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Abstract. This paper considers the problem of planning collision-free
motion of three disks in the plane. One of the three disks, the robot,
can autonomously translate in the plane, the other two move only when
in contact with the robot. This represents the abstract formulation of a
manipulation planning problem. Despite the simplicity of the formula-
tion, the decidability of the problem had remained unproven so far. We
prove that the problem is decidable, i.e., there exists an exact algorithm
that decides wether a solution exists in finite time.

1 Introduction

The problem of planning collision free motion for a free-flying single-body robot
in environments populated by static obstacles has been widely studied in the past
decades and can be considered today well understood. In this paper we consider
a generalization of this basic problem by allowing the presence of movable ob-
stacles, i.e., objects in the environment that the robot can move by “grasping”
them, while avoiding collisions with and between all the obstacles.

The problem of motion planning in the presence of movable obstacles was
first introduced in [1], the corresponding journal version appearing in [2], where
the decidability is proven for the case of discrete grasps. This problem was fur-
ther generalized in [3] to the so-called manipulation planning problem where
the movable obstacles are considered as objects to be moved to reach a goal
position. In that paper the authors present an algorithm for the case of discrete
placements and grasps. This is the formulation briefly described in Chapter 11 of
Latombe’s book [4]. Decidability of the problem in the case of continuous grasps
and placements was shown in [5] considering one movable object.

While [6] provides an efficient probabilistically complete algorithm in the case
of several movable obstacles, the question of the decidability, i.e., the existence of
an exact algorithm that decides wether a solution exists in finite time, remained
open even in the case of two movable objects as mentioned in [7].
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In this paper we prove that the manipulation planning problem for a robot
that can freely translate in the plane and two objects that can move only if
they are in contact with the robot is decidable. The proof is based on a cell
decomposition of the collision-free contact configuration space and on a property
(reduction property) assessing the equivalence of paths continuously satisfying
the contact constraint to manipulation paths along which the objects either
translate rigidly with the robot as a single object (transfer paths) or remain in a
fixed position while the robot translates to a different position (transit path). To
prove that the reduction property holds for the manipulation model considered
in this paper, allowing motion of the objects only through sticky contact with
the robot, we make use of the controllability result in [8].

Although somewhat theoretical, the presented result is expected to lay the ba-
sis for answering important questions such as characterizing under which condi-
tions motion in contact can be reduced to a manipulation path, how to efficiently
construct manipulation graphs related to many different problems (climbing,
walking, multi-contact planning) for all of which the present formulation repre-
sents an abstraction, how to determine the rate of convergence of probabilistic
planners for the manipulation of multiple objects.

The paper is organized as follows. In the next section we formalize the prob-
lem after defining the configuration space and its connectivity through manip-
ulation paths. In Sect. 3 we establish the conditions under which motion in
contact can be reduced to a manipulation path. Section 4 illustrates the main
steps for the construction of the manipulation graph and Sect. 5 concludes the
paper. Finally, in the Appendix we propose a constructive geometric proof of
the reduction property when the robot is in contact with both obstacles.

2 Problem formulation

Consider the scene depicted in Fig. 1 with two movable rigid objects O1 and O2

and one robotic manipulator R, all disk-shaped, translating in a polygonal (or
semi algebraic) environment with obstacles. The objects O1 and O2 can move
only if in contact with R; otherwise, they are considered as fixed obstacles.

2.1 Configuration space

The configuration spaces of the robot and the objects are defined as:

• CR = R2, the configuration space of the robot;
• CO1

= R2, the configuration space of O1;
• CO2

= R2, the configuration space of O2.

The combined configuration space is obtained as C = CR × CO1
× CO2

= R6. A
configuration q ∈ C is given by the triplet q = (qR, qO1

, qO2
), where qR ∈ CR,

qO1
∈ CO1

, qO2
∈ CO2

.
The collision-free configuration space Cfree is obtained by removing from C

the set of configurations:
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Fig. 1. Scenario of the considered manipulation planning problem. The robot R can
autonomously translate in the plane while the movable objects O1 and O2 can translate
only if in contact with the robot.

• qR such that the robot is in contact with static obstacles or overlaps with
either static or movable obstacles;

• qO1
such that O1 overlaps with the static obstacles, the robot or with O2

(contact between objects and obstacles is allowed);
• qO2

such that O2 overlaps with the static obstacles, the robot or with O1

(contact between objects and obstacles is allowed).

2.2 Configuration space paths and manipulation paths

Paths in C can be categorized according to the three motion modalities:

• robot free motion: this is a path in the submanifold CR with the two objects
in fixed positions (obstacles);

• single-contact motion: this is a path in either CR×CO1
or CR×CO2

constrained
by the condition of contact with one of the objects while the other one is
in a fixed position; along the path both the position of the robot and the
position of the object relative to the robot can change;

• double-contact motion: this is a path in CR × CO1
× CO2

constrained by the
condition that the robot is in contact with both objects; along the path
the robot position and the positions of the objects relative to the robot can
change.

The above described paths might or might not be feasible for a manipulation
system depending on its characteristics. In this work we consider only manipu-
lation by stable grasp. This means that sliding, rolling, pushing are not included
in our analysis. Therefore, not all the configuration space paths are feasible in
our setting. Feasible motions correspond to paths of two types:

– transfer paths along which either the robot grasps one of the two objects
and moves rigidly with it (while the other remains in a fixed position) or it
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Fig. 2. Structure of the configuration space C induced by the contact constraints and
interconnection of the contact submanifolds through transit and transfer paths.

grasps both the objects and moves rigidly with them; along these paths the
relative configurations between robot and objects in contact do not change;

– transit paths along which the robot moves alone.

A sequence of transit and transfer paths is called a manipulation path.

2.3 Configuration space connectivity through manipulation paths

In this section we illustrate the complete structure of C in terms of the sub-
manifolds defined by the contact constraints and their interconnection through
transit and transfer paths. Figure 2 shows the representative configurations in
each manifold.

The embedding configuration space C has dimension 6 and foliates with the
position of the movable objects. In particular, leaves of dimension 2 correspond
to fixed positions of the two objects. Transit paths belong to one of these leaves.
Manipulation paths across the leaves (the objects change position) require leav-
ing the manifold. A representative configuration in this manifold is shown at the
top of Fig. 2.

Configurations on the second row (from top) of Fig. 2 represent the single-
contact manifold which has dimension 5, foliates with the absolute position of
one object and the relative position of the other with respect to the robot. The



leaves of interest for the considered problem have dimension 3 and correspond to
fixed positions of the object which is not in contact with the robot. Manipulation
paths across the leaves require leaving the manifold.

The double-contact manifold, represented by the configurations on the third
row of Fig. 2, has dimension 4 and foliates with the relative position of the
contact points. The leaves of interest have dimension 3 and 2 and correspond
respectively to one or both the points of contact being fixed. Manipulation paths
across the leaves require leaving the manifold.

Finally, the triple-contact manifold has dimension 3, foliates with the position
of the contact points and the leaves have dimension 2. Manipulation paths across
the leaves require leaving the manifold.

As will be illustrated in section 3.2, the “manipulability” properties associ-
ated with these manifolds are actually transversal to this geometric structure
and depend on the controllability of the underlying manipulation system.

2.4 The manipulation planning problem

Relying on the definitions and analysis of the previous sections, we can formulate
the following problem.

Manipulation Planning Problem. Given an initial configuration qs ∈ Cfree and
a goal configuration qg ∈ Cfree, find a sequence of transit and transfer paths
joining qs to qg, if it exists.

To prove that this problem is decidable we adopt the same approach as [5].
First we study the problem of reducing the configuration space paths belonging
to the contact manifolds represented in Fig. 2 to manipulation paths. Then, we
determine a cell decomposition of the contact space. Finally, we complete the
proof with the construction of the manipulation graph whose connected compo-
nents characterize the existence of solutions to the above defined manipulation
problem.

The first part of our approach consists, in fact, of answering the following
question: is it possible to reduce any collision-free configuration space path de-
scribing motion in contact to a (finite) sequence of transit and transfer paths?
Answering this question requires studying the local controllability of the manip-
ulation system that is possible to associate with the manipulation model adopted
in this paper. The analysis is described in the following section and is based on
the result by Goodwine and Burdick [8] providing condition for controllability
of kinematic control systems on stratified configuration spaces.

3 Controllability of the manipulation system

To answer the first part of the manipulation planning problem we define here the
simple kinematics describing the manipulation system underlying the considered
planning problem. This system has a stratified configuration space and we use
the result in [8] to establish its small-time local controllability.



3.1 Controllability on stratified configuration spaces

We briefly recall here the main definitions and properties of stratified configura-
tion spaces and the stratified controllability property that we prove to hold in
our case.
Stratified configuration manifold (Definition 2.2 in [8]): Let M be a manifold
(possibly with boundary), and n functions Φi: M 7→ R, i = 1, . . . , n be such
that the level sets Si = Φ−1i (0) ⊂ M are regular submanifolds of M , for each
i, and the intersection of any number of the level sets, Si1i2...im = Φ−1i1 (0) ∩
Φ−1i2 (0) ∩ . . . Φ−1im (0), m ≤ n , is also a regular submanifold of M . Then M and
the functions Φi, define a stratified configuration space.

The driftless systems defined on stratified configuration manifolds are de-
scribed on each stratum, or on strata intersections, by equations of motion
characterized by smooth vector fields and the only discontinuities present in
the equations of motion are due to transitions on and off of the strata or their
intersections.
Stratified controllability (Proposition 4.4 in [8]): if there exists a nested sequence
of submanifolds at the configuration x0

x0 ∈ Sp ⊂ Sp−1 ⊂ . . . ⊂ S1 ⊂ S0 = M,

where the subscript is the codimension of the submanifold, such that the asso-
ciated involutive distributions satisfy

p∑
j=0

−
∆Sj |x0 = Tx0M

and each
−
∆Sj

has constant rank for some neighborhood Vj ⊂ Sj , of x0, then the
system is stratified controllable from x0 in M .

Stated differently, if the involutive closures of the distributions associated to
each submanifold in the nested sequence intersect transversely then the system
can flow in any direction in M . The proof of the above proposition provides
also additional information particularly relevant in the motion planning context:
the set of states reachable up to time T denoted by RV (x0,≤ T ) contains a
neighborhood of x0 for all neighbors V and all T . With such a T assigned, it is
always possible to find a suitable neighborhood by limiting the system to flow in
an open set the size of which depends inversely on the codimension of the lowest
stratum.

This property is useful in proving that, given a path in contact between
the robot and the objects, if the manipulation system is controllable, then it is
always possible to approximate this path with a manipulation path contained in
a tube with radius equal to the clearance of the contact path to the obstacles.

3.2 Stratified controllability of the manipulation system

For the stated manipulation problem, the ambient manifold M is given by the
combined configuration space C and has dimension 6. The submanifolds are



defined by the contact conditions as described in Sect. 2.3. The lowest stratum
is the double contact manifold and has codimension equal to 2. There are two
submanifolds of codimension 1 (contact with only one of the two objects) and
the sequence will include only one of them.
Denote by x = (xR, yR, xO1

, yO1
, xO2

, yO2
)T a configuration of the manipulation

system, the equations of motion on each stratum are as follows. Recalling that,
in the considered setting, R can only translate in the plane and the objects can
be moved when in contact with R with a stable grasp, the equation of motion
on each substratum has the form

ẋ = gSi
1 u1 + gSi

2 u2

where u1, u2 are the inputs for the manipulation system and gSi
1 , gSi

2 are the input
vector fields that have a different expression on each substratum. In particular,
in S0 = C we have

gC1 = (1, 0, 0, 0, 0, 0)T , gC2 = (0, 1, 0, 0, 0, 0)T .

These vector fields describe the motion of the robot alone on a leaf of C that
depends on the position of the objects.

On the single-contact manifold Cc1 they have the expressions

g
Cc1
1 = (1, 0, 1, 0, 0, 0)T , g

Cc1
2 = (0, 1, 0, 1, 0, 0)T

and on Cc2

g
Cc2
1 = (1, 0, 0, 0, 1, 0)T , g

Cc2
2 = (0, 1, 0, 0, 0, 1)T .

Flowing along these vector fields amounts to moving the object in contact while
staying on a leaf that depends on the position of the object that is not touched
by the robot. Since both the single-contact manifolds have codimension 1, S1

will be equal to either one of them in the sequence of nested submanifolds used
to show controllability.

Finally on the double-contact manifold S2 = Cc1,c2 it is

g
Cc1,c2
1 = (1, 0, 1, 0, 1, 0)T , g

Cc1,c2
2 = (0, 1, 0, 1, 0, 1)T .

On this stratum the objects move with the robot without changing the points
of contact.

It is easy to verify that the stratified controllability proposition holds by
choosing as involutive distributions

−
∆ S2 = span (g

Cc1,c2
1 g

Cc1,c2
2 )

−
∆ S1 = span (g

Cc1
1 g

Cc1
2 ) or

−
∆ S1 = span (g

Cc2
1 g

Cc2
2 )

−
∆ S0 = span (gC1 gC2 ).



Note that the codimension of the lowest stratum is given by the number of
movable objects and has an impact on the complexity of the considered motion
planning problem.

Figure 3 illustrates the stratification of the configuration space induced by
the contact constraints. By virtue of the controllability property described above,
any continuous path in contact between the robot and one or both objects in
each stratum can be approximated by a manipulation path. This is referred to
as reduction property.
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Fig. 3. Stratification of the configuration space induced by the contact constraints.

Having established that any path in the configuration space satisfying the
contact constraint between the robot and the objects can be reduced to a manip-
ulation path, we describe in the next section the construction of the manipulation
graph.

4 Building the manipulation graph

The reduction property established in the previous section leads to the conclusion
that any collision-free path in contact contained in a connected component of a
same contact manifold is equivalent to a manipulation path. The key issue that
remains is to build a geometric data structure that accounts for the decidability
of the manipulation problem.

We propose here an extension of the manipulation graph as it has been
introduced in [5] for the case of a single disk to move. In that case a single class



GRASP representing the admissible (i.e., not in collision with static obstacle nor
overlapping the object to move) contact configurations between the robot and
the object was defined. The nodes of the manipulation graph were then given
by the connected components of GRASP . The adjacency relation was given by
the existence of transit paths between two nodes.4

In the case of two movable objects it is necessary to introduce two classes
GRASP1 and GRASP2 and to build the manipulation graph over the connected
components of GRASP1 and GRASP2.

The class GRASP1 (resp. GRASP2) represents all the configurations in Cfree
such that the robot is in contact with the object O1 (resp. O2). This means
that the position of the object which is not in contact with the robot can change
within the class. As a consequence, the reduction property shown in the previous
section does not apply on the connected components of GRASP1 and GRASP2,
i.e., any path in GRASP1 and GRASP2 cannot be necessarily approximated by
a sequence of transit and transfer paths. This is the main difference compared
to the case of a single object.

The reduction property holds however inside each leaf of the foliation of
GRASP1 (resp. GRASP2) that keeps constant the position of O2 (resp. O1):
any path inside these leaves can be approximated by a sequence of transit and
transfer paths. These are the leaves of dimension 3 in the manifolds defined by
the contact constraints schematically represented in Fig. 2.

The key questions are then: (i) how to determine the connected components
of GRASP1 and GRASP2, and (ii) how to build a manipulation graph that will
account for the existence of a manipulation path.

The answer to the first question is easy. GRASP1 and GRASP2 are com-
ponents of the 5-dimensional contact submanifold of Cfree. If there exists a cell
decomposition of the 6-dimensional space Cfree, then this cell decomposition in-
duces by retraction on its boundary a cell decomposition of the 5-dimensional
contact space (up to some potential singularities we do not consider in this pa-
per). Then, such a cell decomposition leads to a straightforward characterization
of the connected components of GRASP1 and GRASP2. The first question is
then reduced to the existence of an algorithm that provides a cell decomposi-
tion for the case of three disks moving freely on a plane. It just so happens
that Schwartz and Sharir [10] propose a general algorithm for many disks as an
extension of their algorithm for two disks5.

Notice that applying the retraction of the cell decompositions iteratively
provides a cell decomposition of the various contact submanifolds, and ultimately
a cell decomposition of GRASPO1,O2

= GRASP1 ∩GRASP2.

4 In [9] the authors propose a generalization to the case where the object may be
further subjected to some placement constraints. The nodes of the manipulation
graph are the various connected components of Grasp ∩ Placement space and the
adjacency relation is based on the existence of either transit paths or transfer paths.

5 It should be noted that this extension is not trivial and, to our knowledge, it has
never been implemented.



Fig. 4. Schematic illustration of the decomposition induced by projecting a cell onto
another.

Building the manipulation graph is the second issue to be addressed. For this
purpose, we refine the cell decompositions of the various connected components
of GRASP1 and GRASP2 by considering their projections along the three di-
rections of the foliations generated by: (i) transit paths (the robot moves alone),
(ii) transfer paths of type 1 (O2 does not move), (iii) transfer paths of type 2
(O1 does not move). As a result, the projection of a given cell C1 onto a cell C2

induces a decomposition of C2 into several cells C2i (see Fig. 4). Henceforth, we
denote by the letter c all the cells issued from these refinement process.

Consider two points p1 and p2 in two cells c1 and c2 ofGRASP1 andGRASP2

respectively. c1 and c2 are 5-dimensional. p1 and p2 belong respectively to two
3-dimensional leaves L1 and L2.

We consider two cases. Let us first consider the existence of a manipulation
path remaining in the contact space. A necessary and sufficient condition for the
existence of such a contact path between p1 and p2 is that L1 and L2 intersect
a same connected component of GRASPO1,O2

. The existence of the path can be
decided by computing a refinement of the cell decomposition of GRASP1 and
GRASP2 as follows: consider the merging of the projections of both GRASP1

and GRASP2 cell decomposition along the direction of the respective foliations
onto GRASPO1,O2 . It gives rise to a decomposition of GRASPO1,O2 into many
cells. Then refine the initial cell decomposition of GRASP1 and GRASP2 by
“lifting” all cells in GRASPO1,O2

along the foliations. Each elementary cell of
GRASPO1,O2

appears as the basis of two cylinders that contain cells of GRASP1

and GRASP2 respectively. The resulting cells of GRASP1 and GRASP2 consti-
tute the nodes of the manipulation graph.

We then introduce the following adjacency relation: two cells in GRASP1

(resp. GRASP2) are adjacent if and only if they have a common frontier and
they belong to a same cylinder. After the general method proposed in [11] it is
known that the computation of such a cylindrical decomposition is possible, if
not trivial.

For the second case, we consider the existence of a manipulation path between
p1 and p2 that goes through the free-space. The main idea is the same as for the
previous case. It is simpler because we have to consider only the foliation induced



by transit paths. The leaves of the foliation are 2-dimensional. We consider the
cell decomposition of GRASP1 and GRASP2 after addressing the first case
above. We add an edge between two cells c1 and c2 belonging respectively to
GRASP1 and GRASP2 if and only if the the projection of c1 onto c2 along the
foliation by transit path is not empty.
We have then the following
Theorem: There exists a manipulation path between two configurations in the
free space if and only if these configurations retract on two cells belonging to
the same connected component of the manipulation graph.

The proof follows the same principle as the proof in [5] and [9]

5 Conclusion

We have shown in this paper that for the manipulation planning problem for
three disks (one robot and two movable objects) in the plane it is possible to
construct an exact representation of the admissible (i.e., collision-free and satis-
fying the contact constraints) configuration space in the form of a manipulation
graph to be search for a solution.

To prove the result, we have preliminarily generalized the so called reduc-
tion property to the case of double contact. Then, using the cell decomposition
proposed by Schwartz and Sharir [10] and a specific analysis of the structure of
the configuration space, we have illustrated the fundamental steps for the con-
struction of the manipulation graph the connectivity of which accounts for the
existence of a manipulation path.

Future work includes studying the case of an arbitrary number of movable
objects and the adaptation of the result to more realistic manipulation systems.
Different manipulation models, possibly including pushing and sliding are also
a potential interesting evolution of this work.

Appendix

In this section we propose a constructive geometric proof of the reduction prop-
erty for paths in configuration space constrained by contact between the robot
and both objects. Preliminary to this proof is the conceptual illustration of the
contact manifolds.

Single-contact manifold

Paths corresponding to motion in contact with only one object lie in a 5-
dimensional manifold immersed in Cfree that foliates with the position of the
obstacle that is not in contact. On each leaf the reduction property in [5] can
be applied to transform any path in contact into a sequence of transfer and
transit paths. In principle, there exist two identical spaces of this kind, one for
each object, and they are transversal to each other. We call these spaces Cc1 and
Cc2 . Figure 5 provides a conceptual illustration of Cc1 and the paths in Cc1 and
Cc1 ∩ Cc2 represented in Cc1 .
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O2 in fixed position
on each leaf

a path in contact 
with O1

a path in contact 
with O1 and O2

a double-contact 
configurationa path

configuration

Fig. 5. Illustration of Cc1 and the paths in contact: dim(Cc1) = 5 while the dimension
of its leaves is 3. Each leaf is a replication of the configuration space of R in contact
with O1, the only difference between leaves being the position of O2. A path in contact
with both O1 and O2 is transversal to the leaves spanning Cc1 . The manifold of contact
configurations between R and O2 has the same structure but is transversal to the space
illustrated in the figure.

Double-contact manifold

Paths of the robot in contact with both objects belong to the 4-dimensional
manifold Cc1,c2 = Cc1 ∩ Cc2 at the intersection between Cc1 and Cc2 . A path in
contact with both objects is represented by the green dashed path in Fig. 6 as
a path “across” the foliation of one of the single-contact manifolds.

We start with the following conjecture: Because of the foliations of Cc1 and Cc2 ,
any path in this manifold should be equivalent to a sequence of transfer paths
with two contacts and paths in either Cc1 or Cc2 . Figure 6 shows an example
of such a decomposition: the green dashed path in contact with both objects
can be reduced to the sequence composed by the black dotted path and the blue
continuous path. Along the black dotted path both objects are in contact and the
contact points do not change along the path. The path terminates where one of
the object has reached the desired position. The blue path is a single-contact path
lying on a leaf of one of the single contact manifolds. We know that the reduction
property applies to paths in contact lying on either of these two manifolds,
therefore, we only need to show that the green dashed path is equivalent to the
sequence of black and blue paths. Figure 7 illustrates the property through an



leaves of the 
single-contact manifold

Fig. 6. Illustration of the “reduction property” to be proven: is the dashed path equiv-
alent to the sequence of blue and green path?

qs

qg

an admissible path in the 
double-contact manifold

qs

qg

Fig. 7. Any path in the double-contact manifold is admissible to go from qs to qg but
not any path is a manipulation path.

example: given the initial and the final configurations, respectively qs and qg,
any path in the double-contact manifold is admissible. Figure 8 shows how to
reduce it to a sequence of transfer and transit paths. A formal proof to this
Generalized Reduction Property follows.

Generalized reduction property

Generalized Reduction Property: Any two configurations belonging to the same
connected component of the double-contact manifold can be connected by a
manipulation path.
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double-contact manifold
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(here the reduction 
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qs
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Fig. 8. Can any path in the double-contact manifold be “reduced” to a sequence of
transfer and transit paths as in the figure?

Proof. It is a direct generalization of the reduction property proof in [5]. Let
qa and qb be two configurations in the double-contact manifold connected by a
collision-free path in Cc1,c2 . Note that, since the robot is not allowed to move in

contact with static obstacles, this path is actually contained in the subset C̃c1,c2
of Cc1,c2 of all configurations such that the robot is not in contact with any static
obstacle. This is an open set in CR but might not be in C.

Denoted the collision-free path as p : [0, 1] → C̃c1,c2 , with p(0) = qa and
p(1) = qb, some preliminary definitions are in order:

pR: projection of p on CR;

pO1
: projection of p on CO1

;

pO2
: projection of p on CO2

;

pR−O1
: contact configuration relative to object O1 on p;

pR−O2
: contact configuration relative to object O2 on p.

Assume that the objects can neither be in contact with obstacles nor in con-
tact between themselves (quite unrealistic, to be removed later) and let q = p(s),
s ∈ [0, 1], be a configuration on the path. Due to the non-contact hypothesis, it
is always possible to define an open ball B1 in the collision-free single-contact
configuration space Cc1,free, centered on the contact configuration pR−O1

(s)6 and
without considering O2. Its projection Dε1 in CR is homeomorphic to a disk of
radius ε1 > 0. The object O1 will not collide with obstacles as long as it is in
contact with R ∈ Dε1 . In the same way there exists a ball B2 in the collision-free

6 This is a point in Cc1 .



single-contact configuration space Cc2,free, centered on the contact configuration
pR−O2

(s). Its projection Dε2 in CR is a disk of radius ε2 > 0.
Denote by ε = min{ε1, ε2}. Due to the continuity of p, there exists an ηR > 0

such that
∀τ ∈]s− ηR, s+ ηR[, pR(τ) ∈ Dε/2,

an η1 > 0 such that

∀τ∈]s−η1,s+η1[,||(pR(τ)−pO1
(τ))−(pR(s)−pO1

(s))||<ε/4,

and an η2 > 0 such that

∀τ∈]s−η2,s+η2[,||(pR(τ)−pO2
(τ))−(pR(s)−pO2

(s))||<ε/4.

Denote by η3 = min{η1, η2}, and conclude that

∀τ∈]s−η3,s+η3[,||(pO2
(τ)−pO1

(τ))−(pO2
(s)−pO1

(s))||<ε/2.

Consider now η = min{ηR, η3} and two configurations along the path: q1 =
p(τ1) and q2 = p(τ2), with τ1 < τ2 and both in the interval ]s− η, s+ η[.

The path p(τ) = (pR(τ),pO1
(τ),pO2

(τ)), τ ∈ [τ1, τ2] that transfers of O1 in
double-contact can be written as

pR(τ) = pO1
(τ) + (pR(τ1)− pO1

(τ1))

pO1
(τ) = pO1

(τ)

pO2
(τ) = pO1

(τ) + (pO2
(τ1)− pO1

(τ1)),

and the transfer path p(τ) = (pR(τ),pO1
(τ),pO2

(τ)), τ ∈ [τ1, τ2] of O2 in single-
contact to its goal position

pR(τ) = (pO1
(τ2) + (pO2

(τ)− pO1
(τ)) + (pR(τ1)− pO2

(τ1))

pO1
(τ) = pO1

(τ2)

pO2
(τ) = pO1

(τ2) + (pO2
(τ)− pO1

(τ))).

Finally, transit path p(τ) = (pR(τ),pO1
(τ),pO2

(τ)), τ ∈ [τ1, τ2] of R to its
goal:

pR(τ) = (pO2
(τ2) + (pR(τ)− pO2

(τ))

pO1
(τ) = pO1

(τ2)

pO2
(τ) = pO2

(τ2).

As a result of the choice of η these paths should all be feasible, i.e., collision-
free. A symmetric argument can be provided if O2 is transferred first to its goal
position.�

This proof could be completed by considering the case of objects-obstacles
and object-objects contacts, but omitted due to lack of space. The critical point
in this case is that double-contact motion could not be allowed because it would



not possible to define an open disk in either of the two one-contact manifolds. It
is then necessary to prove that a motion in double contact can be reduced to a
sequence of motions in single contact. To achieve this reduction it is sufficient to
break both contacts and move back to one of the two single-contact manifolds
where the reduction property holds. It is, in fact, possible to show that there
always exists a set of “escape” directions allowing the robot to un-grasp both
obstacles.
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