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Section 1 11 IntroductionCarath�eodory's theorem [2] states that given a subset S of Euclidean d-space Ed, any pointinside its convex hull is also inside the convex hull of some subset of S with at most d+1 points.Steinitz's theorem [13,14,15] states that given a subset S � Ed, any point in the interior of itsconvex hull is also in the interior of the convex hull of some subset of S with at most 2d points.B�ar�any, Katchalski and Pach [1] showed that the following quantitative version of Steinitz'stheorem holds.Theorem 1.1 Quantitative Steinitz's TheoremFor any positive d there is a constant r = r(d) > d�2d such that given any set S � Ed of pointsin d-space whose convex hull contains the unit ball centered at the origin o, there is a subsetX � S with at most 2d points whose convex hull contains a ball centered at o with radius r(d).In fact, [1] notes that r(d) > c(2ed)�bd=2cd�2 for some constant c. In this paper, we generalizethis quantitative Steinitz's theorem, and study various algorithmic questions related to it.We introduce the following terminology: For any set S � Ed, let the residual ball of S referto the largest (closed) ball B(S) centered at the origin o such that the interior of B(S) is eitherfully outside or fully contained inside the convex hull of S. The residual radius of S, denotedr(S) is the signed radius of this residual ball, where the sign is zero if B(S) is a point, otherwisethe sign is positive or negative depending respectively on whether B(S) lies inside or outsidethe convex hull. Let rd(m;S) [or, r(m;S), if d is clear from the context] denote the largestresidual radius of a subset X of S with at most m points. Let rd(m) denote the minimum valueof rd(m;S), as S ranges over all subsets S � Ed with r(S) � 1. Hence for m � 2d, the resultof B�ar�any, Katchalski and Pach shows that d�2d � rd(m) � 1. Here, we derive tighter upperand lower bounds for rd(m). Note that the notation r(d) in the Quantitative Steinitz's theoremabove is simply the case of rd(2d).Application in Robotics. Our interest in these theorems comes from the study of robothand grasps. We are interested in hands with m frictionless (point-)�ngers. A grasp in thismodel consists of m points on the boundary of the body that we want to grasp. To actuallygrasp the body, we must then specify forces to be applied at these m (grasp) points. A desirablenotion of grasping is that of a closure grasp (see for example [8,10,11]). Intuitively, a closuregrasp has the ability to respond to any external force or torque by applying appropriate forcesat the grasp points. The quantitative Steinitz theorem gives us a measure of the e�ciency ofsuch closure grasps. Roughly speaking, the e�ciency of the grasp is given by the ratio of largestexternal force-torque that can be resisted by applying at most unit forces at each of the grasppoints; so a ratio of one corresponds to the most e�cient grasp. The quantity rd(m) in thequantitative Steinitz's theorems gives this e�ciency directly.Computational problems. These theorems naturally lead to new problems in computa-tional geometry. For instance, given a �nite set S of points, and a number m, we want to �ndan m-subset of S that achieves the residual radius r(m;S). We will present algorithms for suchproblems. Here our strongest results are in two dimensions.The rest of this paper is organized as follows. In section 2, we explain more precisely theconnection between quantitative Steinitz's theorem and grasping. Sections 3 and 4 prove the



2generalized Steinitz's theorems. Sections 5 and 6 present algorithms for computational versionsof the generalized Steinitz's theorems. We conclude in section 7.2 Application to Multi�ngered Positive GraspsWe refer to [12] for a general survey of the �eld and to [8,9,10,11] for the theory of robot graspingas used in this work. Consider an idealized dextrous hand, consisting of m � 2 independentlymovable force-sensing �ngers. These �ngers can only contact objects at their tips, and can thusbe represented as points in three-dimensional space. The goal is to grasp a (closed, boundedand connected) rigid object K. A �nger can only apply a force on the object K at the point ofcontact with K. We assume that the points of contact are non-singular (i.e., the surface � of Khas a unique surface normal at each such point) and frictionless, and hence the force can onlybe applied along the surface-normal at the point of contact, directed inward into the object K.An interesting task for such a hand is that of grasp selection for a given object K; by a graspwe mean a set of m points on the boundary of K. We also describe such grasps in our modelas positive because the �ngers can only push into the body, but not pull at the body { as mighthappen if we postulate \sticky" �ngers.The object K to be grasped is assumed to have a piece-wise smooth boundary �. Assumethat the grasp points are to be chosen from a given subset S of the non-singular points of �.For example, S may consist of all non-singular points of � (by de�nition, the surface normals atnon-singular points are uniquely de�ned). Or again, S may be a set of �nitely many pre-selectedpoints. For any point r in S, let n(r) denote the unit surface normal (directed inward) at r.De�ne the function � mapping S into the six-dimensional force/torque space as follows:� : S ! R6: r 7! [n(r); r� n(r)]where � here denotes the vector cross-product of 3-dimensional vectors. Essentially, � maps rto the point �(r) in the force/torque space that represents the e�ects of applying a unit force atr in the direction n(r).If X � S is a set of m-points, we call X anm-�nger closure grasp if the interior of the convexhull of �(X) = f�(r) : r 2 Xg contains the origin o. It is shown in [8] that, for some m � 12 anm-�nger closure grasp of K exists if and only ifo 2 interior(convexhull (�(S))):Moreover, if � is not a surface of revolution, the above condition is always satis�ed with S equalto the set of non-singular points of �. For polyhedral objects, Mishra, Schwartz and Sharir [8]also gave an algorithm to �nd a 12-�nger closure grasp in linear time. However, in the absenceof any measure of \goodness" for closures grasps, the synthesized grasp may not be very robust.The motivation for our work is to quantify the goodness of closure grasps and to synthesizeprovably good closure grasps.One criterion for goodness is the \e�ciency" of a grasp, which measures the amount ofexternal force and torque that can be resisted by applying at most a unit of force at each grasppoint. This is precisely the value r6(m;�(S)). To see this, note that if we choose m points in



Section 3 3�(S) with residual radius r then any force/torque vector v whose Euclidean norm is at mostr can be written as a convex combination of the m chosen points. So if v is any externalforce/torque that is applied to the body K, and v lies in the residual ball of radius r, we cancounter this external force/torque by applying suitable forces (of magnitude at most 1) at thegrasp points such that these forces sum to �v; hence, we maintain the body in equilibrium.These concepts can be specialized to the case where K is a planar body in which case theforce/torque space is 3-dimensional. The number of �ngers (12) for closure grasps can be reducedto 6 in this case [8] .3 Quantitative Steinitz's Theorem in 2 DimensionsLet S � E2 be a subset of the Euclidean plane and P its convex hull. Without loss of generality,we may assume that P has at least four vertices. Also, it is assumed that a unit disc B1 centeredabout the origin o is contained inside P . In general, let B� denote the closed disc of radius � > 0centered at the origin. Our goal is to develop techniques, given S and m, for choosing a set Xof at most m points from S so that the residual radius of X is maximized.Lemma 3.1 Given S as above, for any integer k � 3, we can �nd a subset X of at most 2k� 1points of S such that the convex hull of X contains B� with � = cos(�k ).proof.Take k equally spaced rays from o, making sure that one of them pass through a vertex of P(the convex hull of S). Let these rays intersect the unit circle centered at o at the points v1,. . ., vk . For each ray, if it intersects a vertex of P then we choose that vertex and if it intersectsan edge, we choose the two vertices of that edge. Thus we choose at most 2k � 1 points of S,forming the subset X � S. Clearly, the convex hull of X contains the points v1, . . ., vk andhence, it contains the B� with � = cos(�=k).We now show that this bound is asymptotically tight. It is important to note that this boundis achieved by choosing vertices of the convex hull of S.Theorem 3.2 For all m > 4, we have3�22(m+ 1)2 < 1� r2(m) < 2�2m2 :proof.The upper bound on 1 � r2(m) comes from the previous lemma which shows that r2(m) >cos(2�=m), and from the fact that cos x > 1� x2=2.For the lower bound, we let S be the vertices of a regular (m+ 1)-gon that just contains theunit disc B1. Then the omission of any point of S gives a residual disc of radiuscos( 2�m+1)cos( �m+1) :



4Thus r2(m) is upper bounded by this radius,r2(m) < 1� 2�2(m+1)2 + 2�43(m+1)41� �22(m+1)2= 1� 3�22(m+ 1)2 � �2 + 4�43(m+ 1)2(2(m+ 1)2 � �2)< 1� 3�22(m+ 1)2 :The special case where m = 4 is of particular interest. We now give some special argumentsfor this. Starting with S as above, the preceding lemma shows how to choose at most 5 pointsof S whose convex hull contains the disc Bcos(�=3) = B1=2. It is not hard to argue that one ofthese 5 points has the property that its two neighboring points span an angle of at most 144�about the origin o and hence if we delete this point, the remaining four points has a residualradius of at least (cos 72�)=2 > 0:15. We can do better with the following argument.Theorem 3.3 0:30 < sin 18� � r2(4) � cos 72�cos 36� < 0:38:proof.This upper bound is achieved by the regular pentagon (which is the special case m = 4 of theproof in the previous theorem showing that for S, given by the vertices of a regular (m+1)-gon,r(m;S) = cos( 2�m+1)= cos( �m+1).)As before, let P denote the convex hull of S. For the lower bound, �x � to be any anglebetween 0 and 60�. For any vertex v0 of P , we de�ne its forbidden zone which consists of twodisjoint cones, each spanning an angle of 2� at the origin o, and such that the two bisectors ofthese cones together with the ray !ov0 are equally spaced at 120� apart. See �gure 1.A vertex v0 of P is bad if there is another vertex v1 of P that lies in its forbidden zone. First,if v0 is bad, then we can choose three other vertices v1; v2; v3 as follows. Let v1 be a vertex of Pthat lies in the forbidden zone of v0. Let R be the ray originating from o and bisecting the largerof the two angles de�ned by the two rays from o through v0 and v1, respectively. Let v2; v3 bethe endpoints of the edge of P that R intersects. It is not hard to see that the quadrilateralv0v1v2v3 contains a circle of radius at leastsin�30� � �2� :Now suppose that P has no bad vertices. Assume that v0 is vertically above o and the twoforbidden cones C1; C2 of v0 are bounded by the rays !oR1; !oR2 and !oR3; !oR4, respectively, wherethe Ri's are points on the unit circle. Since v0 is not bad, each ray in C1 intersects a commonedge of P , say, v1v2 and similarly, each ray in C2 intersects a common edge of P , say, v3v4. See�gure 2.First suppose that the angle \(v1ov4) (we always measure angles clockwise from v1 to v4 inthis notation) is at most (120� + �). Then it is easy to see that the residual radius of v1v2v3v4is at least sin(30� � �2 ).
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Figure 1: Forbidden zone of v0 is shadedHence assume that the angle \(v1ov4) > (120�+ �). Without loss of generality, assume that\(R1ov1) � \(v4oR4). Then we have\(R1ov1) � (60� � 3�2 ); \(R3ov1) � (180�� 3�2 ):Thus the distance from o to the line through v1; R3 is at least sin(3�4 ). It is easy to see thatthe distance from o to the line through v0; v1 (respectively, v0; R4) is at least sin(30� + �2 ). Thedistance from o to the line through R3; R4 is at least 1. We conclude that the residual radius ofv0v1v3v4, which is at least the residual radius of v0v1R3R4, is at leastmin�sin�30� � �2� ; sin 3�4 � ;where 0 � � � 60�. We choose � = 24� (i.e., 30� � �2 = 3�4 ) to maximize this expression. Thisproves our lower bound.4 Quantitative Steinitz's Theorems in Higher DimensionsWe now consider the d-dimensional case for d > 2. The techniques are slightly weaker than the2-dimensional case.



6
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Figure 2: Case of no bad vertices.4.1 Lower BoundWe �rst give a lower bound for rd(m) for su�ciently largem (in particular, for all m � 13dd d+32 ).Thus, m is chosen to be large enough to guarantee thatk = $� m2d2�1=(d�1)%takes integral values, greater than d11pde.Lemma 4.1 For any set S � Ed whose convex hull contains the unit ball Bd centered at theorigin o, we can �nd a set X � S of at most m points with residual radiusr(X) � 1� 3d 2d2m ! 2d�1 ; for all m � 13dd d+32 :proof.Let k be de�ned as a function of d and m, as before. It su�ces to show thatr(X) � 1� 9748 d(k� 1)2 > 1� 3d(k + 1)2 ;in the given range for k.



Section 4 7Henceforth, P will stand for the convex hull of S. Let C be the d-dimensional cube whosefaces are normal to the appropriate coordinate axes, of side-length 2 and containing the unitball Bd. On each face of C we place a k� k� � � �� k (d� 1 times) grid (so the grid points havecoordinates that are integer multiples of 1k�1 and two adjacent grid points are 2k�1 apart). Notethat there are fewer than 2dkd�1 � m=d `grid cubes' on the union of the 2d faces of C. Througheach grid point p, we pass a ray R from the origin. Let R intersect the unit sphere Sd�1 at x(R).For each such ray R, we choose at most d vertices of P (the convex hull of S) as follows. If theray passes through an i-face of P , we choose i + 1 vertices of P whose convex span intersectsthat ray and is contained in that i-face. Thus the set X of chosen vertices has at most m points.The convex hull of X contains the set X 0 of all points of the form x(R) where R is a ray passingthrough the grid point.Let R be any ray originating from o and suppose it intersects some face of C at a point awhere a lies inside a grid cube S. Consider the triangle oab where b is any other point on theboundary of S. sin \(aob) = jabj � sin \(oab)jobj� 2pdk � 1 � 11 � 15Choose � to be � = arcsin 2pdk � 1 :Let q0 be any point at distance cos� from the origin. We show that q0 lies in the convexhull of X 0. Let R0 be the ray from o through q0 and suppose R0 intersects the grid cube S0.Let K0 be the cone bounded by the set of rays originating from o that makes an angle of � withR0. Hence each ray that passes through a vertex of S0 is contained in K0. There is a uniquehyperplane H0 containing @(K0) \ Sd�1. Note that q0 = R0 \H0. LetT0 = fx(R) : R passes through a vertex of S0gand T1 = fR \H0 : R passes through a vertex of S0g:By de�nition, T0 � X 0. Note that each point in T0 lies on the side of H0 not containing theorigin. This means that the convex hull of X 0 contains the set T1. But the convex span of theset T1 contains the point q0 = R0 \H0. This proves r(X) � r(X 0) � cos�.cos� = (1� sin2 �)1=2> 1� sin2 �2 � sin4 �8 1Xi=0 sin2i �= 1� sin2 �2 � sin2 �8 " sin2 �1� sin2 �#



8 � 1� 97 sin2 �192 (since sin2 � � 1=25)� 1� 97d48(k� 1)2 :This proves the lower bound lemma.4.2 Upper BoundIn this subsection, we derive an upper bound for rd(m). For this purpose, we let S be all thepoints on the unit sphere and then bound the largest radius of a ball contained in the convexhull of m points on the unit sphere. The convex hull of any such m points forms a polytope.The proof relies on the facts that (1) any \long" edges of this polytope bound the radius of thecontained ball and (2) since the polytope has only m vertices it must have some \long" edges.The detailed calculations provide an appropriate numerical bound.Lemma 4.2 Let S � Ed be the set of all points on the surface of the d-dimensional unit ballcentered at the origin o. Thus, the convex hull of S contains the unit ball Bd centered at theorigin o. Then any set X � S of at most m points has a residual radiusr(X) � 1� 117  2d2m ! 2d�1 ; for all m � 3dd2:proof.The proof proceeds in two steps: We �rst show that for all m > 0 and for all 0 < � < �=4,r(X) � max0@cos �2 ; 1� 1� tan2�16  2d2m ! 2d�11A :Then by an appropriate choice of the parameter � (� = 4�=53), we obtain the claimed bound.(1) Let X be a set of m points in Ed all lying on the surface of a unit ball and P =ConvexHull(X). Let P 0 be the polyhedron obtained from P by triangulating the non-simplicialfacets of P . Let pq be an edge of the polyhedron P 0. Thenr(X) � cos \(poq)2 :Thus, if � = maxpq=edge of P 0 \(poq);is the maximum of all such angles, then r(X) � cos �2 :If � � � then r(X) � cos �2 :



Section 4 9Henceforth, we assume that � < �. Let t stand for tan�; thus 0 < t < 1.(2) Let p 2 X be any point, and de�ne its truncated cone Kp as follows:Kp = fx: \(xop) � � and x � p � 1g:Now, if q is an arbitrary point on the surface of the unit ball, then the line segment oq belongs toKp, for each vertex p of some (simplicial) facet of P 0. As each such simplex facet has d vertices,the collection of truncated cones cover each point in the unit ball at least d times. Thus, we seethat m �Volume(Kp) � d �Volume(unit ball):Let Vd(r) stand for the volume of a d-dimensional ball of radius r.Vd(r) = Vd(1)rd:Thus, the volume of the d-dimensional unit ball is given byVd(1) = 2 Z �=20 Vd�1(sin �) sin � d�= 2Vd�1(1) Z �=20 sind � d�= K(d)Vd�1(1);where K(d) is de�ned by the last equation. The volume of each Kp is given byVolume(Kp) = Z 10 Vd�1(r tan�) dr= Vd�1(tan�) Z 10 rd�1 dr= Vd�1(tan�)d :Substituting the volumes into the preceding inequality, we getmtand�1 �Vd�1(1)d � dK(d)Vd�1(1):Hence, 1 > t = tan� > tan� �  d2K(d)m ! 1d�1 = c(d;m);where c(d;m) is de�ned in the last equation. Using the inequality c(d;m)2 < t2, we getcos2 � � 11 + c(d;m)2 � 1� c(d;m)2+ c(d;m)4 � 1� (1� t2)c(d;m)2:Hence, cos� = 2 cos2 �2 � 1 � �1� (1� t2)c(d;m)2�12 � 1� 1� t22 c(d;m)2



10and cos2 �2 � 1� 1� t24 c(d;m)2:Finally, we get cos �2 �  1� 1� t24 c(d;m)2! 12 � 1� 1� t28 c(d;m)2:Hence, r(X) � 1� 1� t28  d2K(d)m ! 2d�1 :(3) Note that (e.g., [6],page 369)K(d) = 2 Z �=20 sind � d�= 8<: (2k�1)!!(2k)!! �; if d = 2k = even;(2k)!!(2k+1)!!2; if d = 2k + 1 = odd.� 2�12�d�12 :Here k!! stands for k(k � 2)(k � 4) � � �(` + 4)(` + 2)` (terminating in ` = 1 or 2, depending onwhether k is odd or even). Thusr(X) � 1� 1� tan2�16  2d2m ! 2d�1 :(4) The stated bound follows with appropriate choice of the parameter �, as shown below:Let m � 3dd2; then  2d2m ! 2d�1 < 19 :Choose the parameter � = 4�=53, and observe thatcos 2�53 < 1� 117� 9 � 1� 117  2d2m ! 2d�1 :Since 1� tan2 4�53 > 16=17,1� 1� tan2(4�=53)16  2d2m ! 2d�1 � 1� 117  2d2m ! 2d�1 :If we choose � = �=5 in the preceding proof, we can show that: for all m > 0,r(X) � 1� 15512 � dm� 2d�1 :



Section 5 11If m � d, then 0 = r(X) < 1� 15512 � dm� 2d�1 :On the other hand, if m > d, we get the result since cos �10 < 1� 15512 and 1� tan2 �5 > 15=32:Summarizing lemmas 4.1 and 4.2,Theorem 4.3 For all m � 13dd d+32 ,117  2d2m ! 2d�1 � 1� rd(m) � 3d 2d2m ! 2d�1 :5 Computational Problems in the Plane5.1 Finding m Vertices of a Convex HullThe quantitative Steinitz's theorem poses several interesting and new problems in computationalgeometry. We begin with the simplest version of such problems: given a convex n-gon P whoseinterior contains the origin, �nd four vertices of P whose residual radius is maximum. In thiscase, we are able to give an elegant and simple linear time method. Without loss of generality,we assume that n � 5 and the interior angles at each vertex of P is less than �.Theorem 5.1 There is a linear time algorithm for �nding a set Q of four vertices of a convexn-gon, P , such that Q has the maximum residual radius, r(Q) = r2(4; P ).We use the following general notations. Assume that ui's (i = 1, . . ., m; m � 3) are pointsdistinct from the origin. Let !oui denote the ray from origin o through ui. The notationu1 > u2 > � � � > umsays that the rays !oui's are distinct and the ray !oui is encountered before !oui+1 when sweepinga ray originating from o counterclockwise from !ou1 to !oum. We extend this notation to the casewhere the ui's are not necessarily distinct, but we still require that the rays !ou1 and !oum bedistinct. For instance, we may writeu1 � u2 � u3 or u1 > u2 � u3:For any point u on the boundary of the polygon P , let the successor succ(u) of u denote thevertex immediately following u when we traverse the boundary of P clockwise. If u is a vertexof P , we insist that succ(u) is the next vertex of P .Our algorithm is simple to describe { its correctness is slightly harder to see. Suppose thatwe have four vertices u0; u1; u2; u3 of P such that there are at least three distinct vertices amongthem and u0 � u1 � u2 � u3:(The \�" notation here makes sense since at most one of the inequalities is non-strict.) LetQ = u0u1u2u3 denote the polygon formed by these vertices { so Q is a triangle or a quadrilateral.



12Our goal is to repeatedly choose one of these four points, say ui for some i = 0, . . ., 3, to\advance", i.e., set ui to succ(ui), in the hope of attaining a larger residual radius. The criteriafor choosing the vertex to advance depends on the following two cases. Remark : Here, allarithmetic on subscripts are modulo 4.Q is a triangle. Suppose for some i = 0, . . ., 3, ui and ui+1 are coincident, that is ui = ui+1.Then we advance ui (the `forward vertex').Q is a quadrilateral. An edge ui�1ui of the quadrilateral is limiting if the residual circle of Qtouches that edge. We then advance ui (the `backward vertex') where ui�1ui is any suchlimiting edge.We make some observations.1. In case Q is a triangle, advancing ui can in turn make ui and ui�1 coincident, causing ui�1to be advanced in the next iteration. However, there cannot be more than three consecutiveiterations in which Q is a triangle. Note that a triangle Q can have non-positive residualradius.2. In case Q is a quadrilateral and the residual radius r(Q) is non-positive, the limiting edgeand hence ui is uniquely determined. After advancing ui, provided ui�1ui remains limiting,the radius r(Q) will increase. This same vertex is repeatedly chosen, at least until the �rsttime t the edge ui�1ui is no longer limiting. Observe that there are two possibilities attime t: a) r(Q) becomes positive, b) r(Q) remains non-positive. In the latter case, theedge uiui+1 becomes limiting and we next start to advance ui+1.To complete the description of this algorithm we must initialize the four points and give thetermination condition.The Algorithm. Initially, we pick any four consecutive vertices of the polygon toserve as Q = u0u1u2u3. We record the initial position of u0. Then we iterate thebasic step of picking and advancing an ui, updating if necessary the largest value ofr(Q) encountered so far. The algorithm halts when u0 returns to its initial position,and outputs the largest value of r(Q) recorded.It is clear that the algorithm makes at most 4n iterations when it halts.For the next lemma, we need some notations. Suppose a0; a1; a2; a3 are the vertices of P thatachieves the maximum residual radius r� = r2(4; P ). Without loss of generality, we may assumethat all four vertices are distinct and a0 > a1 > a2 > a3:This partitions the vertices of the convex polygon into four non-empty sections, namedW0;W1;W2;W3 whereW0 = [a0; a1); W1 = [a1; a2); W2 = [a2; a3); W3 = [a3; a0):
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W0 a1 W1 a2 W2a3W3a0 oFigure 3: Q� and four sections of the polygon PSee �gure 3. The notation [a0; a1) refers to the consecutive subsequence of vertices from a0counter-clockwise to (but not including) a1. Also, let Q� = a0a1a2a3.The expression \at time t, uj is advanced from a vertex a" means that \at time t, uj is atvertex a and at time t + 1 it is at succ(a)".Lemma 5.2 Suppose at time t0, some uj (j = 0, . . ., 3) is advanced from ai+1 of Q�. (Henceat instant t0 + 1, uj is in section Wi.) If r� is not yet attained by the algorithm by time t0 thenuj�1 is not in Wi at time t0.proof.Without loss of generality, assume that i = 0 = j, in the statement of the lemma. That is, attime t0, u0 is advanced from vertex a1. By way of contradiction, suppose u3 is in W0 at time t0.There are two cases.Case 1 : Suppose Q is a triangle at time t0. Let t1 < t0 be the last instant when Q was aquadrilateral. By a previous observation, t0 � t1 � 3. Note that at time t1, for some ` = 0, . . .,3, u`+1 is advanced so that u` and u`+1 became coincident. Thus u` and u`+1 are adjacent attime t1. If r(Q) � 0 at time t1 then the origin O is on the side of the line u`u`+1 opposite to theother vertices of P , which is impossible. This shows that r(Q) > 0. Since Q is a quadrilateral,we only advance u`u`+1 because u`u`+1 is limiting. But u`u`+1 determines a radius greater thanr�, which leads to a contradiction.Case 2 : Suppose Q is a quadrilateral at time t0. Then u3u0 is limiting at time t0. If r(Q) werepositive, we deduce that r(Q) is at least r�, which is a contradiction. If r(Q) were non-positive,then in order that u3u0 be limiting, the origin must lie to the left of the line directed from u0 tou3. This forces the origin to lie outside Q�, again leading to a contradiction.We are now ready to show:Lemma 5.3 The algorithm is correct.



14proof.Suppose the algorithm halts when u0 returns to its original position b0. Without loss of generality,assume that b0 lies in the section W3 = [a3; a0). Let t0 be the instant when u0 is advanced froma0 (into W3). If r(Q) has already achieved the maximum value of r� before time t0, then we aredone. Otherwise we obtain a contradiction as follows. By the previous lemma, u3 does not liein W3 at time t0.Claim: u2 does not lie in W2 [W3 at time t0: for if u2 lies in W3 then u3 would be forced tobe in W3 as well; this is a contradiction. So it remains to show u2 does not lie in W2. If it does,then both u2 and u3 lie in W2. Let t1 < t0 be the last time that u3 does not lie in W2|suchan instant is well-de�ned. So u3 was advanced from a3 at time t1. Now an application of theprevious lemma again shows that r(Q) would have attained the maximum value r� before timet1, which is a contradiction. This proves the claim.We can repeat the argument of this claim to show that u1 does not lie in W1 [W2 [W3 attime t0. Hence u1 lies in W0. Thus, both u0 and u1 lies in W0. Again, let t2 < t0 be the lasttime that u1 does not lie in W0. Then an application of the above lemma to u1 at time t2 yieldsthe contradiction.We easily extend the above method to �nding the best m � 4 vertices of the polygon P .Now we need O(logm) per iteration (using a priority queue) to �nd the limiting edge of thecurrent m-gon, and the number of iterations is at most mn. This yields the following theorem.Theorem 5.4 For any m � 4 and n � m, there is an O(nm logm) time algorithm which onany input convex n-gon P computes the value of r2(m;P ).5.2 Finding m Points in the General CaseThe above section considers algorithms to compute r2(m;S) for the special cases, where S is theset of vertices of a convex polygon. In general, S is an arbitrary set of points in the plane, andsuppose P is the subset of S consisting of all the vertices of the convex hull of S. We note thatr2(m;S) is in general larger than r2(m;P ). As an example, let P be the vertices of a regularpentagon and S contains, in addition to P , for each edge of the pentagon, a point in the interiorof P but lying very close to the mid-point of that edge. Then r2(4; S)> r2(4; P ).On the other hand, r2(m;P ) is a reasonably good lower bound to r2(m;S). This follows fromour general constructions in section 3 where the asymptotically tight lower bound for r2(m;S)is obtained by choosing points on the convex hull of S. Nevertheless, we may want to �nd theexact value of r2(m;S). This subsection gives such an algorithm. Again, we begin with the casem = 4.Theorem 5.5 There is an O(n2 log n) algorithm to �nd a set X of four points in a set S of npoints such that the residual radius of X is maximized.Let S be a set of points with positive residual radius. Let the points of S be assumed to bearranged by their (counter-clockwise) angular order as in the previous subsection. We want to�nd four points in S with the largest residual radius. For any pair u; v of distinct points, let
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u vC(u; v)�(u; v) �0(u; v)w x

Figure 4: A quadrilateral wuvx containing the circle C(u; v)C(u; v) denote the circle centered at the origin which has the line uv as tangent, and let rad(u; v)be the radius of C(u; v). If for some two points w and x of S (w > u > v and u > v > x), C(u; v)is contained in the quadrilateral wuvx then the residual radius of wuvx is equal to rad(u; v).(Note that it is possible that w = x.) In the remaining portion of this subsection, we show how,for a given pair u and v, such a choice of w and x (if they exist) can be made in logarithmictime, thus providing an O(n2 logn)-time algorithm for the problem.First, we need some notations. Let C be a circle and let u and v be points of S outsideC. For a given point u, let �u denote the point diametrically opposite to u (with respect to theorigin o). We say u and v are mutually C-visible if the line segment connecting u and v doesnot intersect the interior of C. Also, we say v is covered by u (relative to C) if v is mutuallyC-visible with u and belongs to the smallest cone with its apex at u and containing C. (See�gure 5). We say a point is relevant for C if it is outside C and not covered by any other pointsof S. We omit references to the circle C, if it is apparent from the context.We have the following observations.Lemma 5.61. Let wuvx be a convex quadrilateral containing C(u; v). Consider two points w0 and x0 suchthat w0 covers w and x0 covers x. Then one of the quadrilaterals, w0uvx0 or x0uvw0, alsocontains C(u; v).2. Let wuvx be a convex quadrilateral containing C(u; v). Consider two relevant points w0and x0 satisfying the following conditions: �u � w0 � w � u; v � x � x0 � �v; w0 and u aremutually C(u; v)-visible and x0 and v are mutually C(u; v)-visible. Then either w0uvx0 orx0uvw0 is a convex quadrilateral and contains C(u; v).
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Figure 5: u covers v but not w. w covers neither u nor v3. Let C, C 0 be two concentric circles with C 0 being the larger of the two. If u is not relevantto C then u is also not relevant to C 0.Let u be a point outside C and W � S be the set of points w1, w2, . . ., relevant to C suchthat u � w1 � w2 � � � � � �u:Let wj be a point in W with the largest index such thatfor all i = 1; 2; . . . ; j; u and wi are mutually C-visible:Then wj is the \right-most" element in the set W , mutually visible with u. Suppose there isanother element wk 2 W (k > j) that is mutually visible with u. Then k � j + 2 and wj+1 isnot mutually visible with u; in this case wj+1 would be covered by wk thus contradicting thehypothesis that all points ofW are relevant. We say wj is the rightmost C-partner of u (denotedRP (u)). Similarly we may de�ne the leftmost C-partner of u (LP (u)). We conclude that RP (u)and LP (v) can be computed (whenever they exist) in logarithmic time, if we have a balancedsearch structure that contains only the points relevant to C(u; v) sorted by their angular order.Now, using the preceding lemma, we observe that if for some w and x, the quadrilateralwuvx contains the circle C(u; v) then so does one of the quadrilaterals, RP (u) uv LP (v) andLP (v) uv RP (u). Thus it su�ces to check that (1) C(u; v) is tangent to uv at some point inthe segment uv and (2) RP (u) and LP (v) are mutually C(u; v)-visible.The basic idea is to put all vertices u, and also all unordered pairs fu; vg of points in S intoa single priority queue. We use the Euclidean distance between u and the origin o as priority ofu, and the value of rad(u; v) as priority of fu; vg. We may omit all fu; vg's with rad(u; v) = 0



Section 5 17and begin the processing of the queue by successively extracting items with the smallest priority.Note that we could assume that the �rst item extracted is a pair fu; vg.For the �rst pair fu; vg extracted from the queue, we need to initialize a data structure tostore the points of S relevant to C(u; v) according to their angular order. We may break thecircular ordering into a linear ordering at some arbitrary breakpoint. We store these points asa linear ordering in the leaves of a balanced binary tree T .In the general step, suppose we extract from the priority queue either a pair fu; vg or vertexu. There are two cases.� Case 1: A pair fu; vg is extracted and C(u; v) touches uv at some point z in the segmentuv. Then assuming u � z � v, we use the search tree T to determine the rightmostC(u; v)-partner w of u and the leftmost C(u; v)-partner x of v and check if w and x aremutually C(u; v)-visible. If so, we have found a larger residual radius.� Case 2: (a) A pair fu; vg is extracted and C(u; v) touches uv at some point outside thesegment uv. Assume that of the two points u; v, the point u is the closer to o. Then wenote that for subsequent (larger radii) circles C, the vertex v covers u relative to C. Hencewe can delete the element u from the data structure T . (b) Similarly if u is extracted, wecan delete u from T .Clearly each operation takes O(logn) time. Since there are O(n2) elements in the queue, theoverall complexity is O(n2 logn). Note that at any instant when a pair fu; vg is being considered,only relevant points of S are left in T . More precisely, any point in the interior of C(u; v) orcovered by some other point would have already been deleted. (A point in the interior of C(u; v)is at a smaller distance from o than rad(u; v), and if v0 covers u0 then rad(u0; v0) � rad(u; v); u0v0is touched by C(u0; v0) outside the segment u0v0 and u0 is closer to o than v0.) Thus it is clearthat the algorithm is correct.Again the method generalizes to �nding any number m of points that has the best residualradius. This yields the following theorem.Theorem 5.7 For any m � 4 and n � m, there is an O(n2m logn) time algorithm which onany input set S of n points in the plane, computes the value of r2(m;S).We note that a faster algorithm is possible if we are willing to settle for a good (to withina factor � (1 � �), 0 < � < 1) approximation of r2(m;S), for all m � 4. Speci�cally, we candetermine if r2(m;S) is < or � a �xed value r in time O(nm logn). (In O(n logn) time we candetermine the set of points that are relevant for a circle of radius r. For each relevant point u, inO(m logn) time, we can determine if there exist � (m� 1) other additional points such that theset containing u together with these points has a residual radius of r or larger.) To begin with,we choose the best set of four vertices on the convex hull of S, and call its residual radius r0.Using an O(n logn) time convex hull algorithm, and the algorithm of the previous subsection,we guarantee that this step takes no more than O(n logn) time. Thus0:30 < r0r2(m;S) � 1:



18Using k = O(log(1=�)) comparisons, we can perform a binary search to improve the approxima-tion to 1� � � rkr2(m;S) � 1:Thus, the resulting algorithm computes a good approximation (with a relative error of �) in timeO(nm logn log(1=�)).6 Computational Problems in Higher DimensionsIn this section, we study the following algorithmic problem:Given a set S of n points in d-dimensional Euclidean space, whose residual radiusr(S) is positive, �nd a subset X � S of at most m points such that the followinginequality holds: r(X)r(S) � ~rd(m) = 1� 3d 2d2m ! 2d�1 :Here m and n are assumed to be su�ciently large, i.e. n � m � 13dd d+32 .We shall not discuss the more general \optimization" problem of �nding a subset ofm pointsthat maximizes the preceding ratio, for two reasons: �rstly, for largem, the approximate solutionprovides a reasonably good answer; secondly, any hope for �nding such a set in time polynomialin both d and n seems rather dim. While an investigation of this optimization problem is calledfor, we simply leave it as an open problem.Returning to the stated problem, we see that this problem can be solved by essentiallyfollowing the ideas outlined in lemma 4.1: We �rst choose a set X 0 of at most m=d points onthe surface of the unit ball such that the residual radius of X 0 is no smaller than ~rd(m). We canthen determine a set X � S of at most m points such that for some �min � r(S), the convexhull of X contains the set of points�minX 0 = ��min q: q 2 X 0	 :Thus r(X) � r(�minX 0) � �min~rd(m) � r(S)~rd(m):The points of X 0 are chosen as follows: Let C be the d-dimensional cube comprising thepoints (x1, . . ., xd) with jxij � 1 for i = 1, . . ., d. On each face of C, we place a k � k � � � � � k((d� 1) times) grid, with k taking the value$� m2d2� 1(d�1)% :Let X 0 = n!op \Sd�1: p is a grid pointo :



Section 6 19Thus jX 0j � 2dkd�1 � m=d. For each q 2 X 0, we determine an appropriate set Sq � S of atmost d points such that !oq \@ (ConvexHull(S)) 2 ConvexHull(Sq);thus for some �q, �qq 2 ConvexHull(Sq):Let X be X = [q2X 0 Sq;with �min taking the value minq2X 0 �q. Evidently, �min � r(S).Note that jX j � m, and �minX 0 � ConvexHull(X):This demonstrates the correctness of the algorithm, since we know that the residual radius ofX 0 is bounded from below by ~rd(m) (see the proof of lemma 4.1).In order to complete the algorithm, we show how to e�ciently compute the set Sq (for anypoint q) using the following linear programming formulation. Let S = fp1, p2, . . ., png. Withoutloss of generality, we assume that the points of S are in general position, i.e., at most d points of Smay lie on any (d�1) dimensional hyperplane. If not, the original points of S may be perturbedusing generic perturbation methods (see, for example, [16]); the following discussions still applymutatis mutandis . De�ne the d � n matrix A whose jth column consists of the coordinates ofthe point pj . Corresponding to the point q, de�ne a column d-vector b. The linear programmingproblem (LP) is given as follows:� Given: A d� n matrix A and a column d-vector b.� Solve: minimize ��subject to Ax = �beTx = 1x � 0� � 0;where x = (x1, . . ., xn)T, e = (1, . . ., 1)T and 0 = (0, . . ., 0)T are column n-vectors.Let x�, �� be an optimal solution of (LP). Then �� > 0 is the maximum value of � such that��q = nXi=1 x�i pi;with Pni=1 x�i = 1, and x�i � 0.Now consider the following dual of the (LP), which will be referred to as (DLP):maximize yd+1subject to a1;1y1 + � � �+ ad;1yd + yd+1 � 0a1;2y1 + � � �+ ad;2yd + yd+1 � 0... ...a1;ny1 + � � �+ ad;nyd + yd+1 � 0�b1y1 � � � � � bdyd � �1



20This problem can be solved in O(3d2n) time by using Clarkson-Dyer's improvement on Megiddo'smultidimensional search technique [4,5,7]. Let us now see how to recover the solution to theoriginal problem.Clearly both (LP) and (DLP) have optimal solutions. Let an optimal solution for (DLP) bey� = (y�1; . . . ; y�d; y�d+1):Let Iq � f1::ng be the set of all the indices j such thataj � y� = a1;jy�1 + � � �+ ad;jy�d + y�d+1 = 0:where aj = (a1;j; � � � ; ad;j ; 1)T. By the Complementary Slackness Theorem (see [3]), this impliesthat for all i = 1, . . ., n, if x�i > 0 then i 2 Iq. By virtue of our non-degeneracy hypothesisabout the points of S, we see that jIqj � d. We now claim that Sq = fpj : j 2 Iqg can serve as adesired solution. Clearly, Sq � S, has at most d points and!oq \@(ConvexHull(S)) 2 ConvexHull(Sq)):Note that even if the original set had been perturbed (by a su�ciently small amount) the setSq chosen from the unperturbed set S still provides the desired solution.To summarize:Theorem 6.1 For n � m � 13dd(d+3)=2, we can �nd a set X of at most m points from an inputset S of n points such that r(X)r(S) � ~rd(m) = 1� 3d 2d2m ! 2d�1 ;in time O(3d2mn).7 Final RemarksIt is natural to seek improved forms of Steinitz's theorem for certain subsets S � Ed. In otherwords, if k is any number (between d+1 and 2d), we want to characterize those subsets S � Edwhose residual radius is positive and are such that S contains a subset X of at most k points,where X has a positive residual radius. For instance, in the plane:Lemma 7.1 Let S � E2 be any set with positive residual radius. Then there is a subset of threepoints in S with positive residual radius if and only if S is not contained in two lines throughthe origin.We omit the easy proof. It would be interesting to develop an appropriate quantitative formsof this lemma. We see that an obvious quantitative version for this lemma fails. That is, theredoes not exist a constant 0 < � < 1 with the following property:Suppose the residual radius of S � E2 is at least one and S does not lie in two linesthrough the origin. Then there exists three points in S whose residual radius is atleast �.



Section 8 21To see this, consider the set S = fA;B;C;D;Eg where A = (0; 1); B = (1; 0); C = (�1; 0); D =(1;�L) and E = (�1;�L) for L = L(�) > 0 su�ciently large. Then no subset of S with threepoints has residual radius at least �.Yet another area of research that calls for further investigation arises from the observationthat the torque and force dimensions are really non-comparable. We want a notion of grasp-e�ciency that can take this into account. A related issue is that the current approach dependson the origin of the reference frame in which the torques are measureed. Is there an origin-independent approach to e�ciency and other metrics of a grasp?8 AcknowledgmentWe are pleased to acknowledge some helpful discussions with Professor S. Rao Kosaraju of JohnsHopkins University and Professor Richard Pollack of the Courant Institute. We also thank ananonymous referee who pointed out a calculation error in the lemma 4.2.
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