in schools despite its numerical instability for 
needle-like triangles.  A better scheme first sorts  a, b, c  so that  
a ≥ b ≥ c ;  this costs at most three comparisons.  If  c-(a-b) < 0  then the 
data are not side-lengths of a real triangle;  otherwise compute its area

∆ =  √( (a+(b+c))·(c–(a–b))·(c+(a–b))·(a+(b–c)) )/4 .
Most people don’t know about this better formula,  so it is little used.

Area  ∆  of a Triangle  from the  Lengths of its Sides
( calculations performed upon  4-byte  float  data )

Only incorrect results change drastically when the rounding mode 
changes,  and old-fashioned  Kernighan-Ritchie C  gets fine results from 
an  “unstable”  formula by using  double  for all intermediates.

Rounding
mode

Heron’s Formula
( unstable in  float )

Better Formula
(stable in  float )

Heron’s Formula
( all subexpressions
double  like  K-R C)

a=12345679  >   b=12345678  >   c=1.01233995  >  a–b

to nearest 0.0 972730.06 972730.06

to +∞ 17459428.0 972730.25 972730.06

to –∞ 0.0 972729.88 972730.00

to 0 –0.0 972729.88 972730.00

a=12345679  ≥   b=12345679  >   c=1.01233995  >  a-b

to nearest 12345680.0 6249012.0 6249012.0

to +∞ 12345680.0 6249013.0 6249012.5

to –∞ 0.0 6249011.0 6249012.0

to 0 0.0 6249011.0 6249012.0

a

b cA

C B∆

Needle–like Triangle
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Heron’s  classical formula for  Area  ∆  goes bad for a tiny fraction of 
triangular shapes.  If the shapes are plotted in a plane region by taking 
side–lengths  ( a, b, c )  as  Barycentric Coordinates,  these shapes 
whence comes chagrin lie in a narrow ribbon along the boundary:

Every point  (a, b, c)  in this big triangle represents a family of  Similar 
triangles.  Points near the thickened boundary represent needle-like 
triangles.  Points between the center and the hyperbolic arcs represent 
triangles with all angles acute and utterly well-conditioned areas  ∆ ;  
some of them are needle-like.  But  Heron’s  formula computes  ∆  
inaccurately in the thickened boundary no matter how well-  or  ill-
conditioned  ∆  may be.  The width of that thickened boundary,  and also 
its area,  is proportional to the roundoff level.  This phenomenon is 
typical of geometric computations in two and three dimensions.

a = 0 = b-c

c = 0 = a-bb = 0 = c-a

b > c+ac > a+b

a > b+c
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What is worth remembering about the foregoing case study?

1:  Fix in advance the precision of the data and the tolerance for the 
result’s inaccuracy.  This fixes the population of possible data,  and the 
population of tolerable results for each datum.  Then,  for every  10 bits 
or  3  dec. of extra precision carried during  ALL  intermediate 
arithmetic,  the incidence of chagrin due to roundoff dwindles by a 
factor  0.001  or less.

Thus,  the reliability of a wide range of computations can be enhanced 
either by successful error-analysis,  or by carrying extra precision.  
Which is likely to cost less?

2:  The most widely used hardware supports three floating-point 
formats.  Does your compiler let you use the widest?  Does your 
compiler let you rerun subprograms easily at a higher precision without 
annoyances like unwidened literal constants?

3:  A numerically unstable subprogram can usually  (not always)  be 
identified by the drastic changes in its results when rerun on the same 
data  (computed by other subprograms)  in  3  different rounding modes 
mandated by  IEEE 754.  Does your compiler let you do this?

Different programming languages and compilers present different 
capture-cross-sections for error and unreliability to their users.  In this 
respect,  do your programming languages and compilers convey to you 
the benefit of current understandings of floating-point error-analysis?

And we haven’t yet touched upon the handling of exceptions like 
division-by-zero,  invalid operations like  SQRT(–3.0),  
over/underflow,  and the enigmatic  “Inexact Result”.


