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Abstract—Agents in a social-technological network can be
thought of as strategically interacting with each other by con-
tinually observing their own local or hyperlocal information
and communicating suitable signals to the receivers who can
take appropriate actions. Such interactions have been modeled
as information-asymmetric signaling games and studied in our
earlier work to understand the role of deception, which often
results in general loss of cybersecurity. While there have been
attempts to model and check such a body of agents for various
global properties and hyperproperties, it has become clear that
various theoretical obstacles against this approach are unsur-
mountable. We instead advocate an approach to dynamically
check various liveness and safety hyperproperties with the help
of recommenders and verifiers; we focus on empirical studies of
the resulting signaling games to understand their equilibria and
stability. Agents in such a proposed system may mutate, publish,
and recommend strategies and verify properties, for instance, by
using statistical inference, machine learning, and model checking
with models derived from the past behavior of the system. For
the sake of concreteness, we focus on a well-studied problem of
detecting a malicious code family using statistical learning on
trace features and show how such a machine learner—in this
study a classifier for Zeus/Zbot—can be rendered as a property,
and then be deployed on endpoint devices with trace monitors.
The results of this paper, in combination with our earlier work,
indicate the feasibility and way forward for a recommendation-
verification system to achieve a novel defense mechanism in a
social-technological network in the era of ubiquitous computing.

I. INTRODUCTION

Current trends in technology point to increasing ubiquity
of social-network and application-centric frameworks. While
these trends have dramatic security implications that highlight
the need to detect deceptive behaviors, they also underscore the
importance of developing new methods for malware detection
and deterrence.

The problem facing the agents of a social-technological
network is to identify and classify the various forms of
deception and attack in traces (e.g. sequence of observed
events) executed on endpoint devices. Just as attackers may
employ deception to achieve an attack (for example, a benign-
sounding flashlight app actually opens a back door to surveil
the endpoint device’s GPS coordinates as reported in [1]),
a defensive user may also check and validate that an app
abides by a specific system security property such as non-
surveillance, which could be validated on the endpoint device
using a trace monitor. The transactions in social-technological

networks embody many such repeated games with payoffs and
costs. In the example of the flashlight app, the sender of the
app receives the benefit of asymmetric information relative to
each receiving agent (i.e., each endpoint device which installed
the flashlight app). Each receiver incurs the costs of the loss of
privacy and unawareness of information asymmetry, profitably
exploited by the sender.

We model these interactions in a social-technological net-
work as repeated signaling games. To better understand the
possible dynamics, our team has developed a simulation
system that tests the dynamic behavior of a population with
access to a recommendation-verification system that can sug-
gest and score defense options to deter ongoing attacks. De-
fense options may include malware detectors, system property
monitors, validation exams for software, hardware/software
trust certificates, etc. The system provides equities for the
development of effective defenses to ongoing attacks and when
defense options are transferable they allow populations to
adapt to novel threats. Furthermore, the currency of such a
system is M-Coin certificates, which provide proofs concern-
ing the integrity of options or even properties of app behavior
[2].

In this paper we consider a full implementation of a
recommendation-verification system. Our goal here is to show
how machine (statistical) learning of trace features partic-
ular to a malware family could provide a basic defense
option specified as system properties to be implemented on
endpoint devices. The requirements of a recommendation-
verification system offering defensive options to users are 1)
options can be measured for effectiveness, 2) options may
be widely transitioned across a large number of endpoint
devices via user recommendation or otherwise, 3) options
are mutable by user agents, and 4) user agents may hold a
portfolio of mixed strategic options. To achieve mutability by
user agents—an important requirement for adapting to attack
evolution —defensive options must be human interpretable
and have low complexity so that user agents can manipulate
options in meaningful and strategic ways. In order for users to
employ a mixed strategy, the strategic options must be defined
within the context of an algebra; we suggest properties or
hyperproperties. Note further, a honey-net could supplant the
users in exploring strategies without incurring a high cost.

By reconsidering the well known problem of machine



learning traces in the context of a recommendation-verification
system, we 1) create a practical use of properties and hy-
perproperties that can be implemented on endpoint devices
via a trace monitor and 2) demonstrate the feasibility of the
recommendation-verification system by meeting the require-
ments for defense options.

The feasibility of the recommendation-verification system
opens the way to new defense mechanisms that are scalable
to populations of users in a social-technological network in
the era of ubiquitous computing. This paper is organized as
follows: Section II is background, Section III is key defini-
tions, Sections IV and V present on API scraping and trace
learning, Section VI discusses results, and Section VII contains
conclusions. This extended abstract focuses on the empirical
studies, and relegates the theoretical analysis to the full paper.

II. BACKGROUND

Signaling games have been widely used in biology and
economics to understand strategic interactions between two
agents, one informed and the other uninformed via a set
of signals. Behavior modeling of agent-based populations in
cybersocial systems via signaling games was introduced in
[2] and was later extended to minority games with epistatic
signaling. Both simulation studies are used to understand how
a recommendation-verification system may operate practically.
In signaling games the parameters of costs/payoffs were shown
to have dramatic outcomes on expected system (of population
of agents) behavior. Epistatic signaling games—where defense
options consider a vast attack surface —provide more realistic
simulations yet retain many of the dynamics discovered in
signaling games. The system-wide effects of an early-adapter
advantage were explored in the minority game variation;
that work allows us to explore the effects of preferentially
rewarding early challenging receivers who adapt effective
defenses in response to an ongoing attack technique—an
important condition for any system that provides incentives
for challenges to adapt (via mutation or other means) to novel
attacks. Further exploration investigated the use of strong
and transparent metrics for scoring security challenges (e.g.,
properties) and how such metrics may lead to more effective
population-wide responses to emerging attacks. While the sim-
ulation studies address population behavior and dynamics, the
question of how to implement such a system remained open.
In this paper we seek to demonstrate how challenge options
for a recommendation-verification system could be realized
with a methodology that learns the properties of traces from
a particular malicious code family Zeus/Zbot (henceforward
referred to as Zeus). Later in the discussion we revisit the
aspect of measuring effectiveness, measured intrinsically in
the results section, which in a recommendation-verification
system for a population should be an extrinsic (albeit heuristic)
measure in terms of a score for challenge strategy.

Formal methods including model checking and properties
(as sets of traces) and hyperproperties (as sets of properties)
are referenced as ways to address the growing problem of
malware and cybersecurity in today’s ecology of computing

(ref: Science of Cyber Security report titled ’JASON’ [3]).
Hyperproperties are also suggested as a potential means to
formally describe attack behavior and malicious use cases.
Hyperproperties are shown [4] to compactly describe security
properties such as non-interference, where a guarantee that a
program complies with an access control model is succinctly
described as a hyperproperty. We are most likely the first
to suggest the possibility that properties or hyperproperties
could be dynamically checked and used through challenges to
attacks in a recommendation-verification system. Such chal-
lenge options could be realized on endpoint devices using trace
monitors. To facilitate the requirements of recommendation-
verification systems, we must describe detectors (i.e., chal-
lenge options) in a formal and standard way that is also human
interpretable; we suggest hyperproperties as an ideal format.

Many examples demonstrate the use of machine learning in
the area of cybersecurity [5]–[8]. For an overview and survey
of machine learning in malware analysis, we recommend [9].
In this paper, we focus on machine learning methods that
produce interpretable models dating back to the seminal work
of Quinlan: [10], [11], which develops algorithms for inducing
a simple and interpretable model from structured features; [12]
for boosting a classifier by combining an ensemble of weaker
learners; and [13] for ensemble boosting for interpretable
decision trees.

Our technique illustrated on Zeus is related in subject to
[7], which confines the learning objectives to features obtained
from observations of traditional runtime behavior. We pursue
a trace-based approach most similar to [6], whose authors
construct an analogous analysis technique but limit the feature
space to API count profiles and stop short of measuring critical
performance metrics (including model complexity) needed in
a distributed recommendation-verification system. We extend
the learning objective from the feature space of API count
profiles to a feature space that includes primitive features
(e.g., k-mers or subsequences of k events) of local ordering
(of function call sequences); the outcome suggests that this
extension leads to models that are more concise and less
complex. We further show how to translate the results to
a formal property, which could be deployed in a federated
response.

III. DEFINITIONS

Let Σ be a set of states. A trace is any countable sequence
over Σ:

σi ∈ Σ for i ∈ S with S ⊂ N.

In sequence notation σi denotes the ith state in the trace
sequence. Trace data in practice may be thought of as a finite
sequence over a set of states. Trace sequences can express a
program execution sequence with a wide variety of granularity
specified by the states encoded as Σ. In the theoretical context,
a trace σ may be either finite ( σ ∈ Σ∗ ) or countably infinite
( σ ∈ Σℵ0 ).

Properties. A property is a set of traces. Properties are
further studied in a theoretical context where they may be



categorized into types, including safety properties, which
are properties determined by the occurrence of critical and
irredeemable events in finite time, and liveness properties,
which are properties that for any finite trace may be continued
to form a member of the property. Clarkson and Schneider
introduced hyperproperties in [4] to derive more compact
descriptions of security properties. For hyperproperties they
also discuss the distinction between safety and liveness and
show a decomposition theorem. The decomposition theorem
for properties states that any property can be described as the
intersection (conjunction) of a safety property and a liveness
property. The decomposition theorem may be proved using
set systems over Σ∗ as the lower Vietoris topology. During
the methodology, properties (as sets of traces) are the learning
objective, and we explicitly show methods for computing
properties that are indicative of Zeus malware.

Developing trace data. In the context of executable behavior
the states of Σ may be the observable events associated
with kernel functions expressed during runtime. A tracing
technique, such as the technique introduced in the next section,
may be considered, in the abstract, to be a mapping taking as
input a static binary executable b and running the binary in a
monitor to produce a string over Σ∗. To denote the abstract
mapping between binary executable and trace sequence, we
introduce the function Φ, which for every b is capable of
producing a value Φ(b) ∈ Σ∗ in sequence space.

Property learning using trace features. To establish a
starting position trace features may include counts of epochs
(e.g., k−mer substrings) occurring in trace and their statistics.
We define a problem focused on learning a property (as a set
of traces) from trace features. In this case we consider learning
a property by observing trace objects for a specific malware
family using supervised knowledge—meaning that at least part
of the answer (of what constitutes the malware family) is
known a priori from other methods/means. The result is a
classifier, which should more compactly represent the property
(or set of traces) than the set itself.

To be more precise, given a sample of traces from T0
(constituting the behavior of a malware family), we consider
the problem of learning a classifier for T0 as a property from
a background sample of traces from other malware families
T1, T2, . . . , TK . The result is a classifier that takes as input a
trace and determines if the trace is within the property T0.

IV. METHODOLOGY: API SCRAPING

Design and implementation. API scraping is a method for
collecting trace data from an executable program. Trace data
may be analyzed to gain an understanding of how a program
behaves in a system. In general, abstract programming inter-
face (API) scraping is the art of specifying and capturing the
data necessary to gain understanding of behavior.

To implement API scraping we use binary instrumentation.
Binary instrumentation is the process of instrumenting a
running program with monitoring code to record or augment
runtime events, such as function calls or data flow through

a given function. Binary instrumentation may be designed
to record massive amounts of data at the finest resolution
of processor actions; however, due to the inherent tradeoff
between resolution and the resulting signal-to-noise ratio in
recorded output, it is most often designed to capture events
that provide the most relevant information for understanding
behavior. Therefore, rather than capture all data related to
every possible action in the process, we design a technique
for selectively and strategically instrumenting functions (often
specified in an API, thus the name API scraping).

This technique allows an arbitrary list of kernel or otherwise
accessible functions to be specified for instrumentation. In
general, any function whose prototype can be discovered and
loaded within an executable image can be listed for scraping
by our technique. The results of allowing the strategic selection
of which functions to trace via API scraping are higher
signal-to-noise ratios in recovered traces (for example, we
often monitor the functions called directly from the executable
module and discard nested or supporting API calls); more
complete coverage of binary behavior fluxing through a given
API; and increased abilities to specialize tracing needs to
specific threats. Complete coverage of the kernel space is
important when studying malware because even a determined
adversary is limited to the use of kernel function (however
obscure) for accomplishing goals and tasks.

In our technique, we focus on capturing events that relate to
system interaction by recording the events of functions (entry
and exit) made by an instrumented program. Our implemen-
tation utilizes the Intel Pin binary instrumentation tool [14]
for dynamic instrumentation and includes a programmable
pattern-matching language. We selected Intel Pin because it
provides the functionality needed to instrument an executable
file at the function call level, is relatively stable, and supports
multiple platforms with a unified process model.
Tailoring API scraping for behavioral sequences. Central to
the design of our API scraping technique is that the validating
agent selects which functions to scrape. We denote the selected
list of function as F = {y1, y2, . . . , yM}, with each yi a
specific function (perhaps from a system API listing). For
each specified function, a monitor is established in the process
image that produces a report for the entry event (occurring
when the function is called) and the exit event (occurring when
the executing process returns control from the function to the
caller).

Our API scraping implementation for Windows XP, 7, and
8 operating systems is shown in Figure 1. It utilizes Intel Pin
and reports a sequence of kernel function API calls with the
address of parameters and return values. We instrument a list
of 527 Windows kernel-level functions, therefore |F | = 527.
Of the instrumented functions, 283 are Rtl functions, 224 are
NT functions, and 17 are Ldr functions.

Last, for a given listing of functions F implemented in API
scraping, we denote the binary instrumentation as a function:
ΦF (b) ∈ Σ∗, which takes as input a binary executable b and
produces a trace sequence Σ∗. In this setting, the elements of
Σ are limited to function and the action type (entry or exit);



Figure 1. Trace implementation using Intel Pin binary instrumentation tool.
Each line reports a function event such as CALL (entry) and RETURN (exit)
from the functions in F of our API-scraped list. Each action record records
execution pointer, thread ID, and parameter/return addresses from left to right.

for now the other recorded fields are ignored.

Deception, polymorphism, and Zeus traces. In the context
of a social-technological network it is important to recognize
that implementing polymorphic techniques (to be deceptive)
comes at a fixed cost to the malware designer; such tech-
niques dramatically increase the difficulty and cost of agent-
based checking (e.g., detection, classification, or signature
generation). For this reason and to demonstrate the difficulties
that a polymorphic attack family can present we consider the
Zeus botnet crimeware [15]–[17], which is designed to go
undetected via polymorphism, establish system persistence,
and infect web browsers to achieve a man-in-the-app attack
that allows the operator to intercept or counterfeit web traffic,
usually to electronic banking sites. Using Zeus we are also able
to demonstrate the distinction between the efforts to develop
static signatures as opposed to considering behavior sequence
from trace data.

Because the Zeus family is a sophisticated threat employing
both deception (obfuscation) and anti-analysis techniques, it is
an ideal test subject for the methodology of learning properties
(for a difficult and polymorphic case) and for showing how the
result may be used in a recommendation-verification system by
codifying the detection as a property. The Zeus malware family
is known to be polymorphic (employing several layers of
obfuscation) and implements anti-debugging techniques [15]
[18]. Polymorphic techniques employed by malware families
(such as Zeus) increase the difficulty of static analysis by
obfuscating or degrading the signal that individual elements
of the family are in fact related, at least from the perspective
of their executable images stored on disk.

However the Zeus malware family is not considered to be
metamorphic, so analysis of behavior sequences in trace data
should in principle lead to the discovery of invariants across
all the elements of the family.

To show that the Zeus malware samples are polymorphic
we apply a clone mapping study to a control set of binary
executable images produced using the Zeus builder version
1.2.4.2; this study highlights the levels of code obfuscation
as shown in Figure 2. Using the same control set of binary
images we provide a visualization of API scraping by plotting
the execution cursor over trace sequences in Figure 3; this vi-
sualization demonstrates the similarities in trace and suggests
that patterns in trace may be simpler to analyze and summarize

for Zeus and possibly other cases of polymorphism.
Our results section shows that the behavioral sequences

admit compact descriptions as properties, which are machine
learnable and simple to state because of the relatively low
complexity of the resulting classifiers. We provide a discussion
of the validity of our API scraping methodology by showing
critical actions of the Zeus binary process as recorded by the
API scraping method despite the documented anti-debugging
techniques employed by the bots.

To obtain Figures 2 and 3, we generate a control data set
by starting with the Zeus 1.2.4.2 builder and then feed a
single (constant) configuration script into the builder to create
multiple bots.

Figure 2 illustrates how these static images vary greatly.
The technique [19] maps all code-clones (or common byte
sequences) found in a set of generated Zeus bots and illustrates
that there is very little code similarity to discover. The only
interesting findings from the code-clone analysis are that a
small sequence associated with the outermost unpacking func-
tion —which is designed to look like a UPX style decoder—is
placed at a random position in the “text” section of the binary,
and random bytes are sprayed into the sequence to prevent
long matches of byte sequences greater than around 30 bytes.
Clearly the builder employs a technique that randomizes values
as well as location for the entry function to increase the
difficulty and cost of creating signatures for the static images.
The general problem of detecting the Zeus family may be
made even more difficult because there are multiple versions
of Zeus beyond version 1.2.4.2.

In Figure 3 we illustrate the execution pointer position as
a function of time for four zbot products (configuration script
held constant) to discover that there is observable similarity
in the trace functions. Associated with each y−position is
the execution pointer position plotted as a function of time
(x−axis); the execution position (for loaded kernel modules) is
correlated to linked functions expressed during runtime. Even
though not all traces record the same number of steps (or
time interval), the similarity may be viewed with dilation and
truncation options. In addition, in Figure 3 we annotate the
sequence with coloration on the x−axis of each trace function.
These coloration sequences help to calibrate one trace against
another to see the similarities in trace.
Validity of API scraping methodology. To determine
whether the instrumentation techniques are non-interfering
with the malicious sample (despite the anti-debugging tech-
niques implemented), we test whether the Zeus binaries are
able to achieve known characteristics of runtime as out-
lined in [15]–[17]. Specifically we check the characteristic
that the Zeus binaries identify a persistent running pro-
cess—in each case winlogin —and attach a secondary in-
fection into initialization routines. For version 1.2.4.2 this
level of system compromise is validated by checking for
value C:/WINDOWS/system32/sdra64.exe appended
to the key field UserInit for key Winlogon. Each bot
traced achieves these steps, indicating that the technique of
API scraping is robust to the anti-debugging features of the



Figure 2. High levels of Code Polymorphism and Obfuscation: The image
above displays the code-clone map for static binary images for the Zeus 1.2.4.2
builder and three Zeus products generated using an identical configuration
setting. The static binary images are displayed in sequence about the annular
ring. The image reveals a high level of obfuscation. The builder (purple band)
starts at the 12:00 position and extends to the 3:00 position. Bots appear in
clockwise order: product 1, product 2, and product 3. The orange counter
arcs through the interior of the image represent all code clones or string
matches found in more than one binary, exceeding 12 bytes, and having
boosted Shannon entropy.

malware family.

V. METHODOLOGY: LEARNING PROPERTIES

With the API scraping technique established, this section
focuses on the overall problem of learning characteristics of
trace in a given family of malware. We start by outlining the
overall process to develop a classifier for a given malware
family.

Given: T0 A property (set of traces).
Process:
• Baseline: Develop a stratified sampling over compa-

rable objects (i.e., other properties as sets of traces
from malware families). The properties whose union
is termed baseline are denoted as T1∪T2∪ . . .∪TK .

• Compute: Learn a classifier for property T0 vs.
baseline in terms of the sequential features of trace.

Output: A classifier specified in terms of a property’s
prescribing trace features of target family and proscribing
features of baseline.

Given a computed classifier for T0, the intrinsic validation
measures of the binary classifier include the following:
• Accuracy (holdout) using 10-fold cross validation.

Figure 3. Traces clarify the commonality for Zeus products. Here we plot
the execution pointer position (as a function of time on the x-axis) for four
bot images (instrumented). Each image is allotted a runtime of 30 seconds,
during which kernel API functions are hooked and API sets are grouped and
annotated as colored regions on the x-axis, revealing visual similarity for
process execution across all of the products.

• Statistical power measures. True positive vs. false posi-
tive, precision and recall.

• Model complexity or description length of classifier.
• Model interpretability.

Of the intrinsic validation measures, we are particularly inter-
ested in complexity and interpretability, which make practical
the use of a recommendation-verification system.
Data set. We considered an example set of 1,933 unique Zeus
binaries labeled by the contagio website. To represent all other
non-Zeus malware, we used a baseline set of 9,620 malware
samples chosen from a large corpus of manually labeled
PE32 malware; this corpus included 151 (i.e., K = 151)
distinct malware families other than Zeus. For each baseline
family, we used a stratified sample and bound the maximum
number from each family to control for large families in our
baseline dataset. Stratified sampling is a technique where the
number of representatives of the kth family Tk is proportional
to |Tk|∑K

i=0 |Ti|
and therefore is proportional to an underlying

frequency estimated as the frequency of observed tagged
artifacts within a corpus. For now, we assume the frequency
of tags in our corpus of collected artifacts corresponds to
underlying frequencies of artifact prevalence in the wild.
Statistical learning. With T0 set to the traces derived from the
Zeus (tagged artifacts from contagio [20]) and a background
T1∪ . . . T151 established, we return to the problem of learning
the distinguishing features of trace for T0 vs. background.
Each trace tx = ΦF (x) , obtained by applying API scraping
with selected function set F to the binary executable image
x, is an ordered behavior sequence. With a given trace t held
constant, we derive three count vectors as features which we
group as follows:
1) Function expression profile: Total count—for each func-
tion y let f+y count the total number of events (entry or exit
events) for a given trace t. Balanced count—for each function



y, let f−y be the difference (subtraction) of events (as number
of exit events minus entry events) for function y for a given
trace t.1.

2) Function transition profile for k−mers: Total count—for
each contiguous subsequence of function events of length k
as (y1, y2, . . . , yk), let π(y1,y2,...,yk) count the number of oc-
currences of this subsequence of events (regardless of whether
the event is either entry or exit) for a given trace t.

Although in our experiments we limit k−mers size to k =
2 the technique easily extends to any number of transitional
k−mers.

For each binary x we obtain the following count feature
vectors from its trace tx:

f+(x) = 〈f+y 〉y∈F
f−(x) = 〈f−y 〉y∈F
π(x) = 〈π(y,z)〉(y,z)∈F×F

Therefore for a corpus of binaries 〈xi〉Ni=1 we are able to
derive observed feature vectors:

〈f+(xi), f
−(xi), π(xi)〉Ni=1

With these vectors (for the entire data set) in combination
with family tagging (e.g., txi

∈ Tj , which indicates the
supervised knowledge that binary i is contained in family
j), we can consider the supervised trace property-learning
problem with stratified sampling. We outlined the method to
derive intrinsic measures for the supervised trace property-
learning problem as an experiment:

Experiment
• Training:

– Stratified Sample: For each k select a sub-
sample of size 90% from Tk.

– Learn distinguishing trace features.
• Test and Evaluate: Using the resulting model, test on

all data.

In the experiments we explore the use of these learning
methods as implemented in the Weka framework [21]:
• Naive Bayes: A model that assumes independence of

features; we expect it to perform poorly but include it
to provide a point of reference.

• C4.5: A general and interpretable model without assump-
tions of feature independence.

• Random Forest: One of the most widely deployed meth-
ods; uses boosting.

• C4.5 with Adaboost: An ensemble enhancement to the
existing C4.5 to demonstrate the effect of Adaboost, a
popular ensemble technique.

1Generally benign code should balance function calls (with few excep-
tions), however in the case of malware, non-zero-balanced counts may be a
particularly interesting feature resulting from exploits.

All methods selected above produce interpretable outputs, in
contrast to methods such as neural nets, which is one element
of the motivating criteria. For each method we consider the
intrinsic validation measures below.

VI. RESULTS

Our experiments indicate the ability of machine learning
methods to accurately and compactly identify the similarity
in traces even for highly polymorphic malware such as Zeus.
While the accuracy we attain is 97.95% and therefore compa-
rable with other previous results, we wish to emphasize how
other desired properties of a learning method are accomplished
with particular attention to model complexity. We present
several images of the classification features (with tagging),
provide the intrinsic validation metrics for each classifier, and
indicate how each malware classifier can be used to create
properties for the assignment. Following the results we discuss
what implications they have for a recommendation-verification
system in a social-technological network.

Sparse feature space and reduction. The computed feature
space for the classification problem is rather large, containing
counts over the sets F×F×(F×F ). Because our API scraping
tools targets a total of |F | = 527 functions, this amounts
to a feature space as large as |F |4 = 77, 133, 397, 441.
All methods investigated naturally discount any non-positive
counts; therefore, a natural sparsity in the feature space exists
and is exploited by these methods. In addition to the sparse
occurrence of features, all methods are sensitive to selection
of the most distinguishing features and thus select the more
distinguishing features with higher priority.

Accuracy. This result was measured as average accuracy in
10-fold cross-validation testing. C4.5 with Adaboost is just
above 97.95% improving slightly on the performance of C4.5
with no ensemble methods (97.4%), while the accuracy of
Random Forest is similar (97.5%). Our average accuracy
measures in the cross-validation testing may not demonstrate
the tradeoff of false positives vs. true positives, which is an
important consideration in detection systems where there is
often a high cost to false positives (e.g., the abandonment of
a detection system). To address this shortcoming, we present
the receiver operating characteristic (ROC) below as Figure
4(a), which includes Naive Bayes as a comparison point
for the methods of C4.5, C4.5 with Adaboost, and Random
Forest. The comparison (to Naive Bayes) suggests how these
classifiers perform in contrast to a relatively simple method
that makes invalid assumptions regarding the independence
of features. As we can see in Figure 4(a) the Naive Bayes
performance is the poorest performer, doing slightly better
than random guessing. With the power measure of receiver
operator characteristic (ROC), we demonstrate false positive
vs. true positive tradeoffs; however, these tradeoffs may fail to
account for large imbalances in class size for which precision
and recall may offer alternative views. Because our data corpus
contained a baseline dataset approximately four times the
size of the Zeus dataset, our class sizes are highly varied.



(a) ROC

(b) PR

Figure 4. Statistical power: (a) receiver operating characteristic for various
supervised binary classifiers for trace features (b) precision and recall char-
acteristics for various supervised binary classifiers for trace features

To address this concern we present the additional statistical
power measures of precision and recall in Figure 4(b); these
measures are more robust to the effects of variable class size.

Model complexity. For trace-based classifiers, complexity ad-
dresses our specific interest in obtaining compact descriptions
for malware sets as properties. Low-complexity descriptions
of properties (themselves fairly large objects) address the re-
quirement that a property be mutable and interpretable so that
it may be adapted to evolution in attack method. Implementing
trace detection may be done with a wide variety of techniques,
but because we are most interested in models that can be
interpreted and modified by agents of a social-technological
network to create adapted defense options, we are interested
in lower-complexity models: the lower the complexity, the
more admissible the model is to direct reasoning by an agent
or an agent team aligned to address an attack threat in the

wild. To explore this aspect of the resulting classifier, we
create a measure of complexity as the number of decisions
in the resulting decision tree and experiment with how the
accuracy may depend on iterative refinement, which decreases
the model complexity.

Complexity measures are also of theoretical interest and ac-
tually motivated the definition of hyperproperties as a means to
more compactly describe security properties. From a practical
viewpoint, model complexity is a concern typically associated
with model generality and helps avoid model over-fitting. For
us, another very practical outcome is that a low-complexity
model provides a simple structure to summarize a large object
(large set of trace objects, themselves long sequences of
behavior action). Consider again the trace sequences viewable
in Figure 3, for which our visual capacities perceive structure
(at least more so than the clone study in Figure 2, which
reveals highly polymorphic images). The complexity measure
summarizes how efficiently the model can capture this simi-
larity in structures in the trace sequences. Below in Figure 5
we illustrate an outcome of one of our experiments; the model
complexity correlates directly with the size (number of edges
and number of nodes) of the decision tree.

Figure 5. Example trace classifier (computed for the entire data set): Red
nodes are features prescribed by property T0, and blue nodes are features
proscribed or alternatively prescribed by the background set.

Low complexity and robustness. Through iterative parame-
ter refinement, the model in our first iteration (shown in Figure
5) can be reduced in complexity by decreasing the targeted
confidence parameter in C4.5. By decreasing the confidence
parameter, we can induce more concise models. We explore
the effect on accuracy in Table I. This procedure explores
this notion of robustness and suggests that very simple models



(induced by decreasing the confidence parameter) can retain
many of the features needed to accurately distinguish Zeus’
behavior from that of the baseline. Specifically Table I shows
that while more concise models can be induced by pruning
the resulting decision tree of C4.5 (no boosting) to create a
sequence of models with decreasing complexity (quantified as
number of leaves/branches), much of the accuracy measured
with 10-fold cross validation can be maintained.

iteration leaves branches accuracy
1 91 181 97.44%
2 74 147 97.16%
3 55 109 97.03%
4 43 85 96.48%

Table I
ROBUSTNESS OF INDUCED MODELS WITH LOWER COMPLEXITY

Features selected. We consider the contribution of each
feature class to the overall result presented above in Figure 5.
A direct count of how many features are from f+, f−, and π
in the tree at iteration 1 (pre-pruned tree) establishes the counts
to be 145, 166, and 658 respectively. These counts show that
67.905% of the features selected by the model are from the
transition class π, indicating that the learning method may find
distinct strengths to leveraging information associated with the
transitional k−mers even for k = 2.
Computing a property from a classifier. Below we illustrate
how the results of property learning may themselves be used to
compute a system security property that could be checked on
an endpoint device using a trace monitor. This step completes
the overall objective of creating a defense option that meets
the requirements of a recommendation-verification system.

Below we present the formal equations that are to be pro-
scribed from an observing trace monitor on an endpoint device
as Czeus in Figure 6(a). Figure 6(b) shows other malware
families as Cbaseline. Figure 6(c) and 6(d) provide a partial
view of definitions for variables vi for i ∈ {1, 2, . . . 180}
defined as a system of 180 variables.

Discussion. Our experiments show how machine learning can
be directly linked to the formal and theoretical framework
of properties that may be transferred among agents in a
social-technological network. Our machine learning results of
accuracy are consistent with other studies, but we further
explore model complexity as a first-order consideration; we
speculate that the addition of primitive subsequence k−mers
as potential features contributes greatly to the results with low
complexity and robustness even when inducing simple models.

Each of these findings is important for the overall goal
of designing a recommendation-verification system. Consider
this single example of a Zeus detector created with machine
learning of trace sequences, published to a recommendation-
verification system as a property for endpoint deployment
along with intrinsic measures of accuracy, statistical power,
and complexity. This property can be transmitted as a defense
option to any agent in a social-technological network. Any
agent can therefore adapt this strategic option with an M-coin
incentive, and the option can then be evaluated for its extrinsic

(a) zeus (b) baseline

(c) variable definitions v1, . . . , v18

(d) variable definitions v173, . . . , v180

Figure 6. Formal properties learned: (a) Equation formalizing learned Zeus
property (b) Equation formalizing learned baseline property (c) Variables set-
ting for variables v1, . . . v18 (d) Variable setting for variables v173 . . . v180.
Definitions are normalized and found in the form of either the terminal case of
i) an inequality involving a single feature vector, or the non-terminal case of
ii) a conjunction of a previously defined variable with an inequality involving
a single feature vector.

effectiveness by a consensus or perhaps by comparison to other
competing properties. Receiver agents can provide reputation
benefit to the agents creating the most effective security
properties (defense options) and its distribution evolving in
proportion to the extrinsic effectiveness. Because the option is
interpretable and exchanged as a property, it may be mutated
or recombined by cross-over with other successful strategies
to create novel options that may prove more effective than
the source options. From the defense perspective, options
can be subsampled to create ensembles and variations pro-
viding mixed strategies, innovation of strategies, trembling
hand strategies, population heterogeneity, etc. Though we only
briefly mention these defense options in this paper (we discuss
them extensively in the full paper), they are now the basis of
a practical recommendation-verification system.

VII. CONCLUSIONS AND FUTURE WORK

In an era of ubiquitous computing with agents within social-
technological networks, we must adopt new ways of thinking
about the problems of deception and attacks. As computing be-
comes more social and more ubiquitous, more and more agents
encounter each other in a context of asymmetric information;
this situation naturally creates an incentive to efficiently and



effectively detect and react to deception. We foresee a fertile
area developing at the intersection of evolutionary games
(biology) and science of cybersecurity (technology), for which
notions of adaptation and mutational drift/diffusion of strategy
play a critical role in a population’s ability to manage and
mitigate a large attack and vulnerability surface.

We plan to extend this research further by considering
API scraping and modeling with properties of the specific
behaviors of executables. Currently we are developing an
API scraping tool aimed at summarizing behavior in mali-
cious PDFs and JavaScript exploits. We also plan to consider
learning and model checking individual malware behaviors as
properties.
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